LUCRAREA NR. 5. functia sa de transfer (reprezentarea intrare-iesire a sistemului) determinandu-se cu relatia

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LUCRAREA NR. 5. functia sa de transfer (reprezentarea intrare-iesire a sistemului) determinandu-se cu relatia"

Transcript

1 LUCRAREA NR Proprieăţi rucurale ale iemelor liniare (abiliae, conrolabiliae, obervabiliae). Reprezenarea în frecvenţă a iemelor O problemă imporană în udiul iemelor auomae o reprezină proprieaea de abiliae. Referior la udiul abiliăţii, MALAB dipune de o erie de inrucţiuni ce conţin aâ crierii algebrice câ şi frecvenţiale. Un iem monovariabil liniar i invarian in imp ee decri de ecuaiile inrare-areieşire: x& ( ) Ax( ) + bu( ) y( ) c x( ) + du( ) (1) funcia a de ranfer (reprezenarea inrare-ieire a iemului) deerminandu-e cu relaia 1 c ( I A) b + d () SABILIAEA Crieriul general de abiliae inernă: Condiţia neceară şi uficienă ca un iem liniar i invarian in imp decri de ecuaiile (1) ă fie inern aimpoic abil ee ca oae valorile proprii ale maricei A (adica rădăcinile polinomului caraceriic p( λ ) de( λi A) ) ă aibă parea reală negaivă (ă fie iuae în emiplanul complex negaiv C - ). Valorile proprii ale unei marici A e calculează cu funcţia MALAB eig(a). Polinomul caraceriic al unei marici A e calculează cu inrucţiunea poly(a), iar rădăcinile unui polinom e calculează cu inrucţiunea roo(p), unde p ee un vecor linie ce conţine coeficienţii polinomului în ordine decrecăoare a puerilor variabilei. Deci, valorile proprii unei marici e po calcula şi cu comanda roo(poly(a)). Dacă uilizăm funcţia eig cu inaxa [v,d]eig(a) e va genera o marice diagonală d cu valorile proprii ale maricei păraice A şi o marice v ale cărei coloane corepund vecorilor proprii ce verifică relaţia: A v v d. Fie iemul liniar i invarian in imp decri prin funcţie de ranfer (relaţie inrareieşire) M ( ) b + b m m 1 m m 1 n n 1 N( ) an + an 1 + L+ b1 + b, a n, m n (3) + La + a 1 In ace caz inereeaza abiliaea inrare mărginiă ieşire mărginiă, au pe cur, abiliaea inrare ieşire: Crieriul general de abiliae inrare-ieşire: Siemul liniar i invarian in imp decri de (3) ee abil inrare ieşire dacă şi numai dacă oţi polii (radacinile numiorului) funcţiei de 1

2 ranfer au parea reală negaivă (un iuaţi în emiplanul complex negaiv C - ). Obervaie: Daca funcţia de ranfer obţinuă uilizând () ee ireducibilă în forma primara (adica aşa cum rezula prin calcul direc şi fara implificari), aunci concluziile aupra abiliăţii inrare-ieşire un valabile şi penru abiliaea inernă a iemului. Vice-vera nu ee adevaraă. CONROLABILIAEA e verifică pe perechea (A, B) şi ee proprieaea unui iem care evidenţiază poibiliaea deerminării unei comenzi în vederea efecuării unei ranziţii în paţiul ărilor. OBSERVABILIAEA e verifică pe perechea (A, C) şi ee proprieaea unui iem care pune în evidenţă poibiliaea deerminării unei ări din prelucrarea mărimii măurae y. Fie iemul monovariabil de ordinul n în reprezenarea inrare-are-ieşire (A, B, C, D). Perechea (A, B) ee conrolabilă dacă şi numai dacă maricea de conrolabiliae R are n 1 rangul n, unde R [ B AB L A B]. Perechea (A, C) ee obervabilă dacă şi numai dacă maricea de obervabiliae Q are rangul n, unde C Q C A M C A Inrucţiunile MALAB penru calculul maricelor de conrolabiliae, repeciv de obervabiliae, un: R crb(a,b), repeciv Q obv(a,c). Rangul unei marici X e calculează cu inrucţiunea MALAB: rank(x). n 1.. REPREZENAREA ÎN FRECVENŢĂ A SISEMELOR Numim caraceriică de frecvenţă a unui iem liniar invarian în imp, cu o inrare şi o ieşire (SISO) rericţia la axa imaginară a funcţiei de ranfer: H ( j penru < ω < au ω <. Funcţia complexă H(j e poae crie în forma polară jω no j arg H ( j jϕ ( H ( j e A( e (4) H ( j unde cu A ( H ( j -a noa modulul funcţiei complexe şi cu ϕ( arg H ( j argumenul aceeia; expreia caraceriicii de frecvenţă în forma careziană ee no H ( j Re( H ( j) + j Im( H ( j) P( + jq( (5) Se inroduc rei ipuri de reprezenări grafice ale caraceriicii de frecvenţă: A. LOCUL DE RANSFER NYQUIS ee hodograful lui H(j în planul (P(, Q() penru < ω <. Deoarece hodograful ee imeric faţă de axa reală, ee uficienă raarea emihodografului ( ω < ).

3 B. CARACERISICILE DE FRECVENŢĂ BODE B.1 Caraceriicile ampliudine-pulaţie şi fază-pulaţie un reprezenările grafice ale dependenţelor L ( log1 H ( j (măura în db) şi ϕ( arg H ( j (măura în grade); ambele grafice au abcia (axa frecvenţelor) gradaă în cară logarimică. B. Caraceriica ampliudine-fază ee reprezenarea în planul (L, ϕ) a dependenţei paramerice L( şi ϕ(, unde abcia ϕ ee gradaă în grade, iar ordonaa L în db. A. Crieriul de abiliae Nyqui ee un crieriu frecvenţial care permie udiul abiliăţii iemului în circui închi din Fig. 1 cu funcţia de ranfer H M ( ) ( ), (6) 1 + N( ) + M ( ) doar pe baza informaţiilor furnizae de funcţia de ranfer în buclă dechiă, H() deci fără calculul poliilor (rădăcinile numiorului) lui H (). Penru ca rezulaele ă reflece şi abiliaea inernă a iemului rezulan, funcţia de ranfer H() în formă primară rebuie ă fie ireducibilă. u() - H() y() Fig. 1. Siem în circui închi prin reacţie negaivă uniară Crieriul Nyqui: Condiţia neceară şi uficienă penru ca iemul liniar şi invarian în imp decri prin funcţia de ranfer (3) ă fie abil inrare ieşire şi/au inern aimpoic abil ee ca variaţia argumenului vecorului cu originea în puncul criic ( 1,) al planului complex ( Re( H(jω )), Im( H(j )) şi vârful pe ramurile coninue ale emihodografului caraceriicii de frecvenţă H(j când ω variază crecăor în inervalul [, + ) ă fie: Δϕ ( + N ) π N p (7) unde: N p - reprezină numărul polilor lui H() iuaţi în emiplanul complex poziiv; N - reprezină numărul polilor lui H() iuaţi pe axa imaginară. Un iem auoma ee la limia de abiliae dacă emihodograful rece prin puncul criic ( 1,). Dacă nu un îndeplinie acee condiţii iemul ee inabil. Hodograful lui H ( j e obţine în MALAB cu comanda nyqui avand una dinre urmaoarele inaxe: nyqui(y) nyqui(y,w) nyqui(y1,y,...,yn) nyqui(y1,y,...,yn,w) [re,im,w] nyqui(n,d) [re,im] nyqui(n,d,w) 3

4 nyqui(y) raeaza hodograful Nyqui al unui iem liniar şi invarian în imp cu modelul y. Penru un iem decri prin funcţie de ranfer, vom avea: yf(n,d) unde cei doi parameri reprezină crierea in MALAB a polinoamelor zerourilor i polilor adică un vecori linie care conţin coeficienţii celor două polinoame ale funcţiei raţionale, în ordine decrecăoare a puerilor variabilei. ( + 3) Exemplul 1: Penru iemul cu funcţia de ranfer în buclă dechiă hodograful caraceriicii de frecvenţă în buclă închiă e obţine afel: hf([ 6],[1 3]); nyqui(h) Fig. Hodograful Nyqui penru iemul da Se obervă în Fig. reprezenarea în culoare roşie a puncului criic ( 1,) şi cele doua ramuri, imerice faţă de abcia, ale hodografului. Deoarece iemul da ee abil în bucla dechiă, variaia Δ ϕ din (7) rebuie a fie nulă, ceea ce e obervă uşor în graficul din Fig.. nyqui(y,w) pecifică explici şi frecvenele penru care au fo calculae valorile graficului. nyqui(y1,y,...,yn) i nyqui(y1,y,...,yn,w) reprezina în aceleai axe de coordonae hodografurile mai mulor ieme. [re,im,w] nyqui(n,d) afişează valorile componenei reale şi, repeciv, a celei imaginare ale caraceriicii de frecvenţă, precum şi frecvenţele w; în ace caz emihodograful e va afia cu comanda plo(re,im). [re,im] nyqui(n,d,w) permie definirea de căre uilizaor a frecvenţelor penru care e doreşe evalua răpunul; în ace caz vecorul în cară logarimică al frecvenţelor w (radiani/ecundă) va fi genera cu comanda logpace. Comanda logpace uilizaă penru generarea unui vecor de valori egal paţiae, în cară logarimică, înre valorile 1 a şi 1 b are una dinre inaxele: w logpace(a,b) generează un vecor cu 5 de elemene 4

5 w logpace(a,b,n) generează un vecor cu n elemene w logpace(a,pi) generează un vecor cu valori înre 1 a general în prelucrarea numerică a emnalelor. şi 1 π, uiliza în B. Caraceriicile de frecvenţă Bode e raează în MALAB foloind comanda bode cu una dinre urmăoarele inaxe: bode(y) bode(y,w) bode(y1,y,...,yn) bode(y1,y,...,yn,w) unde y ee modelul iemului liniar invarian în imp (coninuu au dicre şi monovariabil (SISO) au mulivariabil (MIMO)), deermina cu una din funcţiile MALAB f,, zpk (au frd). bode(y) reprezină grafic răpunul Bode al unui iem liniar şi invarian în imp; bode(y,w) permie pecificarea expliciă a domeniului de frecvenţe în care e doreşe raarea graficelor. bode(y1,y,...,yn) şi bode(y1,y,...,yn,w) reprezină grafic, înr-o ingură figură, răpunurile Bode ale celor N ieme. Comanda bode având inaxa mag,phae,w] bode(n,d) unde N şi D un vecorii polinoamelor zerourilor şi, repeciv, polilor funcţiei de ranfer calculează ampliudinea şi faza răpunului în frecvenţă penru frecvenţele w (în rad/ec.). În ace caz, penru reprezenarea grafică a dependenţelor e vor foloi comenzile: emilogx(w,*log(mag)) penru caraceriica emilogarimică de ampliudine L(, repeciv emilogx(w,phae) penru caraceriica emilogarimică de fază ϕ(. Se recomandă foloirea comenzii ubplo penru afişarea pe acelaşi ecran a celor două dependenţe. Exemplul : Penru iemul cu funcţia de ranfer din Exemplul 1, caraceriicile Bode e obţin inroducând în MALAB liniile de comandă hf([ 6],[1 3]); bode(h) grid Fig. 3. Caraceriicile Bode ampliudine-frecvenţă şi fază-frecvenţă 5

6 Comporarea iemului în circui închi poae fi apreciaă foloind indicaorii de caliae frecvenţiali definiţi pe caraceriica complexă de frecvenţă. Aceşi indicaori un: Frecvenţa de ăiere noaă ω reprezină frecvenţa la care ampliudinea caraceriicii de frecvenţă are valoarea 1, A( ω ) 1, au, echivalen L( ω ). Pe reprezenarea Nyqui a caraceriicii de frecvenţă, ω ee cea mai mare frecvenţă la care emihodograful inerecează cercul uniae cu cenrul în origine. Pe diagrama Bode ampliudine-pulaţie valoarea ω e deermină din condiţia L( ω ). Marginea de fază (MF) e evaluează în cazul unui iem abil şi e referă la caniaea neceară, din punc de vedere al fazei, penru ca iemul ă ajungă la limia abiliăţii. Pe emihodograful Nyqui, MF reprezină unghiul în en rigonomeric dinre axa reală negaivă şi direcţia vecorului H ( jω ). În cazul caraceriicilor Bode, MF ee dianţa răpunului de fază de la faza de -18 la frecvenţa de ăiere ω ; e calculează cu relaţia: MF 18 +ϕ( ω ), unde ϕ ( ω ) arg H ( jω ). Frecvenţa de ăiere de fază noaă ω π reprezină cea mai mică frecvenţă la care răpunul de fază ainge valoarea -18 : ω π min{ ω ϕ( 18 }. Marginea de ampliudine (MA) în cazul unui iem abil, marginea de ampliudine e referă la valoarea neceară penru ca ampliudinea iemului ă devină egală cu 1 aunci când faza ee egală cu -18 ; marginea de ampliudine ee definiă prin relaţia MA 1 H ( jωπ au echivalen (penru caraceriica ampliudine-pulaţie) MA L( jωπ ). Inrucţiunea MALAB penru calculul celor paru indicaori frecvenţiali ee [Gm,Pm,Wcg,Wcp] margin(y) unde Gm ee marginea de ampliudine (Gain margin), Pm ee marginea de fază (phae margin), iar Wcg şi Wcp un repeciv, frecvenţele de ăiere şi cea de ăiere de fază. Exemplu 3: Deerminarea marginilor de abiliae penru iemul din exemplul noru e face cu comanda margin(h) iar rezulaul ee reprezenarea grafica de mai jo în care e obervă că ω 3 rad / ec. MA, MF 9 şi 6

7 EMĂ: 1. Se dau iemele decrie prin funcţiile de ranfer: ,, ( + 1) a. Să e udieze abiliaea inrare - ieşire. b. Să e udieze foloind crieriul Nyqui abiliaea iemului în buclă închiă prin reacţie negaivă uniară, având pe calea direcă ubiemul cu funcţia de ranfer de mai u. c. Să e raeze caraceriicile de frecvenţă Bode. d. Să e calculeze pulaţia de ăiere, marginea de fază, pulaţia de ăiere de fază, marginea de ampliudine penru iemul cu H().. Se dau iemele cu reprezenarea de are: A, B, C D [ 1 ], A, B, C D [ 1 ], a. Să e udieze abiliaea inernă. b. Să e udieze conrolabiliaea şi obervabiliaea. 3. Să e udieze cu crieriul Nyqui abiliaea iemului din Fig. 1 când funcţia de ranfer pe calea direcă are, pe rând, una din expreiile de mai jo: 3( + 1) 1( + 1)( + 5) 1,,, ( + 3)( + 4)( ) ( 4 + 4) ( + 1)( + )( + 5) , ( + 3) ( + 3.5) 7

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE 6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Rezulta ca polul în origine introduce un defazaj egal cu - απ/2 pentru tot domeniul de pulsatii. Indici de performanta ai sistemelor dinamice

Rezulta ca polul în origine introduce un defazaj egal cu - απ/2 pentru tot domeniul de pulsatii. Indici de performanta ai sistemelor dinamice /9/4 Rezula ca olul în origine inroduce un defaza egal cu - απ/ enru o domeniul de ulaii. Indici de erformana ai iemelor dinamice Se conidera o forma iica a raunului indicial y() w() rezenaa în fig..67.

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformaa Laplace GOM mai 8 Tranformaa Laplace În cele ce urmează vom udia ranformaa Laplace, care din punc de vedere maemaic nu ee decâ o inegrală improrie şi cu parameru (vezi formula ()), dar are numeroae

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CAPITOLUL 1 CURBE ÎN PLAN

CAPITOLUL 1 CURBE ÎN PLAN CAPITOLUL CURBE ÎN PLAN Rezuma Se defineşe noţiunea de curbă plană şi e abilec reprezenările!!!! analiice: r = r( I R r' ( y = f ( x x I # F( x y = cu Fx + Fy > Se crie ecuaţia angenei şi normalei înr-un

Διαβάστε περισσότερα

CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS

CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS Capiolul 3 Filre cu răspuns fini la impuls 69 CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS 3.. Să se proieceze un FTJ numeric, care lucrează la frecvenţa de eşanionare FS khz, pornind de la filrul

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Capitolul 9. Transformata Laplace. 9.1 Transformata Laplace

Capitolul 9. Transformata Laplace. 9.1 Transformata Laplace Capiolul 9 Tranformaa Laplace 9. Tranformaa Laplace Ideea de bază acalculuioperaţional conăîn inroducerea ranformărilor inegrale. Avanajul aceei meode conă în aceea că reduce rezolvarea unor ecuaţii diferenţiale

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Stabilitatea sistemelor liniare si invariante in timp

Stabilitatea sistemelor liniare si invariante in timp Stabilitatea sistemelor liniare si invariante in timp In continuare ne vom referi la sisteme liniare si invariante in timp cauzale. http://shannon.etc.upt.ro/teaching/ps/cap4_stabilitate.pdf Analiza stabilitatii

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

( ) a ( ) CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS

( ) a ( ) CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS Cpiolul 3 Filre cu răpun fini l impul 69 CAPITOLUL 3 FILTRE CU RĂSPUNS INFINIT LA IMPULS 3 Să e proieceze un FTJ numeric, cre lucreză l frecvenţ de eşnionre FS Hz, pornind de l filrul nlogic cu funcţi

Διαβάστε περισσότερα

Sisteme de ordinul I şi II

Sisteme de ordinul I şi II Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul

Διαβάστε περισσότερα

Introducere. Fig. 1. Schema bloc de principiu a unui sistem de telecomunicații

Introducere. Fig. 1. Schema bloc de principiu a unui sistem de telecomunicații odulații Digiale cur Inroducere chema bloc de principiu a unui iem elecomunicații, care ranporă informația cu ajuorul emnalelor elecromagneice, ee prezenaă în Fig.. Fig.. chema bloc de principiu a unui

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2.

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2. Transformata F(s) definită de (.37) este univocă şi se numeşte transformata Laplace directă.. Transformata Laplace inversă este univocă numai în cazul funcţiilor f(t) continue şi se defineşte prin relaţia

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

4. Analiza în timp a sistemelor liniare continue şi invariante

4. Analiza în timp a sistemelor liniare continue şi invariante RA C5 4. Aaliza î im a iemelor liiare coiue şi ivariae Aaliza î im rereziă deermiarea răuului î im a iemelor coiderae, la divere iuri de emale de irare şi deermiarea ricialelor rorieăţi (abiliae, erformaţe

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE LUCAEA nr. CICUITE ELEMENTAE CU AMPLIFICATOAE OPEAȚIONALE Scopul lucrării: Se sudiază câeva dinre circuiele elemenare ce se po realiza cu amplificaoare operaţionale (), în care acesea sun considerae ca

Διαβάστε περισσότερα

5. Polii şi zerourile funcţiei de transfer

5. Polii şi zerourile funcţiei de transfer 5. Polii şi zerourile fucţiei de rafer 5.. Răpuul la emalul expoeţial Fie iemul m bm ( z ) i= i Y() = G()U() (.), G () =, cu poli impli. a ( p ) j= j λ u u( ) = ue σ Se aplică : ( ), U() =. (5.) λ Se uilizează

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα