Osnove Fourierove analize. Franka Miriam Brückler

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osnove Fourierove analize. Franka Miriam Brückler"

Transcript

1 Osnove Fourierove analize Franka Miriam Brückler

2 Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)?

3 Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)? Zadatak Za koji a će sin(ax) imati period π/2?

4 Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)? Zadatak Za koji a će sin(ax) imati period π/2? 1?

5 Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)? Zadatak Za koji a će sin(ax) imati period π/2? 1? Periodična funkcija f : R R perioda T (ne nužno temeljnog) potpuno je odredena svojom restrikcijom na segment [ L, L] gdje je L = T 2. Vrijedi i obrnuto: svaka funkcija zadana na [ L, L] prirodno se proširuje do periodične funkcije na R perioda 2L.

6 Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)? Zadatak Za koji a će sin(ax) imati period π/2? 1? Periodična funkcija f : R R perioda T (ne nužno temeljnog) potpuno je odredena svojom restrikcijom na segment [ L, L] gdje je L = T 2. Vrijedi i obrnuto: svaka funkcija zadana na [ L, L] prirodno se proširuje do periodične funkcije na R perioda 2L. Najjednostavnije funkcije koje imaju period 2L su funkcije oblika ( mπx ) f m (x) = cos L i (za m, n N 0 ). g n (x) = sin ( nπx ) L

7 Trigonometrijski redovi Primjer Ako je L = π, tj. promatramo funkcije perioda 2π, onda je f m (x) = cos (mx), g n (x) = sin (nx). Uočimo da im (za m, n > 1) 2π nije temeljni (najmanji) period. Na vektorskom prostoru svih realnih funkcija s domenom [ L, L] i najviše konačno mnogo prekida skalarni produkt definiramo formulom f, g = L L f (x)g(x) dx. Zbog opisanog poistovjećivanja funkcija s periodom 2L s funkcijama kojima je [ L, L] domena, gornja formula definira i skalarni produkt za funkcije s periodom 2L.

8 Trigonometrijski redovi Svaka funkcija tipa f m ortogonalna je na svaku funkciju tipa g n, tj. skalarni produkt im je jednak nuli: f m, g n = L L sin (zašto?) Ako m n vrijedi i ( mπx ) ( nπx ) cos dx = 0 L L f m, f n = g m, g n = 0. Nadalje, ako m = n 0 vrijedi f n, f n = g n, g n = L. Za slučaj m = n = 0 imamo f 0, f 0 = 2L, g 0, g 0 = 0.

9 Trigonometrijski redovi Slično kako se redovi potencija koriste za aproksimacije neperiodičkih funkcija, za periodičke funkcije se koriste trigonometrijski redovi. Trigonometrijski redovi su redovi funkcija oblika + n=0 (A nf n (x) + B n g n (x)). Vidimo da je nulti član konstantna funkcija A 0 (jer je g 0 nulfunkcija). Ostali članovi reda su periodične funkcije s periodom 2L. Stoga je uobičajenija notacija općeg oblika trigonometrijskog reda A (A n f n (x) + B n g n (x)). n=1 Ako područje konvergencije trigonometrijskog reda sadrži segment [ L, L], onda je sa f (x) = A (A n f n (x) + B n g n (x)) n=1 definirana funkcija na [ L, L], tj. periodična funkcija.

10 Razvoj funkcije u Fourierov red Možemo li naći koeficijente u redu A (A n f n (x) + B n g n (x)) n=1 takve da taj red konvergira na [ L, L] i da je na tom segmentu jednak funkciji f s domenom [ L, L] koju želimo aproksimirati? Kad neku periodičku funkciju možemo zapisati trigonometrijskim redom govorimo o njenom razvoju u Fourierov red. Pretpostavimo da je moguće pisati f (x) = A n=1 (A nf n (x) + B n g n (x)). Tada je za bilo koji m N 0 f (x)f m (x) = A f m(x) + (A n f n (x)f m (x) + B n g n (x)f m (x)). n=1

11 Razvoj funkcije u Fourierov red Integriranjem od L do L dobivamo f, f m = L A 0 L 2 f m (x) dx+ + n=1 (A n f m, f n + B n f m, g n ) = A m f m, f m = A m L. Vidimo dakle da za sve n N 0 vrijedi Slično se vidi da je A n = 1 L f, f n. B n = 1 L f, g n, n N. Brojevi A n i B n odredeni gornjim formulama zovu se Fourierovi koeficijenti funkcije f. Kao što je Taylorov red funkcije onaj red potencija u kojemu su koeficijenti odredenog oblika (a n = f (n) (c) n! ), tako je i Fourierov red funkcije onaj trigonometrijski red kojem su koeficijenti posebnog oblika, tj. kojemu su koeficijenti Fourierovi koeficijenti.

12 Razvoj funkcije u Fourierov red Korisno je primijetiti: ako je f parna funkcija, onda su svi B n jednaki 0, tj. u Fourierovom redu pojavljuju se samo kosinusi, a ako je f neparna funkcija, onda su svi A n jednaki 0, tj. u Fourierovom redu pojavljuju se samo sinusi.

13 Razvoj funkcije u Fourierov red Korisno je primijetiti: ako je f parna funkcija, onda su svi B n jednaki 0, tj. u Fourierovom redu pojavljuju se samo kosinusi, a ako je f neparna funkcija, onda su svi A n jednaki 0, tj. u Fourierovom redu pojavljuju se samo sinusi. Fourierov red funkcije f : [ L, L] R konvergira na [ L, L] ako f ima najviše konačno mnogo točaka prekida (koje su skokovi) i ako najviše konačno mnogo puta mijenja smjer rast-pad (tj. ima konačno mnogo lokalnih ekstrema). U tom slučaju za sve x [ L, L] (osim eventualno u točkama prekida i u ±L) vrijedi f (x) = A (A n f n (x) + B n g n (x)). n=1

14 Razvoj funkcije u Fourierov red Definicija (Fourierov red funkcije) Neka je zadana (realna ili kompleksna) funkcija f na segmentu [ L, L]. Trigonometrijski red A n=1 (A nf n (x) + B n g n (x)) za koji vrijedi A n = 1 L f, f n, n N 0, B n = 1 L f, g n, n N zovemo Fourierovim redom funkcije f. Ako mu područje konvergencije sadrži segment [ L, L] i ako je za x iz tog segmenta f (x) = A (A n f n (x) + B n g n (x)) n=1 kažemo da smo f razvili u Fourierov red.

15 Razvoj funkcije u Fourierov red Primjer Odredimo Fourierov red za funkciju definiranu s { 1, 1 < x < 0 f (x) = 1, 0 x < 1 koja je po periodičnosti proširena na R. Funkcija je očigledno neparna pa su svi A n = 0. Koeficijenti B n (n N) iznose B n = 1 1 Stoga je f (x) sin nπx dx = sin nπx dx + 1 f (x) = 4 π 1 = 1 2 (2 2 cos(nπ)) = nπ nπ (1 ( 1)n ). ( sin πx L + 1 3πx sin 3 L ) 5πx sin L +... sin nπx dx =

16 Razvoj funkcije u Fourierov red

17 Razvoj funkcije u Fourierov red Primjer Ako je f na [ L, L] zadana s f (x) = 2 L x + 1 za x < 0 i f (x) = 2 Lx + 1 za x 0, imamo parnu funkciju. Stoga su svi B n = 0. Račun za A n daje: za parne n je A n = 0, a za neparne n je A n = 8 za k π 2 n 2 N 0 tj. pripadni Fourierov red glasi A 1 f 1 (x) + A 3 f 3 (x) + A 5 f 5 (x) + A 7 f 7 (x) +... = = 8 ( πx ) (cos π ( ) 3πx L 9 cos + 1 ( ) ) 5πx L 25 cos L Primjer Ako je f na [ L, L] zadana s f (x) = 1 L x, imamo neparnu funkciju. Stoga su svi A n = 0. Račun za B n daje: B n = ( 1) n+1 2 nπ za n N.

18 Kompleksni oblik Fourierovog reda Često je praktično Fourierove redove koristiti u kompleksnom obliku f (x) = + n= c n e inπx/l (uočite da se sumira i po negativnim indeksima n). Funkcije e inπx/l ćemo kratko označiti s φ n (x). Primijetimo prvo da je φ n(x) = φ n (x) = φ n ( x). Veza kompleksnih Fourierovih koeficijenata c n s realnim Fourierovim koeficijentima A n i B n dana je s c 0 = A 0 2, c n = A n ib n, c n = A n + ib n 2 2 (n N). Ako je f realna i parna funkcija, svi koeficijenti c n su realni brojevi (jer su za parne realne funkcije svi B n = 0), a ako je f realna i neparna, svi c n su čisto imaginarni brojevi (jer su tad svi A n = 0).

19 Kompleksni oblik Fourierovog reda Primjer Za Fourierov red iz primjera na slide-u 15 imamo c 0 = 0, c n = i B n 2 = i 1 nπ (1 ( 1)n ), c n = i B n 2 = i 1 nπ (1 ( 1)n ) pa je kompleksni oblik Fourierovog reda za funkciju iz tog primjera i 5π e 5iπx/L + i 3π e 3iπx/L + i 2 π e iπx/l i π eiπx/l i 3π ei3πx/l i 5π ei5πx/l...

20 Kompleksni oblik Fourierovog reda Ako je f realna funkcija, za sve n vrijedi c n = c n, c n = c n e iϕn, A 2 uz amplitudu c n = n +Bn 2 2 i fazni kut ϕ n = arctg Bn A n. Spektar amplituda periodične funkcije f definira se kao graf ovisnosti c n o kutnoj frekvenciji ω n = nπ L ; fazni spektar je graf ovisnosti faznih kuteva ϕ n o ω n. Kako su n Z, slijedi da se radi diskretnim funkcijama te se ta dva grafa zovu i diskretni frekvencijski spektri ili linijski spektri. U grafičkom prikazu spektra amplituda i faznog spektra često se na apscisu nanosi n umjesto ω n. Primijetimo i da je fizikalna dimenzija od ω n recipročna fizikalnoj dimenziji od L, koja je pak jednaka fizikalnoj dimenziji varijable x funkcije f koju razvijamo u Fourierov red.

21 Kompleksni oblik Fourierovog reda Primjer Uzmimo periodičnu funkciju koja prikazuje niz impulsa jačine A = 1 koji traju d = 1/20 s, a razmak izmedu početka dva impulsa iznosi 2L = 1/4 s. Tu funkciju možemo opisati s f (t) = 1 za t/s [ 1/40, 1/40], f (t/s) = 0 za ts [1/40, 9/40], uz proširenje po periodičnosti. Za n 0 dobiva se c n = 1 nπ sin nπ 5, ω n = 8nπ. Za n = 0 je c 0 = 1 5. Kako su svi c n realni, slijedi da su svi fazni kutevi nula (tj. fazni spektar je nezanimljiv). Spektar amplituda dobijemo kao prikaz ovisnosti c n = 1 nπ sin nπ 5 o 8nπ ili jednostavnije o n:.

22 Kompleksni oblik Fourierovog reda Spektar amplituda ukazuje koje od funkcija φ n u sumi najviše doprinose formiranju aproksimacije funkcije f putem Fourierova reda. Tako se iz spektra amplituda na slici desno vidi da u aproksimaciji funkcije s grafom prikazanim na slici lijevo najviše doprinose nulti, drugi, treći i peti član Fourierovog reda, tj. funkcije čiji grafovi su prikazani crno na slici u sredini. Na toj je slici plavo prikazan zbroj spomenuta četiri člana Fourierovog reda.

23 Kompleksni oblik Fourierovog reda Napomena Formalno gledajući, kompleksni Fourierovi koeficijenti čine kompleksan niz (c n ) + n=, tj. c : Z C (a c n je isto što i c(n)). Ukoliko definiramo c(ω n ) = c n doduše formalno imamo drugu funkciju (domena joj je skup svih cjelobrojnih višekratnika od π/l), no efektivno ništa bitno nismo promijenili.

24 Kompleksni oblik Fourierovog reda Još dva zadatka Zadatak Zadana je funkcija f : R R formulom f (x) = x 2. Skicirajte spektar amplituda za polinom stupnja 3 koji ju najbolje aproksimira oko 0, uzet kao periodična funkcija s temeljnim periodom 1 (tj. uzeto da je na [ 1, 1] taj polinom definicija periodične funkcije). Imamo prvo: x 2 = ( x 2 /4) = 1 4 ( x 2 /4) n = 1 4 x x , n=0 2 < x < 2. Stoga je na [ 1, 1] tražena formula periodične funkcije T 3 (x) = 1 4 x 2 16.

25 Kompleksni oblik Fourierovog reda Očito se radi o parnoj funkciji te je njen kompleksni Fourieov red oblika + c n exp(nπx), c ±n = A n 2 = 1 1 ( x 2 ) cos(nπx) dx. 16 n= Imamo: c 0 = 1 2 c ±n = 1 2 = Dakle je c 0 = 11/48 i ( 1 4 x 2 ) 16 ( 1 4 x 2 16 dx = 11 48, ) cos(nπx) dx = ( 4 x 2 ) cos(nπx) dx = ( 1)n 8π 2 n 2. c ±n = 1 8ωn 2.

26 Kompleksni oblik Fourierovog reda Da želimo našu (proširenu) funkciju T 3 aproksimirati sa recimo 5 članova, uzeli bismo n = 0, ±1, ±2 i dobili T 3 (x) (exp(πx) + exp( πx)) (exp(2πx) + exp( 2πx)) 8π2 32π2 = π 2 cos(πx) π 2 cos(2πx).

27 Kompleksni oblik Fourierovog reda Zadatak Spektar amplituda neke realne parne funkcije temeljnog perioda 1 zadan je formulom c n = ωn 1 za n 0 i c 0 = 1/π. Odredite najbolju polinomijalnu aproksimaciju stupnja 2 koji oko 0 najbolje aproksimira tri najznačajnija člana (realnog) Fourierovog reda te funkcije. Kako je zadano da je funkcija parna, imamo A 0 = 2/π, A n = 2 c n = 2L nπ = 1 nπ i B n = 0. Kako spektar amplituda pada s porastom n, tri najznačajnija člana dobivamo iz pet najznačajnijih kompleksnih članova (kao u prethodnom primjeru), odnosno dobijemo f (x) = 2 π + 1 π cos(2πx) + 1 2π cos(4πx). Najbolji kvadratni polinom koji oko 0 aproksimira f je T 2 (x) = f (0) + f (0)x + f (0) 2 x 2 = 7 2π 12πx 2.

28 Kompleksni oblik Fourierovog reda

29 Uvod u Fourierovu transformaciju Zamislimo sad funkciju f : R R kao funkciju s jako velikim periodom T = 2L. To znači da su razmaci medu spektralnim linijama ω = ω n+1 ω n = π L = ω 1 vrlo mali. Što je T veći, ti razmaci će biti bliži 0: T + ω 0+

30 Uvod u Fourierovu transformaciju Zamislimo sad funkciju f : R R kao funkciju s jako velikim periodom T = 2L. To znači da su razmaci medu spektralnim linijama ω = ω n+1 ω n = π L = ω 1 vrlo mali. Što je T veći, ti razmaci će biti bliži 0: T + ω 0+ Fourierovi su koeficijenti niz, dakle funkcija c : π L Z C. Pojednostavljeno rečeno, varijabla funkcije c iz diskretne ω n prelazi u kontinuiranu ω, a sumacija po ω n postaje integracija po dω: f (x) = + n= c n e iωnx f (x) = c(ω)e iωx dω.

31 c(ω n ) = 1 2 (A n ib n ) = 1 2L f, f n ig n = = 1 L ( f (x) cos nπt 2L L L i sin nπt ) dt = 1 L f (x)e itωn dt L 2L L prelazi u c(ω) = 1 + f (t)e iωt dt. 2π

32 c(ω n ) = 1 2 (A n ib n ) = 1 2L f, f n ig n = = 1 L ( f (x) cos nπt 2L L L i sin nπt ) dt = 1 L f (x)e itωn dt L 2L L prelazi u c(ω) = 1 + f (t)e iωt dt. 2π Definicija (Fourierov transformat) Ako funkcija f : R C ima svojstvo da nepravi integral + f (t) dt konvergira, kažemo da je apsolutno integrabilna i pišemo f L 1 (R). Za takvu funkciju f je s F(f )(ω) = + f (t)e iωt dt definirana funkcija F(f ) : R C koja se zove Fourierov transformat

33 Dakle: Kao što je niz Fourierovih koeficijenata c = (c n ) + n= funkcija s domenom Z (skaliranom s π/l) pridružena periodičnoj funkciji f, tako je F(f ) funkcija s domenom R pridružena apsolutno integrabilnoj funkciji f.

34 Dakle: Kao što je niz Fourierovih koeficijenata c = (c n ) + n= funkcija s domenom Z (skaliranom s π/l) pridružena periodičnoj funkciji f, tako je F(f ) funkcija s domenom R pridružena apsolutno integrabilnoj funkciji f. Kako je e iωt = 1 za sve t i ω, intuitivno se vidi (a može se i dokazati) da zahtjev apsolutne integrabilnosti na f povlači konvergenciju integrala kojim je F(f ) definirana.

35 Dakle: Kao što je niz Fourierovih koeficijenata c = (c n ) + n= funkcija s domenom Z (skaliranom s π/l) pridružena periodičnoj funkciji f, tako je F(f ) funkcija s domenom R pridružena apsolutno integrabilnoj funkciji f. Kako je e iωt = 1 za sve t i ω, intuitivno se vidi (a može se i dokazati) da zahtjev apsolutne integrabilnosti na f povlači konvergenciju integrala kojim je F(f ) definirana. Općenito će fizikalna dimenzija varijable ω Fourierovog transformata neke funkcije f biti recipročna jedinici varijable t od f. kontekst varijabla funkcije f varijabla od F(f ) akustika, telekomunikacije vrijeme t frekvencija ν p kvantna teorija pozicija x difrakcija vektor r vektor s

36 F apsolutno integrabilnoj funkciji f pridružuje njen Fourierov transformat F(f ). Domena od F je vektorski prostor L 1 (R), a kodomena je vektorski prostor koji se označava s A(ˆR) (prostor svih funkcija s R u C koje se mogu dobiti kao Fourierovi transformati). je linearan operator, tj. vrijedi: F(f + g)(ω) = F(f )(ω) + F(g)(ω), za sve f, g L 1 (R) i skalare α. F(αf )(ω) = αf(f )(ω),

37 F apsolutno integrabilnoj funkciji f pridružuje njen Fourierov transformat F(f ). Domena od F je vektorski prostor L 1 (R), a kodomena je vektorski prostor koji se označava s A(ˆR) (prostor svih funkcija s R u C koje se mogu dobiti kao Fourierovi transformati). je linearan operator, tj. vrijedi: F(f + g)(ω) = F(f )(ω) + F(g)(ω), F(αf )(ω) = αf(f )(ω), za sve f, g L 1 (R) i skalare α. Vrijedi i svojstvo pomaka: ako polaznu funkciju horizontalno translatiramo (tj. gledamo g(t) = f (t t 0 )), efekt na pripadni Fourierov transformat je skaliranje s e iωt 0 : F(g)(ω) = F(f )(ω)e iωt 0. Takoder, skaliranje polazne funkcije (g(t) = e iω 0t f (t)) znači pomak za pripadni Fourierov transformat: F(g)(ω) = F(f )(ω ω 0 ).

38 Fourierov transformat realne funkcije Općenito je F(f ) kompleksna funkcija: F(f )(ω) = a(ω) + ib(ω), gdje su a i b realne funkcije s domenom R. Po definiciji imamo F(f )(ω) = pa je + f (t)e iωt dt = + f (t)(cos(ωt) i sin(ωt)) dt, a(ω) = + f (t) cos ωt dt, b(ω) = + f (t) sin ωt dt.

39 Fourierov transformat realne funkcije Općenito je F(f ) kompleksna funkcija: F(f )(ω) = a(ω) + ib(ω), gdje su a i b realne funkcije s domenom R. Po definiciji imamo F(f )(ω) = pa je + f (t)e iωt dt = + f (t)(cos(ωt) i sin(ωt)) dt, a(ω) = + f (t) cos ωt dt, b(ω) = + f (t) sin ωt dt. Vidimo: ako je f realna, a je parna, a b je neparna realna funkcija.

40 Fourierov transformat realne funkcije Općenito je F(f ) kompleksna funkcija: F(f )(ω) = a(ω) + ib(ω), gdje su a i b realne funkcije s domenom R. Po definiciji imamo F(f )(ω) = pa je + f (t)e iωt dt = + f (t)(cos(ωt) i sin(ωt)) dt, a(ω) = + f (t) cos ωt dt, b(ω) = + f (t) sin ωt dt. Vidimo: ako je f realna, a je parna, a b je neparna realna funkcija. Ako je f parna i realna slijedi da je F(f ) realna, a ako je f neparna i realna, F(f ) je čisto imaginarna.

41 Sljedeći teorem daje kriterij kako po Fourierovom transformatu raspoznati radi li se o realnoj funkciji: Teorem Funkcija f je realna ako i samo ako njen Fourierov transformat F(f ) ima svojstvo da je za sve ω R F(f )( ω) = F(f )(ω). fig3-4a.gif

42 Sljedeći teorem daje kriterij kako po Fourierovom transformatu raspoznati radi li se o realnoj funkciji: Teorem Funkcija f je realna ako i samo ako njen Fourierov transformat F(f ) ima svojstvo da je za sve ω R F(f )( ω) = F(f )(ω). fig3-4a.gif Kao i Fourierov red, tako i Fourierov transformat odreduje dva spektra: spektar amplituda i fazni spektar M(ω) = F(f )(ω), ϕ(ω) = arctg b(ω) a(ω).

43 Često pitanje je: ako znamo funkciju F i znamo da je ona nepoznate funkcije f, kako odrediti f? Odgovor na to daje sljedeći teorem. Teorem (Inverzna ) Neka je F L 1 (R) A(ˆR). Pretpostavimo da je F = F(f ) za neku f L 1 (R). Tada za sve t R vrijedi f (t) = 1 2π + F (ω)e iωt dω.

44 Vezano za Fourierovu transformaciju često se pojavljuje Diracova δ-funkcija. Iako se može integrirati po intervalima skupa R, Diracova δ-funkcija nije uobičajena realna funkcija. Možemo ju zamisliti kao trenutni impuls odnosno kao funkciju koja je jednaka nula svuda osim u jednoj točki (trenutku 0), u kojoj iznosi + ; pritom se definicijom zahtijeva da je + δ(t) dt = 1. Vrijedi: F(δ)(ω) = + e iωt δ(t) dt = 1. Inverzna Fourierva transformacija daje integralnu formulu δ-funkcije: δ(t) = 1 + e iωt dω. 2π Fourierov transformat pomaknute δ-funkcije δ(t a) (funkcije koja je svuda 0 osim u a kad je beskonačna) je e iωa.

45 Želimo li prikazati dva razdvojena impulsa razmaknuta za 2a, možemo ih reprezentirati funkcijom formule čiji Fourierov transformat je δ(t a) + δ(t + a) e iωa + e iωa = 2 cos ωa.

46 Želimo li prikazati dva razdvojena impulsa razmaknuta za 2a, možemo ih reprezentirati funkcijom formule čiji Fourierov transformat je δ(t a) + δ(t + a) e iωa + e iωa = 2 cos ωa. Periodični niz jediničnih impulsa (s periodom T ) je opisan s δ T (t) = + n= δ(t nt ). Funkcija δ T zove se i Diracov češalj. Pripadni Fourierov red je δ T (t) = 1 + T n= einω0t uz ω 0 = 2π T. Integriranjem član po član dobiva se: F(δ T )(ω) = ω 0 + n= δ(ω nω 0 ). Dakle, Diracov češalj je do na multiplikativnu konstantu ω 0 sam sebi Fourierov transformat.

47 Svojstva Fourierove transformacije Skaliranje: Ako je g(t) = f (αt), onda je F(g)(ω) = 1 α F(f ) ( ω α). Promjena smjera: Ako je g(t) = f ( t), onda je F(g)(ω) = F(f )( ω). Simetrija: Ako je g(t) = F(f )(t), onda je F(g)(ω) = 2πf ( ω). Deriviranje: F(f )(ω) = iωf(f )(ω); Modulacija: Ako je g(t) = f (t) cos ω 0 t, onda je F(g)(ω) = 1 2 (F(f )(ω ω 0) + F(f )(ω + ω 0 )); Konvolucija obzirom na vrijeme: F(f g) = F(f )F(g); Konvolucija obzirom na frekvenciju: F(f ) F(g)(ω) = F(2πf (t)g(t)). Konvolucija???

48 Definicija (Konvolucija) Konvolucija a dviju funkcija f, g : I R (gdje je I neki, ne nužno ograničen, interval u R) je funkcija f g definirana s: f g(x) = f (t)g(x t) dt. I a Naravno, konvolucija nije definirana za sve funkcije f i g, već za tzv. Schwartzove funkcije. Jedan način kako vizualizirati konvoluciju dvije funkcije je da zamislimo da se graf jedne giba u smjeru osi apscisa jednolikom brzinom preko grafa druge funkcije te da u svakom trenutku računamo površinu presjeka iznos te površine je vrijednost njihove konvolucije u tom trenutku. Convolution_Animation_(Boxcar).gif

49 http: //

50 Gornje ideje lako se poopćavaju na trodimenzionalni slučaj: F(f )(s) = f (r)e iπs r dr R 3 gdje je r radij-vektor promatrane točke u R 3, a s je vektor u recipročnom prostoru (izomorfnom s R 3 ). Posjetimo se da je jedinica duljine u recipročnom prostoru recipročna jedinici duljine u direktnom prostoru to je u skladu s već uočenom činjenicom da je jedinica varijable Fourierovog transformata (ovdje je to s) recipročna jedinici varijable osnovne funkcije f (ovdje je to r). U standardnoj situaciji kakva se susreće u difrakcijskoj strukturnoj analizi, r je radij-vektor nekog atoma ili iona u kristalu, f je funkcija elektronske gustoće (nepoznata), a F(f ) je rezultat dobiven difrakcijom na kristalu. Cilj je odrediti točke maksimuma funkcije elektronske gustoće, tj. pozicije atoma.

51 Trodimenzionalna varijanta δ-funkcije je nula svuda osim u jednoj točki (x 0, y 0, z 0 ). Trodimenzionalni Diracov češalj se definira s δ a,b,c (x, y, z) = + i,j,k= δ(x ia, y jb, z kc). Možemo ga zamisliti kao trodimenzionalni periodički niz jediničnih signala. Stoga kristalnu strukturu možemo opisati kao konvoluciju kristalne rešetke (trodimenzionalnog Diracova češlja) i sadržaja jedinične ćelije. Fourierov transformat bilo kakve rešetke daje njoj recipročnu rešetku. Stoga je Fourierov transformat kristalne strukture produkt Fourierova transformata sadržaja jedinične ćelije i recipročne rešetke. Činjenica koju smo u jednodimenzionalnom slučaju opisali teoremom 1 sad se može iskazati i ovako: difrakcijski uzorak, budući da potječe od realnog kristala, je uvijek centrosimetričan.

Osnove Fourierove analize

Osnove Fourierove analize Osnove Fourierove analize Franka Miriam Brückler Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3πx)? Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3πx)? Zadatak Za koji a će sin(ax)

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Redovi funkcija. Redovi potencija. Franka Miriam Brückler

Redovi funkcija. Redovi potencija. Franka Miriam Brückler Franka Miriam Brückler Redovi funkcija 1 + (x 2) + 1 + x + x 2 + x 3 + x 4 +... = (x 2)2 2! + (x 2)3 3! + +... = sin(x) + sin(2x) + sin(3x) +... = x n, + + n=1 (x 2) n, n! sin(nx). Redovi funkcija 1 +

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1 / 79 MATEMATIČKA ANALIZA II REDOVI

1 / 79 MATEMATIČKA ANALIZA II REDOVI / 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

Signali i sustavi - Zadaci za vježbu II. tjedan

Signali i sustavi - Zadaci za vježbu II. tjedan Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Signali i sustavi Zadaci za vježbu. III. tjedan

Signali i sustavi Zadaci za vježbu. III. tjedan Signali i sustavi Zadaci za vježbu III. tjedan 1. Neka je kontinuirani kompleksni eksponencijalni signal. Neka je diskretni eksponencijalni signal dobiven iz kontinuiranog signala uniformnim otipkavanjem

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Uvod u diferencijalni račun

Uvod u diferencijalni račun Uvod u diferencijalni račun Franka Miriam Brückler Problem tangente Ako je zadana neka krivulja i odabrana točka na njoj, kako konstruirati tangentu na tu krivulju u toj točki? I što je to uopće tangenta?

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Laplaceova transformacija

Laplaceova transformacija Laplaceova transformacija Laplaceova transformacija je integralna transformacija s brojnim primjenama u matematici, fizici, elektrotehnici, teoriji vjerojatnosti i drugdje. Koristi se za rješavanje diferencijalnih

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα