Tranzistori u digitalnoj logici

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tranzistori u digitalnoj logici"

Transcript

1 Tranzistori u digitalnoj logici Za studente koji žele znati malo detaljnije koja je funkcija tranzistora u digitalnim sklopovima, u nastavku je opisan pojednostavljen način rada tranzistora. Pri tome je puno pojava pri radu s tranzistorima zanemareno detaljniji tretman tranzistora (proizvodnja, vrste, fizikalni principi i način rada te uporaba) tema je drugih kolegija FER-a. Bipolarni NPN tranzistor Jednostavan sklop koji se sastoji od jednog bipolarnog tranzistora tipa NPN prikazan je u nastavku. U RC I B B C U izl U CE 2. strujni krug + - U B - U RB U BE E + 1. strujni krug I E Bipolarni tranzistor ima tri kontakta: bazu (na slici označena s B), kolektor (na slici označen s C) te emiter (na slici označen s E). Naponi U BE i U CE su pri tome nenegativni. Struja označena s ulazi u kolektor, prolazi kroz tranzistor i izlazi van kroz emiter. Struja označena s I B ulazi u bazu, prolazi kroz tranzistor i također izlazi kroz emiter. Sve ostale situacije u ovom pojednostavljenom modelu možemo zanemariti, pa ćemo pisati da vrijedi: I E = + I B (1) Za razliku od otpornika za koje kažemo da su linearni elementi jer mali inkrement napona dovodi uvijek do proporcionalnog inkrementa struje, tranzistor je nelinearni element. Što to točno znači u razmatranom slučaju bipolarnog NPN tranzistora sa slike? Opis koji slijedi pojednostavljenje je stvarnog ponašanja ali može poslužiti kako bismo ugrubo stekli predodžbu o radu bipolarnog NPN tranzistora.

2 Za rad tranzistora važno je razmotriti napon U BE (na slici prikazan kao dio 1. strujnog kruga). U skladu s Kirchoffovim zakonima, možemo pisati: U B =U RB +U BE (2) pri čemu će napon U RB postojati ako teče struja I B kako je prikazano na slici i u tom slučaju će biti pozitivan. Pri tome struja I B ili ulazi u bazu tranzistora ili je jednaka nuli. Međutim, ovdje do izražaja dolazi nelinearnost tranzistora: kroz bazu tranzistora struja neće poteći sve dok napon U BE ne dosegne takozvani napon praga, nakon čega će napon U BE dalje ostati praktički konstantan i neće više rasti. Za silicijske tranzistore možemo uzeti da je taj napon jednak 0.7V. Što to znači za naš 1. strujni krug? S obzirom da vrijedi izraz (2), to znači da će se podizanjem napona U B s vrijednosti 0V prema pozitivnim vrijednostima na početku sav napon U B prenositi na napon U BE. Naime, tako dugo dok se na U BE ne dosegne 0.7V, struja koja teče prema bazi tranzistora jednaka je 0A pa je time i pad napona na otporniku jednak 0V. Posljedica je da u tom području približno vrijedi: U BE =U B za U B [0V,0.7V]. (3) Jednom kada U BE dosegne 0.7V, daljni porast više neće biti moguć, pa će se sav preostali napon trošiti upravo na otporniku RB. U tom će području vrijediti: U RB =U B U BE =U B 0.7V za U B >0.7V. (4) Struja koja će tada teći u bazu tranzistora određena je Ohmovim zakonom: I B = U RB = U B 0.7V. (5) Struja I B direktno određuje događanja u 2. strujnom krugu. Naime, bipolarni NPN tranzistor ponaša se kao sklop koji radi pojačanje struje; ako je struja kroz bazu jednaka I B, kod ovog će tranzistora kroz kolektor poteći h FE puta veća struja (ako je to moguće). Faktor h FE stoga se naziva faktor strujnog pojačanja. Primjerice, za bipolarni NPN tranzistor oznake BC107 taj se faktor kreće u granicama između 110 i 220 (prema podacima iz kataloga proizvođača). Stoga možemo pisati da je maksimalna struja koja uz zadanu struju I B može teći kroz kolektor jednaka:, max = I B h FE (6) Čime je određena stvarna struja koja teče kroz kolektor? Pogledajmo 2. strujni krug. U tom strujnom krugu vrijedi sljedeća naponska jednadžba: =U RC +U CE (7) Kako je fiksan (to je napon izvora), te kako struja može samo teći od kolektora prema emiteru (pa je time U RC uvijek veći ili jednak 0V te je U CE također uvijek veći ili jednak 0V), slijedi da postoje dva slučaja: 1. struja kroz kolektor je jednaka izračunatoj maksimalnoj struji prema izrazu (6) ili 2. struja kroz kolektor je manja od izračunate maksimalne struje prema izrazu (6). Da bismo ovo vidjeli, raspišimo izraz (6) preko struje kolektora: = +U CE (7) Uočimo, s porastom struje raste pad napona na otporniku ; međutim, u sumi pad napona na otporniku i napon U CE daju upravo napon napajanja. To znači da kako napon na otporniku raste, napon U CE se mora smanjivati za isti iznos kako bi suma ostala jednaka naponu. Međutim, tranzistor neće dopustiti da napon U CE padne na manje od napona zasićenja (koji je, za tranzistor

3 BC107 jednak 0.25V; taj napon još označavamo s U CES ). To pak znači da će maksimalni napon koji se može pojaviti na otporniku RC biti jednak upravo: U RC, max = 0.25V (8) i tada će kroz taj otpornik teći struja: ' = U RC,max = U 0.25V CC. (9) Neovisno o struji baze i faktoru strujnog pojačanja, kolektorska struja neće moći biti veća od struje izračunate prema izrazu (9). Time smo dobili prethodna dva slučaja koja ćemo sada raspisati malo detaljnije. ' 1. Za struje baze I B koje su manje od vrijedit će I h C =I B h FE. U tom slučaju pad napona FE na otporniku bit će jednak upravo U RC = =(I B h FE ) što će biti manje od napona napajanja; razlika do napona napajanja trošit će se na napon U CE koji će i dalje biti veći od napona U CES. Ovo područje rada tranzistora poznato je kao normalno aktivno područje (NAP); u tom području postoji linearna ovisnost struje kolektora o struji baze. 2. Za struje baze I B koje su veće ili jednake od ' = = U RC,max = U 0.25V CC ' h FE vrijedit će (drugim riječima, struja više neće ovisiti o struji I B ovo područje rada tranzistora poznato je kao područje zasićenja; u tom području nema više ovisnosti struje kolektora o struji baze struja kolektora je maksimalna moguća a napon U CE minimalni mogući i jednak je U CES ). Bipolarni NPN tranzistor kao sklopka U digitalnoj elektronici bipolarne NPN tranzistore moguće je koristiti za ostvarivanje sklopke odnosno sklopa koji zovemo invertor. Pogledajte ponovno prethodnu sliku i uočite na slici gdje smo označili izlazni napon U izl. Taj napon direktno je jednak naponu U CE. Pogledajmo sada dva slučaja. 1. Napon U B je vrlo mali napon (manji od 0.7V). U tom slučaju nema struje baze I B i tranzistor je zatvoren. Kako ne teče struja baze, struja kolektora je također jednaka 0A. Stoga je pad napona na otporniku jednak 0V, pa vrijedi: =U RC +U CE =0V+U CE U CE = U izl =U CE = Znači, uz mali ulazni napon, izlazni napon je veliki. 2. Kada je napon U B >0.7V dovoljno velik da razlika U B -0.7V generira dovoljno veliku struju baze uz koju će kroz kolektor poteći maksimalna moguća kolektorska struja (drugim riječima, kada je U B dovoljno velik da generira struju baze koja će tranzistor gurnuti u zasićenje), napon U CE će pasti na minimalni mogući postat će jednak U CES (cca 0.25V) pa će vrijediti: U izl =U CE =U CES =0.25V ;

4 u tom slučaju imamo dakle uz veliki ulazni napon upravo mali izlazni napon (iznosa cca 0.25V). Sklop koji smo dakle dobili ponaša se kao invertor. Označimo li napon U B kao ulazni napon U ul, te označimo li nizak ulazni (i izlazni napon) s N, a visok ulazni (i izlazni napon) napon s V, ponašanje sklopa opisano je sljedećom tablicom naponskih kombinacija: U ul N V U iz V N Ako sada ulaznom naponu pridijelimo značenje ulazne varijable A, a izlaznom naponu funkciju f(a) te ako tablicu naponskih kombinacija tumačimo u skladu s pozitivnom logikom, dobit ćemo tablicu istinitosti: A f(a) pa zaključujemo: f (A)= Ā. Svjetleća dioda Svjetleće diode (engleski termin je Light Emitting Diode, kraće LED) su elentronički elementi koje susrećemo svakodnevno svaki puta kada na nekom elektroničkom elementu vidimo malu crvenu (ili zelenu) "lampicu" koja indicira da je uređaj upaljen ili da smo aktivirali neku funkciju, najčešće gledamo upravo u LED. Najčešće izvedbe u tri različite boje prikazane su u nastavku.

5 Simbol svjetleće diode sličan je simbolu obične diode, uz dodatak dviju strelica koje označavaju emisiju svjetlosti. Simbol je prikazan je u nastavku. + - Klasična dioda, baš kao i tranzistor, nelinearan je element. Ako se spoji na napon napajanja tako da se plus stezaljka izvora spoji na stranu koja je na prethodnoj slici označena s '+' a minus stezaljka na stranu koja je označena s '-', dioda će se (pojednostavljeno gledajući) ponašati kao beskonačan otpor (struja neće teći) sve dok napon izvora ne dosegne napon praga nakon kojeg će dioda provesti i na sebi će održavati poprilici fiksan napon. Za klasične silicijske diode to je poprilici 0.7V. Stoga se klasična dioda nikada ne smije direktno spojiti na izvor napajanja već joj u seriju treba staviti neki drugi element koji će na sebe preuzeti razliku između napona napajanja izvora i pada napona na diodi. Ako na diodu spojimo napon napajanja obrnuto, dioda će se ponašati kao beskonačan otpor i struja kroz nju neće teći (dakako, ako ne pretjeramo s iznosom napona što ćemo ovdje zanemariti). Svjetleća dioda ponaša se baš kao i klasična dioda, uz dvije razlike: da bi provela, svjetleća dioda zahtjeva na sebi barem cca 2V (za svaku diodu ovaj se napon može pogledati u karakteristikama koje daje proizvođač), te jednom kada provede, dioda ujedno i emitira svjetlost. Uzevši u obzir sve prethodno opisano, najjednostavniji način spajanja svjetleće diode u strujni krug prikazan je u nastavku. I R U R U LED + Ako je napon napajanja, taj je napon jednak sumi padova napona na otporu R i svjetlećoj diodi, a kroz oba elementa teče ista struja I. =U R +U LED (10) Pretpostavimo sada da smo za korištenu svjetleću diodu u katalogu pronašli da je pad napona na diodi U LED kada dioda vodi struju jednak 2V. Imamo dva slučaja. 1. Ako je <2V (tj. od U LED ), struja neće teći jer, iako će se sav napon izvora prenijeti na diodu, taj napon i dalje nije dovoljan da dioda provede; stoga će njezin otpor biti "beskonačan", struja kroz nju nula, i dioda neće svijetliti. 2. Ako je >=2V (tj. od U LED ), svjetleća dioda će provesti struju. Pri tome će dioda na sebi održavati točno napon od 2V, pa će se u skladu s izrazom (10) sav preostali napon izvora trošiti

6 na otporniku R, odnosno možemo pisati U R = U LED. Kako je prema Ohmovom zakonu struja kroz otpor R određena omjerom pada napona na tom otporu i samog otpora, slijedi da možemo pisati: I = U R R =U LED R (11). Odabirom otpora R možemo dakle podešavati koliku struju želimo propustiti kroz svjetleću diodu. Ovisno o iznosu struje, svjetleća dioda će generirati jaču ili slabiju svjetlost. Ovo je jedan od podataka koji možemo pronaći u katalogu proizvođača; tipični iznosi struja kreću se od 2 ma za relativno slabo svjetljenje do 20 ma za jako svjetljenje. Slijedi da ćemo prilikom projektiranja sklopova sa svjetlećim diodama temeljem odabranog željenog iznosa struje i napona uz koji dioda vodi (koje čitamo iz kataloga proizvođača) te temeljem napona napajanja koji imamo na raspolaganju, uporabom izraza (11) računati iznos otpornika koji trebamo staviti u seriju sa svjetlećom diodom. Pogledajmo to na primjeru. Neka koristimo napon napajanja od 5V. Iz kataloga proizvođača smo za željenu diodu pročitali da dioda pri vođenju na sebi troši 2V. Također, iz kataloga proizvođača smo pročitali da dioda generira zadovoljavajuću jakost osvjetljenja uz struju od 20 ma. U tom slučaju, računamo na sljedeći način. Pad napona na otporniku koji ćemo spojiti u seriju bit će jednak: U R = U LED =5V 2V=3V. Ako kroz taj otpornik treba teći struja od 20 ma, tada njegov iznos mora biti: R= U R I = 3V =150 Ω. S obzirom da je otpornik 20 ma spojen u seriju s diodom, na diodi će se potrošiti preostalih 2V i kroz diodu će teći ista struja iznosa 20 ma kao i kroz otpornik. Bipolarni NPN tranzistor koji upravlja svjetlećom diodom Bipolarni tranzistor može se koristiti za upravljanje radom svjetleće diode. Evo koju situaciju razmatramo. Digitalni sklop male snage U f Na raspolaganju nam je digitalni sklop prikazan na prethodnoj slici koji ima jedan izlaz ( f ) na kojem generira izlazni napon U f. Želimo na izlaz tog sklopa spojiti indikatorski sklop koji se temelji na svjetlećoj diodi koja će svijetliti ako je na izlazu f logička jedinica a neće svijetliti ako je na izlazu f logička nula. Pretpostavimo također da smo pogledali za konkretnu tehnologiju kojom je digitalni sklop ostvaren što to točno znači za izlazne napone, te da smo utvrdili da visoka razina (odnosno logička jedinica) znači napon od poprilici 5V a niska razina (odnosno logička nula) napon od poprilici 0.4V.

7 Jedna mogućnost jest pokušati direktno na izlaz digitalnog sklopa spojiti otpornik i svjetleću diodu, kako je prikazano na sljedećoj slici. Digitalni sklop male snage I R + - U f U R U LED Kad je f u logičkoj nuli, napon U f neće biti dovoljan da svjetleća dioda provede (ako joj treba 2V a U f je manji ili jednak 0.4V), i tada dioda neće svijetliti. Ako je pak f u logičkoj jedinici, napon U f bit će dovoljan da dioda provede i počne svijetliti. U tom slučaju mogli bismo pretpostaviti se izlaz f ponaša kao idealan naponski izvor te da uz izabranu struju od 20 ma koju želimo da teče kroz svjetleću diodu otpor R možemo odrediti prema izrazu: R= U f U LED I. Nažalost, s ovom pretpostavkom postoji vrlo ozbiljan problem: izlaz digitalnog sklopa nije idealni naponski izvor. Za svaku konkretnu tehnologiju (sjetite se predavanja o integriranih digitalnim sklopovima) proizvođač za svako logičko stanje izlaza definira raspon napona koji se mogu pojaviti na izlazu digitalnog sklopa te daje ogradu na maksimalnu struju uz koju proizvođač garantira raspon napona na izlazu koji je dao u katalogu. Prvo pitanje je: zašto je to tako, a odgovor je relativno jednostavan: na svakom izlazu digitalnog sklopa nalazi se pridruženi otpor koji ne možemo izbjeći (bilo da se radi o fizički izvedenom otporniku, ili o otporu nekog nelinearnog elementa poput tranzistora). A čim imamo otpor kroz koji teče struja, na tom otporu nastaje i pad napona. U slučaju da je izlaz sklopa u visokoj razini, to znači da će se napon napajanja dijeliti između pada napona na tom izlaznom otporu i napona U f koji se stvarno pojavljuje na izlazu sklopa. Porastom struje, rast će pad napona na izlaznom otporu i sve će manje preostati za koji će U f stoga padati. Stoga treba razmotriti dva slučaja. Ako je struja koju želimo protjerati kroz svjetleću diodu manja od struje koju proizvođač dozvoljava na izlazu sklopa kada je njegov izlaz u logičkoj jedinici, tada možemo primijeniti prethodni izračun (opet uz napomenu da će struja tada biti poprilici ona izračunata jer ne znamo egzaktan iznos napona U f koji ćemo dobiti na izlazu). Ako je željena struja veća od toga, svjetleću diodu moramo pogoniti preko tranzistorske sklopke: sjetite se, kod tranzistorske sklopke struja baze kojom ćemo opteretiti izlaz digitalnog sklopa je vrlo mala u odnosu na struju koju želimo protjerati kroz kolektor (za h FE puta manja).

8 Sklop koji ćemo tada koristiti prikazan je na slici u nastavku. Digitalni sklop male snage U f U RB I B B U BE C E U RC U izl U CE 2. strujni krug U LED 1. strujni krug I E Ako je na izlazu digitalnog sklopa f logička nula, napon U f bit će manji od napona U BE koji je potreban da tranzistor provede i tranzistor će biti zatvoren. Stoga u drugom strujnom krugu neće teći struja i dioda neće svijetliti. Ako je pak na izlazu f logička jedinica, tranzistor će provesti, kroz svjetleću diodu će proteći struja i dioda će svijetliti. U tom slučaju, sve otpore na slici možemo izračunati na sljedeći način. Neka smo u karakteristikama koje je dao proizvođač za svjetleću diodu otkrili da je napon na diodi kada ona svijetli jednak U LED = 2V, i neka smo odabrali željenu struju od 20 ma. Neka smo u karakteristikama koje je dao proizvođač za tranzistor otkrili da je napon U BE uz koji tranzistor vodi jednak 0.7V, da je h FE jednak 100 te da je U CES (napon U CE kada je tranzistor u zasićenju) jednak 0.25V. Konačno, neka radimo s naponom napajanja od =5V, i neka smo u karakteristikama porodice integriranih sklopova koje smo koristili za izgradnju digitalnog sklopa ustanovili da nam se garantira da napon logičke jedinice na izlazu neće biti manji od U OH,min =4.7V uz dozvoljenu struju od 2 ma. U drugom strujnom krugu računamo: U RC = U LED U CES =5V 2V 0.25V=2.75V Ako kroz taj strujni krug mora teći odabrana struja =20mA (pa ona teče i kroz otpor ), slijedi da je iznos otpora jednak: = U RC = U U LED CES = 2.75V 20mA =137.5Ω Sada moramo podesiti struju baze tako da osigura da je tranzistor doista u zasićenju i da može protjerati 20mA kolektorske struje. Da bi to bio slučaj, struja baze mora biti barem jednaka:

9 I B = h FE = 20mA 100 =0.2mA. Čitajući 1. strujni krug imamo: U RB =U f U BE =U OH, min U BE =4.7V 0.7V=4V Slijedi da je bazni otpor na kojem je pad napona od 4V i kroz koji teče struja od 0.2mA jednak: = U RB I B = 4V 0.2mA =20k Ω Uočimo da je na ovaj način opterećenje izlaza digitalnog sklopa praktički vrlo malo (svega 0.2mA) što će u praksi značiti da će i izlazni napon biti bliži naponu napajanja nego naponu U OH,min. Međutim, ako izračun radimo s najgorim slučajem, imamo garanciju da će i u drugim slučajevima struja baze biti dovoljna za podržavanje struje kolektora koju smo podesili. Treba još istaknuti da u praksi nećemo koristiti otpore od, primjerice, 137.5Ω jer se takvi otpornici naprosto ne proizvode (barem ne jeftino). Danas se otpornici proizvode u odgovarajućim E-serijama; pogledati primjerice: Umjesto tog otpora izabrali bismo najbliži otpor iz E24 serije, a taj bi bio 130Ω ili pak nešto veći otpor od 150Ω uz koji bi struja kroz svjetleću diodu bila nešto manja. Napomena: U slučaju bilo kakvih pitanja (ili ako želite nešto od ovoga isprobati uživo), slobodno svratite do mene u D340.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Održavanje Brodskih Elektroničkih Sustava

Održavanje Brodskih Elektroničkih Sustava Održavanje Brodskih Elektroničkih Sustava Sadržaj predavanja: 1. Upoznavanje s osnovnim sklopovima tranzistorskih pojačala 2. Upoznavanje s osnovnim sklopovima operacijskih pojačala 3. Analogni sklopovi

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Najčešći sklop punovalnog ispravljača se može realizirati pomoću 4 diode i otpornika: Na slici je ulazni signal sinusodialanog

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug 1. LMNT STOSMJNOG STJNOG KGA Jednostavan strujni krug (Slika 1.1) sastoji se od sljedećih elemenata: 1 Trošilo Aktivni elementi naponski i strujni izvori Pasivni elementi trošilo (u istosmjernom strujnom

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

4 IMPULSNA ELEKTRONIKA

4 IMPULSNA ELEKTRONIKA 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno TTL kolo sa parametrima čije su nominalne vrednosti: V cc = 5V, V γ = 0, 65V, V be = V bc = V d = 0, 7V, V bes = 0, 75V, V ces = 0, 1V, R

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora MOSFET tranzistor obogaćenog tipa Konstrukcija MOSFET tranzistora obogaćenog tipa je

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori Slično kao i bipolarni tranzistor FET (Field Effect Tranzistor - tranzistor s efektom polja) je poluvodički uređaj s tri terminala (izvoda)

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Uvod u AC analizu sklopova s BJT tranzistorima 2. Energetska bilansa pojačanja BJT tranzistora u AC domeni 3. AC modeliranje sklopova sa BJT tranzistorima 4. r e model tranzistora

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka Stančić Goran Jevtić Milun Niš, 2004 2 IMPULSNA ELEKTRONIKA Glava 1 Logička kola i njihova primena 3 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα