Errata Sheet: Relativity Demystified (David McMahon, McGraw-Hill, 2006) Susan Larsen Friday, June 26, 2015
|
|
- Θεόδοτος Παπανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 In this fil you find all sorts of misprints. Thr ar quit many but it dos not man that th book is ntirly bad. On th contrary, it givs you th opportunity to carry out a lot of calculations, and it is a good starting point. If th misprint is markd by an astrix (*) it mans that you can find a mor thorough calculation in my fil lots of calculations on my hompag Th list is not complt, it covrs th chaptrs -3 and th final xam, but I will post mor on my hompag as I gt along. I hav mad this list ntirly on my own, and should you find that I hav mad somthing wrong or missd somthing, which I am bound to, plas do not hsitat to contact m: logik.susan@gmail.com Contnt Contnts... Chaptr... Chaptr... Chaptr 3... Chaptr 4... Chaptr Chaptr Chaptr Chaptr Chaptr Chaptr Chaptr... 7 Chaptr... 7 Chaptr Final Exam... 0 Quiz and Exam Solutions... Bibliografi... Contnts p.ix l.7 Eddington-Finklstin Coordinats Th Radial Null Godsic Chaptr p. l.0 oprator to th right-hand sid of (.), w obtain p.6 l.6-7 clock at tim t, and th rflctd bam arrivs at th location of clock at tim t₂.
2 p. l. ct = p.6 l.3 β (β₁ + β₂) 3 = ( + β₁β₂) l.5 β₁ + β₂ β 3 = + β₁β₂ Chaptr p.9 l.8 Vf = (V a a )f = V a a p.33 l.7 as shown in Fig. -5 p.34 l.4 ds = dr + r dθ + r sin θ dφ (.9) p.40 l.5 g yx x + g yy = 0 l.6 g yy = x g yx p.4 l. W x = x (0) + () = l. W y = (0) () = l.3 W a = (, ) p.4 l. S b = l.3 = g ac T b c = l.4 = g a R bcd p.44 l. r = x r x + y r y + z r z Chaptr 3 p.49 l.5 U. A point p that blongs to th manifold M (say in U ) p.55 l.3 Q b = S a b T b Chaptr 4 p.67 l. = ( Ab x a + Γ b ca l.5 b A a = Aa x p.7 l.9 Γ abc = ( g ab b +Γ bc A c ) b a A c (4.6) + g ac x a ) (4.5) l. Γ abc = ( g ab + g ac x a ) + C abc + C acb C bca p.73 l.7 Γ abc = ( g ab + g ac x a ) l.8 Γ bca = ( g bc x a + g ba g ca x b ) l.0 Γ abc + Γ bca = ( g ab + g ac x a ) + ( g bc x a + g ba g ca x b ) l. = ( g ac x b g ca x b + g ab + g ba g bc x a + g bc x a ) l. = ( g ab ) = g ab l.7 a Γ bc = gad ( g db + g dc x d ) (4.6)
3 p.75 l. th last trm φ l.3 Γ bc φ l.5 Γ φθ = gφφ ( g φb = gφφ ( g φφ θ + g φc x b ) + g φθ φ ) = p.76 l.3 Γ abc = ( cg ab + b g ac a g bc ) l.6-7 Looking at Γ abc = ( cg ab + b g ac a g bc ) p.77 (*) l. Γ xxu = ( ug xx + x g xu x g xu ) = ug xx = [( u)] = u l.4 Γ uxx = ( xg ux + x g ux u g xx ) = ug xx = [( u)] = + u l.8 Γ uyy = + u l.9 Γ yyu = u l. thir last two l.3 Γ abc = Γ acb p.80 l.6 (aα + bβ) γ = aα γ + bβ γ p.8 l.7 L V W = V b b W W b b V or altrnativly (L V W) a = V b b W a W b b V a (4.7) l.9 L V T ab = V c c T ab + T cb a V c + T ac b V c (4.8) p.8 l.0- p.83 (*) l.8 This should b omittd: W can writ (4.33) in th mor convnint form: d x a ds + Γ a bc d φ ds + r τ p.85 (*) l.3 Γ ξτ dr ds dx b dx c ds ds = 0 dφ ds = 0 = ξ = Γ τ τξ p.86 l.6 R abcd = g a R bcd (*) l.8 R abcd = c Γ abd d Γ abc Γ ac Γ bd + Γ ad Γ bc (4.4) l. Γ ac Γ bd + Γ ad Γ bc (4.43) p.87 l.3 All togthr, in n dimnsions, thr ar n (n )/ indpndnt nonzro componnts l.0 R ; R 33 ; R 33 ; R 3 ; R 3 = R 3 ; R 33 = R 33 p.88 l. of th Rimann tnsor in two dimnsions ar p.9 (*) Q Γ θφφ = ( θg φφ ) = ( θ(r sin θ)) = r cos θ sin θ p.9 (*) Q7 v Γ xx = + u Chaptr 5 p.05 l.7 α β = ( ) pq β α (5.3) p.0 (*) l.4 R (*) Q3 r Γ φφ = a + k a = (Λ ) r Γ (*) Q4 u v Γ v v = Γ u v = + u p. Q5 Whr ar th hats? φλ φ Λ = ( r ) (r sin θ) = r sin θ 3
4 (*) Q7 G = R [ RΨ (R Ψ + R + R R ) R Ψ R + + R ] Chaptr 6 p.30 l.5 Cass and 3 in our p.33 l.5 L u η a = u b b η a η b b u a = 0 l.9 c a S b = a S c c b + Γ ads d d c b Γ bas d l.4 b a V c = b ( a V c + p.34 l.4 a ( b V c c Γ bv ) b ( a V c + (6.) p.35 l. c = R dabv d (6.3) p.36 l. Howvr, sinc u a is th tangnt p.37 l. a Γ bc = gad ( g db + g dc x d ) (4.6) p.39 l. ds = dt + b(t,r) dr + R (t, r)dφ p.4 (*) l.8 = R ω ω R R t R r b(t,r) ω ω p.43 l.3 Γ = l.7 = R a b c d ω c ω d p.44 l.0 Ω = p.46 l.4 w writ out Ω = l.6 Ω = l. R = l. All togthr, th indpndnt nonzro componnts p.47 l. Using th rsults of Exampl 6- (*) l.5 R = R c l.8 R = R c = R R + R + R b (6.) (6.9) p.49 (*) l.5 G = b(t,r) R t r + b(t,r) R R t r l.8 ds = dt + b(t,r) dr + R (t, r)dφ, this is asy nough: 0 0 a (*) l.9 Λ b = ( 0 b(t,r) 0 ) (6.33) 0 0 R(t, r) (*) l.5 G tt = Λ tλ tg = ()()G (6.35) (*) l.8 ()( b(t,r) )( b(t,r) R + b(t,r) b R ) (6.36) R t r R t r p.53 l.0 Γ l.5 Γ Chaptr 7 p.55 l.9 tnsor and nrgy-momntum tnsor intrchangably. p.59 l.4 γ = ( v c ) 4
5 l.6 = γ ρ t + (ρux ) γ + γ (ρuy ) + γ (ρuz ) x y z l.7 = γ ρ t + γ (ρu ) p.60 l.8 T ab = Au a u b + Bg ab (7.8) l. T ij = δ ij P (7.9) p.6 l.3 T ij = Bη ij l.6 = Au 0 u 0 + Bη 00 = l.9 = (ρ + P)u a u b Pη ab (7.0) l. = (ρ + P)u a u b Pg ab (7.) l.4 = (ρ + P)u a u b + Pη ab l.5 = (ρ + P)u a u b + Pg ab (7.) p.6 l.5 G a b Λη a b = 8πT a b (7.4) l.3 Putting this togthr with (7.4) and (7.3), w hav p.65 l.0 worldlinss Chaptr 8 p.68, xampl 8-: Altrnativ solution (*): Calculat th Li-drivativ of g ab (4.8) and using (4.8) you gt: L X g ab = X c c g ab + g cb a X c + g ac b X c = a (g cb X c ) + b (g ac X c ) = a X b + b X a If L X g ab = 0 this implis that a X b + b X a = 0, which is th Killing quation. p.7 l.6 c θ X θ = θ X θ Γ θθx c = θ X θ Γ θθx θ Γ θθ p.7 l.7 θ X φ = θ [ sin θ cos θ f(φ )dφ + g(θ)] p.74 l.8 P(t) = p(t )dt l.0 y(t) = P(t) P(t ) r(t )dt + C P(t) l.4 P(θ) = l.6 P(θ) = l.7 From this w dduc that P(θ) = p.76 l.0 X θ = g θθ X θ = a X θ l. X φ = g φφ X φ = a sin θ X φ p.77 l.6 = a (A cos φ + B sin φ) θ + a [C cot θ (A sin φ B cos φ)] φ l.7 = A cos φ θ A cot θ sin φ φ + B sin φ θ + B cot θ cos φ φ + C φ l.8 = +A L x + B L y + C L z l.0 L x = + cos φ cot θ sin φ θ φ p.78 l.5 b T ab = 0 φ X φ Chaptr 9 p.88 l. = r sin θ 5
6 p.90 l. m m = m a m a = l.3 δ = m a a p.98 (*) l. v Γ uu = gvd ( u g du + u g ud d g uu ) = gvu ( u g uu + u g uu u g uu ) = gvu ( u g uu ) = () ( H u ) = + H u p.99 l.8 Now b l a = and so w can immdiatly l. Having a look at th Christoffl symbols (9.9), w s (9.9) Chaptr 0 p.04 l.0 This tlls us that th mtric lin lmnt will not p.05 l. = Cr dθ + Cr sin θ dφ n l.6 = C ( r dc r + ) dr c dr p.07 (*) l.9 Γ = Γ θ = Γ = 0 (0.6) θ p.08 (*) l.5 Γ = Γ θ θ = Γ θ = 0 (0.7) ϕ (*) l.9 Γ ϕ = Γ = 0 (0.8) p.0 l. = R l.7 All togthr, th indpndnt nonzro componnts of th l.9 = R p. l.4 c R a b = R a c b p.6 l.3 largrangian p.7 (*) l.8 = 4m m r + (r m) (r ) r p.8 (*) l. = m r (t ) + ( m r ) ( m r ) (r ) r(θ ) r sin θ (φ ) p.0 l.9 = r sin θ dφ dφ = r dτ dτ p.6 l. rspct to φ r a scond tim l.9 and using yr 0 = r sin φ l.0 = r sin φ = yr A 0 l. th constant /A rprsnts th p.7 l.5 u p = D sin φ + E cos φ l.7 u p = l.8 u p = l.0 This lin should b omittd: u p + u p = D sin φ + 4D sin φ = 3D sin φ l. p u + p u = l.4 p u + p u = A sin φ l.7 p u + p u = A sin φ p.8 l.7 and stting this u qual to zro p.30 l. so w put ct in plac of t and G m c r r (0.48) 6
7 l.3 ct = dr r 0 r ( + m r G c mr 0 G r 3 c ) l.7 ct = r p r 0 r r 0 + m G c ln (r p + r p r 0 )(r + r r 0 ) r 0 l.0 m G c [ r p r 0 r p r r 0 ] r Using th variational mthod dscribd in Exampl 4-0, th nonzro Christoffl symbols for th gnral Schwarzschild mtric ar p.3 (*) Q (b) R rt = r (dλ) dt (*) Q3 (b) Γ 3m Λr = 3 r 3/ 9r 8m 3Λr 3 p.36 l.7 Eddington-Finklstin Coordinats Th Radial Null Godsic p.38 (*) l.0 t t 0 = 3 m (r3/ r 3/ 0 + 6m r 6m r 0 ) + m p.39 (*) l. r m = (r 0 m) (t t 0)/m Chaptr p.45 l.6 ds = ( m Σ ) dt + 4amr sin θ dtdθ (.9) Σ p.46 (*) l. g φφ = (Δ a sin θ) (.3) ΣΔ sin θ p.47 l.4 In this cas, θ = π,which l.5 mans that sin θ = and p.5 l.3 R = r + a + m3 r Chaptr p.58 l. Suppos that S rprsnts th spaclik p.6 l.4 f = (.9) C kr (.4) l.5 To find th constant C = C, w can us th l.3 = C + Kr Kr = C + Kr l.5 C + Kr = Kr or C = 0 C = p.68 l.3 Th dtail wr workd out in Exampl 7-3 P.73 l.0 ds = dt Λ 3 t [dr + r dθ r sin θ dφ ] p.74 Fig. -5 Th vrtical coordinat is a not R l. Th d Sittr solution rprsnts a univrs without mattr and without radiation. p.75 Fig. -6 Th vrtical coordinat is a not R da dτ l.0 = C sin τ cos τ dt dt p.76 Fig. -7 Th vrtical coordinat is a not R l.3 Intgrating th lft sid bcoms p.77 (*) Q r ν(r) = A + Br + 3 k Λr 3 7
8 (*) Q3 B = k (*) Q4 dl dr = m r + + r dθ + r sin θ dφ 3 Λr Chaptr 3 p.80 l.5 a Γ bc p.8 l.6 a Γ bc = gad ( g bd = gad ( g bd l.7 = ε gad ( h bd + g cd x d ) + g cd x d ) + h cd x b h bc x d ) l.8 = ε (ηad εh ad ) ( h bd l.9 = (εηad ε h ad ) ( h bd l. = εηad ( h bd + h cd x b h bc x d ) + h cd x b h bc x d ) p.83 l.3 = c [ εηa ( h b x d + h d x b h bd )] x l.4 d [ εηaf ( h bf l.5 = ε (ηa h b x + h cd x b h bc x d ) (3.3) + h cf x b h bc x f )] + h d ηa h bd ηa d b x l.6 ε h bf (ηaf x d + ηaf xc x d x l.7 Lt s rlabl it as f l. Th first trm will cancl h cf ηaf b x ) h bc x d x f) l.3 = εηa ( h bd x f + h df x b + h bc x d x f h cf x d xb) (3.4) c l.5 c R ab = c Γ ab b Γ ac p.87 l. ψ a a b,a = ψ b,a φ b b l.4 Wφ a = ψ a,b p.88 l.3 ψ a b,a l.6 εwψ ab l.8 Wψ ab = 0 = l.4 Wψ ab = W (h ab η abh ) = Wh ab Wη abh = 0 l.6 0 = Wψ ab = η ab Wψ ab l.9 Wh ab = 0 = W(η ab ψ ab ) = W(ψ b b ) = Wψ = Wh tnsor can b shown to b a function of h xx, h xy, h yx and h yy alon, in th Einstin gaug. p.89 l. drivativs with rspct to y and zx vanish p.93 (*) l. ds = d t d x d y d z + εh xy dxdy (3.9) p.94 (*) l. ds = dt ( εh xy )dx ( + εh xy )dy dz (3.0) p.99 l.5 (s Quiz) 8
9 p.300 l. a a XdudX l. = b ( b b Ydu + b dy) = b b YdudY p.303 l.4 Th curvatur tnsor Wyl scalar p.304 l. ds = δ(u)(x Y )du + dudr dx dy (3.4) l.3 (s Problm 7) p.305 l.5 (3.45) p.306 l.3 = νg xx l.4 = ν ( [ νθ(ν)] ) l.5 = ( νθ(ν)) ν ( νθ(ν)) l.6 = ( νθ(ν)) ( Θ(ν) ν dθ dν ) l.7 = ( νθ(ν))(θ(ν) νδ(ν)) l.9 f(ν)δ(ν)dν = f(0) p.307 l.7 sinc n u is null l.8 n a = (,0,0,0) p.308 l.3 m a = ( 0, 0, ( νθ(ν)), i ( + νθ(ν)) ) l.4 m a = ( 0, 0, ( νθ(ν)), i ( + νθ(ν)) ) p.309 l. m xm x = ( ( νθ(ν)) ) ( ( νθ(ν)) ) p.3 fig 3- u + v = p.35 (*) l.6 m a = (0, 0, cos aν, +i cosh aν) (3.56) p.37 l. σ = a (tan aν + tanh aν) l.6 Ψ 0 = +Dσ σρ (3.57) l. = ν [a (tan aν + tanh aν)] (*) l. = a ( + tan aν + tanh aν) l.4 Ψ 0 = +Dσ σρ l.5- (*) 8 = a ( + tan aν + tanh aν). = a p.38 l.7 Nariai l.8 R ab = Λg ab (*) l. if R ab = g ab Λ Ω should rightfully b Ω = + Λ 4 (x + y ) (*) l.8 l.6 g νν = +Λν ν Γ uν u = Γ uu ν = Λν; Γ uu y = Γ yy = Λy Ω = Λ ν 3 x ; Γ xx y = Γ yx x = Γ yy = Λx Ω ; Γ x y xy = Γ xx 9
10 l.3 m a = ( 0, 0, Ω, i Ω ) ; m a = ( 0, 0, Ω, i Ω ) l.4- Ths lins should b omittd 5 p.39 l.3 n a = (, + Λν, 0, 0) l.4 m a = (0, 0, Ω, iω); m a = (0, 0, Ω, iω) l. Λν l. l a;b n a n b = l u;u n u n u = Λν l.9 m x = i Ω l. γ = l u;un u n u = Λν An xrcis shows that all rmaining nonzro spin cofficints vanish ar α = p.30 (*) l. Λ (x iy); β = Λ (x + iy) l.5 = ρμ σλ + αα + ββ αβ + γ(ρ ρ ) + ε(μ μ ) Ψ + Λ NP + Φ (3.59) l.8 = ν ( Λν) = Λ l.0 = Λ (3.6) l.8 Λ = l.9 = Λ (3.64) p.3 l. Ψ = 6 Λ and Φ = 4 Λ (3.65) p.3 Q l. usd in Exampl 3- x Q l.3 = μ ( x + y + i y x + y ) Q3 l.5 usd in Exampl 3- l.8 Φ = δν Δμ μ λλ μ(γ + γ ) + ν π ν(τ 3β α ) (9.4) Final Exam p.33 E (*) l. Δs. E = (,3,,4) (*) l.3 E = (4,0,,) p.34 E6 (*) l.5 Γ aba = Γ aab = g aa x b E7 (*) u u ν Th nonzro Christoffl symbols ar: Γ uu = Γ νν = Γ uν = u ; Γ ν (u +ν ) νν = ν u Γ uu = Γ νu = ν ; Γ u (u +ν ) θθ = uν ; Γ ν (u +ν ) θθ = u ν ; Γ θ (u +ν ) uθ = ; Γ θ u νθ = ν ψ p.35 E9 (*) l. Γ θθ ψ = cosh ψ sinh ψ, Γ φφ = cosh ψ sinh ψ sin θ E0 (*) ψ Th non-zro Ricci rotation cofficints ar: Γ θ θ p.36 E (*) coth ψ Γ ψ =, Γ θ sin θ = Γ θ l. Ψ = r 4rm + 3 r 4 = cot θ sinh ψ θ = Γ ψ θ ψ = coth ψ, Γ = 0
11 E4 (*) (*) l.6 ds = ω ((dt + x dz) dx dy x dz ) l.8 T ab = ρ 0 0 x ω { } x 0 0 x Quiz and Exam Solutions p.330 l.3 (*) 7.b p.33 l.7 (*) 5.c l.9 (*) 3.a Bibliografi McMahon, D. (006). Rlativity Dmystifid. McGraw-Hill Companis, Inc.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
The Finite Element Method
Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)
Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS
. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Κύµατα παρουσία βαρύτητας
Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
ds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
1 m z. 1 mz. 1 mz M 1, 2 M 1
Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical