Sisteme de ordinul I şi II

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sisteme de ordinul I şi II"

Transcript

1 Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul I de ip rece-jos ese descris de ecuaţia difereţială: dy() τ + y () = x () (.) d ude x() ese irarea iar y() ese ieşirea sisemului. τ se umeşe cosaa de imp a sisemului. Î codiţii de repaos iiţial ecuaţia (.) descrie u sisem liiar si ivaria i imp a cărui fucţie de sisem ese: HTJ () s =, Re{} s > (.) + sτ τ Se obţi: răspusul la impuls: / h () = e τ σ () (.3) τ răspusul idicial (la semalul reapă): / τ s () = h( θ ) dθ σ() = ( e ) σ() (.4) Se observă că, pe duraa uei cosae de imp, răspusul la impuls scade de e ori. U sisem de ordiul I rece-sus ese descris de ecuaţia difereţială: dy() dx() τ + y () = τ (.5) d d Î codiţii de repaos iiţial, fucţia de sisem ese: sτ HTJ () s =, Re{} s > (.6) + sτ τ 3. Comporarea î domeiul frecveţă a sisemelor de ordiul I Răspusul î frecveţă al uui sisem de ordiul I rece-jos ese: HTJ ( ω) = HTJ ( s) s= jω = (.7) + jωτ iar al uui sisem rece-sus: jωτ HTS ( ω) = HTS ( s) s= jω = (.8) + jωτ

2 Siseme de ordiul II 4. Comporarea î domeiul imp a sisemelor de ordiul II rece-jos Ecuaţia difereţială ce caracerizează sisemele de ordiul II rece-jos ese: d y() dy() + ξω ( ) ( ) + y = x d d (.9) ude x() ese irarea iar y() ese ieşirea sisemului. ω se umeşe pulsaţie aurala, iar ξ se umeşe gradul de amorizare al sisemului. Î codiţii de repaos iiţial, ecuaţia (.9) descrie u sisem liiar si ivaria î imp, a cărui fucţie de sisem ese: H( s) ω s + ξs+ Re{ s} σ (.) Polii fucţiei de sisem su daţi de rădăciile ecuaţiei: s + ξs+ = (.) şi au expresiile: c = ξω + ω ξ (.) = ξ ξ c (.3) Î cazul < ξ <, polii su disicţi şi complex cojugaţi. Se spue ca sisemul ese î regim supracriic şi σ = ξ. Î cazul ξ =, polii su reali şi se cofudă. Se spue ca sisemul ese î regim criic şi σ = ω. Î cazul ξ >, polii su disicţi si reali. Se spue ca sisemul ese î regim subcriic şi σ = ξω + ω ξ. Î ulimele două cazuri sisemul de ordiul II ese echivale cu două siseme de ordiul I coecae î cascadă. Răspusul la impuls al sisemului se obţie aplicâd rasformaa Laplace iversă fucţiei (.). Dacă ξ se obţie: c c h () = M e e σ () (.4) ude: M = ξ (.5) Peru ξ = se obţie: ω h () = ω e σ () (.6) Peru < ξ < relaţia (.4) devie: h () = Aω ξω e si( ω ) () ξ σ ξ (.7) Fucţiile h () su reprezeae î Figura. peru diverse valori ale lui ξ.

3 Figura. Răspusul la impuls al sisemului de ordiul II rece-jos, peru diverse valori ale lui ξ. O caracerizare uilă a uui sisem ese daă de răspusul său la semalul reapă (răspus idicial), oa s(). Se obţie: c c e e s () = h () σ () = h( τ) dτ = + M σ() c c (.8) dacă ξ şi: s () = ( e e ) σ () (.9) dacă ξ =. Peru < ξ < se obţie: ξω e s ( ) = A si( ω arccos ) ( ) ξ + ξ σ ξ Fucţiile s() su reprezeae î Figura. peru diverse valori ale lui ξ. (.) 3

4 Figura. Răspusul idicial al sisemului de ordiul II rece-jos, peru diverse valori ale lui ξ. Se observă că, î regim supracriic, răspusul idicial preziă supracreşeri şi oscilaţii iar î regim subcriic impul sau de răspus ese lug. 5. Comporarea î domeiul frecveţă a sisemelor de ordiul II rece-jos Răspusul î frecveţă al uui sisem de ordiul II rece-jos se obţie di (.) peru s= jω : H( jω) = (.) ( jω) + ξjω + Diagramele Bode corespuzăoare su prezeae î Figura.3. Se observă că, î regim supracriic caracerisica de modul are u maxim la pulsaţia: dacă ξ <. Peru ξ << se poae cosidera: Maximul ese da de: ω max = ω ξ (.) ωmax ω (.3) H ω = ξ ξ (.4) ( max ) /( ) Peru ξ << se obţie: H ( ωmax ) = ξ (.5) 4

5 Figura.3 Diagramele Bode peru u sisem de ordiul II rece-jos, peru diverse valori ale lui ξ. Dacă log H( ω ) 3dB (.6) max 5

6 auci sisemul se comporă ca u filru rece-badă. Aces lucru se îâmplă peru: 4 8 < ξ =.38 (.7) 8 Î aces caz, bada la 3 db se poae calcula aproximaiv cu relaţia: B = ξ (.8) Se defieşe facorul de caliae al sisemului de ordiul II rece-jos: Q = (.9) ξ 6. Tipuri de siseme de ordiul II rece-jos rece-sus rece-badă opreşe-badă A HTJ () s = ω Re{} s σ s > TJ + ξs+ A s HTS () s = Re{} s σ s > TS + ξs+ A s ξω HTB () s = Re{} s > σ s TB + ξs+ A s HOB () s = Re{} s > σ s OB ( + ) + ξs+ Peru valorile lui σ vezi comeariile ce urmează relaţiei (.3) (.3) (.3) (.3) (.33) 7. Desfăşurarea lucrării Vom folosi geeraor de semal, osciloscop filru: rece jos FTJ led verde; rece bada FTB led porocaliu; filru rece sus FTS led rosu sursa de alimeare (±V) peru filru. Iesirea 5Ω a geeraorului de semal ese coecaa la irarea osciloscopului (caalul ) si la irarea filrului. Iesirea filrului ese vizualizaa pe caalul al osciloscopului. 7. Se deermiă experimeal caracerisicile de frecveţă peru rei ipuri de siseme de ordiul doi (rece jos, rece sus, rece badă). Se masoara caracerisica de ampliudie si de faza peru filre. Daele iiţiale su: Ui = V, ampliudiea semalului de la irare (sau V varf-la-varf) f = 3.4 khz, frecveţa de ăiere a filrului Se compleează abelul de mai jos peru cele rei ipuri de filre: 6

7 f [ khz ] [ V ] Uou Δ T[ s] T[ s ] ϕ [ rad ] Defazajul se calculeaza folosid regula de rei simpla: T s ϕ rad Valorile Δ T[ s] si [ ] Δ [ ].. [ ] T[ s ]. -π ϕ [ rad ] πδt = T T s su ciie folosid cursorul osciloscopului. La fel si U [ ] folosii Δ V peru ca semalul de iesire ese pe caalul!). 7. Se repreziă grafic pe hârie milimerică caracerisicile de ampliudie si faza: Uou [ V] = fucie( kf ) Ui [ V] ϕ rad = fucie kf I oal: 6 grafice. [ ] ( ) ou V (Aeie: 8. Exerciţii î Malab Semal siusoidal =. Să se scrie ilul Graficele g x, pe axa x se scrie, iar pe axa y să se scrie f () şi g(). Să se reprezie grafic fucţiile f () = si ( π 5) şi g( ) f ( ) fucţiilor f ( x ) şi ( ) =:.:. f=si(*pi*5*) g=-f plo(,f,,g,'g'),grid o ile('graficele fuciilor f() si g()') xlabel(''), ylabel('f() si g()') Exerciţiu Să se reprezie grafic fucţia discreă: x( ) = si π, peru [, ]. Graficul să fie de culoare roşie. Să se scrie ilul şi ideificările axelor. Rprezearea se face cu comada sem. Covoluţia semalelor 7

8 Să se calculeze covoluţia liiară îre secveţele: x [ ] δ[ ] δ[ ] δ[ ] h [ ] δ[ ] δ[ ] δ[ ] δ[ 3] = + + şi = Se defieşe covoluţia lor liiară pri: y[ ] = x[ k] h[ k]. k = x=[ ]; h=[ ] disp('rezulaul covoluiei ese:') y=cov(x,h) sem(y) Să se calculeze şi să se reprezie grafic produsul de covoluţie liiară a secveţelor: x= σ σ 5, peru [ ] [ ] [ ] [ ] (,9) h=, peru x=[oes(,5),zeros(,6)]; =:; h=.9.^; y=cov(x,h); subplo(,,),sem(:,x),ile('x'),grid subplo(,,),sem(,h),ile('h'),grid subplo(,,),sem(:legh(y)-,y),ile('y'),grid Exerciţii. Se dau secveţele:, daca =,,,3,4,5 x [ ] =, i res +, daca =,, h [ ] =, i res Calculaţi aaliic y [ ] = x [ ] h [ ], folosid fucţia cov, şi reprezeaţi grafic rezulaul obţiu.. Se dau secveţele:, daca =,, x [ ] =, i res 5-, daca =,,,3,4 h [ ] =, i res Calculaţi aaliic y [ ] = x [ ] h [ ], folosid fucţia cov, şi reprezeaţi grafic rezulaul obţiu. Semale periodice Î MATLAB u se po geera secveţe de lugime ifiiă asfel îcâ rebuie preciza umărul de perioade peru o aumiă secveţă.. x [ ] = peru 5 (3 periode) =:5; x=; figure() sem(,x),grid x=[x,x,x]; figure() 8

9 sem(:(legh(x)-),x),grid Exerciţii Să se defiească şi să se reprezie grafic urmăoarele secveţe:. x [ ] = σ[ ] σ[ 4] peru 5 (5 periode). x [ ] δ[ ] δ[ ] 3 = 3 peru 5 (7 periode) Semale complexe. Să se defiească secveţa complexă: π j 5 x [ ] = e peru Să se reprezie parea pară respeciv impară peru aceasă secveţă. =-:; x=exp(j**pi/5); subplo(,,),sem(,real(x)),ile('real') subplo(,,),sem(,imag(x)),ile('imagiar') Exerciţiu Să se defiească secveţa complexă:. x [ ] ( ) = 3 j peru Să se reprezie parea pară respeciv impară peru aceasă secveţă. Explicaţi rezulaul obţiu î urma comezilor: plo(x) plo(x) 9

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE Elea Chirilă METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE NOTE DE CURS . NOTIUNI DE TEORIA AUTOMATIZARII.. Elemee ip ale sisemelor de reglare auomaa Relaţiile maemaice care exprimă feomeele fizice

Διαβάστε περισσότερα

4. Analiza în timp a sistemelor liniare continue şi invariante

4. Analiza în timp a sistemelor liniare continue şi invariante RA C5 4. Aaliza î im a iemelor liiare coiue şi ivariae Aaliza î im rereziă deermiarea răuului î im a iemelor coiderae, la divere iuri de emale de irare şi deermiarea ricialelor rorieăţi (abiliae, erformaţe

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

METODA OPERATIONALA LAPLACE

METODA OPERATIONALA LAPLACE 5 METODA OPERATIONAA APACE Ace capiol ee axa î pricipal pe aaliza de ip irare-ieşire I-E a iemelor liiare coiue eede cu ajuorul formalimului operaţioal aplace I plu u abordae şi aalizae uele caraceriici

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ Curs 9 Teorema limiă cerală 9 Teorema limiă cerală Euţ Teorema Limiă Cerală TLC) ese ua dire cele mai imporae eoreme di eoria probabiliăţilor Iuiiv, orema afirmă că suma uui umăr mare de v a idepedee,

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

Probleme rezolvate. = 1, frecvenţele: F

Probleme rezolvate. = 1, frecvenţele: F Lăcrimioara GRAMA, Coreliu RUSU, Prelucrarea umerică a semalelor aplicații și probleme, Ed UTPRESS, Cluj-Napoca, Capitolul Semale și secvețe Problema Geerarea uei expoețiale complexe: Se doreşte geerarea

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Matematici Speciale. Conf.Dr. Dana Constantinescu Departamentul de Matematici Aplicate Universitatea din Craiova

Matematici Speciale. Conf.Dr. Dana Constantinescu Departamentul de Matematici Aplicate Universitatea din Craiova Maemaici Seciale CofDr Daa Cosaiescu Dearameul de Maemaici Alicae Uiversiaea di Craiova Curis Ecuaţii difereţiale Cosideraţii geerale 3 Ecuaţii difereţiale de ordiul I 5 Ecuaţii cu variabile searabile

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

INTRODUCERE IN TEORIA SISTEMELOR

INTRODUCERE IN TEORIA SISTEMELOR INTRODUCERE IN TEORIA SISTEMELOR Teoria sisemelor repreziă u asamblu de cocepe cuoşiţe meode şi pricipii idepedee de aplicaţii ecesare şi uile sudiului srucurii proprieăţilor şi caracerisicilor diamice

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS

CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS Capiolul 3 Filre cu răspuns fini la impuls 69 CAPITOLUL 3. FILTRE CU RĂSPUNS INFINIT LA IMPULS 3.. Să se proieceze un FTJ numeric, care lucrează la frecvenţa de eşanionare FS khz, pornind de la filrul

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE

MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE OBIECTIVE Aaliza sistemelor de ordiul doi folosid modele matematice Calculul polilor şi zerourilor fucţiei de trasfer Reducerea schemelor bloc 41 Itroducere Aaliza

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Elementul de întârziere de ordinul doi, T 2

Elementul de întârziere de ordinul doi, T 2 5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule

Διαβάστε περισσότερα

5. Polii şi zerourile funcţiei de transfer

5. Polii şi zerourile funcţiei de transfer 5. Polii şi zerourile fucţiei de rafer 5.. Răpuul la emalul expoeţial Fie iemul m bm ( z ) i= i Y() = G()U() (.), G () =, cu poli impli. a ( p ) j= j λ u u( ) = ue σ Se aplică : ( ), U() =. (5.) λ Se uilizează

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare.

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare. . CONVOLUIA. Sum de covoluie. Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre. [ ] δ [ ] [ ] δ[ ] x x δ[ ] [ ] x x [ ] δ[ ] x x [ ] δ[ ] [ ] δ[ ] [ ] [ ] δ[ ] x x Rspusul sisemelor

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Curs 4 aprilie 2016 Prof.dr.ing Iulian Lupea, UTCluj

Curs 4 aprilie 2016 Prof.dr.ing Iulian Lupea, UTCluj Curs 4 aprilie 016 Prof.dr.ig Iulia Lupea, UTCluj 3. Tablouri de umere complexe calcul putere spectrală bilaterală Fucţia Power Spectrum.vi ( S xx )calculează puterea spectrală bilaterală a şirului de

Διαβάστε περισσότερα

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE 6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI a XI-a A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

FILTRE LC PROIECTATE PE BAZA PARAMETRILOR DE LUCRU

FILTRE LC PROIECTATE PE BAZA PARAMETRILOR DE LUCRU FILTE L POIETATE PE BAZA PAAMETILO DE LUU Obieul lurării Măurăori aupra uor filre L obţiue pri ieă pe baa paramerilor de luru şi aume, abariul aeuării de luru şi reieţele de ermiaţie. Apee eoreie Proiearea

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

PROBLEME PROPUSE- SET4 Controlul interferenţei intersimbol. Criteriile lui Nyquist Transmisiuni codare corelativă.

PROBLEME PROPUSE- SET4 Controlul interferenţei intersimbol. Criteriile lui Nyquist Transmisiuni codare corelativă. PROBLEME PROPUSE- SE4 Cotrolul iterfereţei itersimbol. Criteriile lui Nyquist rasmisiui codare corelativă. Problema Fie modelul adoptat petru trasmisia î bada de bază cu repartizarea filtrării ître emiţător

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

8.4 Circuite rezonante RLC

8.4 Circuite rezonante RLC 8.4 Circuite rezoate RLC Pricipalul rezultat al subcapitolului 8.3: comportarea circuitelor descrisă pri fucţia de răspus la frecveţă. Exemplele studiate au fost circuite simple, cu u sigur elemet reactiv

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

BAREM DE CORECTARE CLASA A IX A

BAREM DE CORECTARE CLASA A IX A ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

6. AMPLIFICATOARE DE RADIOFRECVENŢĂ DE PUTERE

6. AMPLIFICATOARE DE RADIOFRECVENŢĂ DE PUTERE 6 AMPFAOARE DE RADOFREVENŢĂ DE PUERE ervalul e frecveţe îre sue e khz şi MHz se mai umeşe şi omeiul e RaioFrecveţă (RF) Pese MHz îcepe omeiul Frecveţelor Foare Îale (FFÎ) Rezulă că locul Amplificaorului

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A 1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

2.1. Procese si sisteme dinamice. Model.

2.1. Procese si sisteme dinamice. Model. 2. SISTEME DINAMICE 2.. Procee i ieme diamice. Model. U iem ee u aamblu de obiece delimia de mediul îcojurăor prir-o uprafaţă reală au imagiară, aamblu ale cărui elemee e află î ieracţiue şi ervec îdepliirii

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

FIABILITATEA SISTEMELOR INFORMATICE

FIABILITATEA SISTEMELOR INFORMATICE FLOAREA BAICU FIABILITATEA SISTEMELOR INFORMATICE (MODUL DE CURS) Cupris CAPITOLUL Cocepe geerale referioare la fiabiliae.. Defiirea fiabiliăţii.. Obiecive ale fiabiliăţii î ciclul de viaţă al sisemelor.3.

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu

Διαβάστε περισσότερα

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII 7 7 Modulul 6 APLICAŢII DIFERENŢIABILE Subiecte : Derivate şi difereţiale petru fucţii reale de o variabilă reală Formula lui Taylor şi Mac-Lauri petru fucţii de o variabilă reală Serii Taylor 3 Derivate

Διαβάστε περισσότερα

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

REPREZENTAREA MATEMATICA A SISTEMELOR

REPREZENTAREA MATEMATICA A SISTEMELOR EPEZENAEA MAEMAICA A SISEMELO Comporamel i sisem î regim iamic care icle regiml saţioar şi regiml raziori poae fi escris pe baza i moel maemaic, forma i ecaţii algebrice şi i ecaţii ifereţiale oriare sa

Διαβάστε περισσότερα

CULEGERE DE PROBLEME

CULEGERE DE PROBLEME Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

PROBLEME CU PARTEA ÎNTREAGĂ ŞI PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre

Διαβάστε περισσότερα

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan

Dinamica structurilor şi inginerie seismică. Note de curs. Aurel Stratan Dinamica srucurilor şi inginerie seismică Noe de curs Aurel Sraan Timişoara 2009 1. Inroducere 1. Inroducere Dinamica srucurilor are ca obieciv principal elaborarea unor meode de deerminare a eforurilor

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Polinoame Fibonacci, polinoame ciclotomice

Polinoame Fibonacci, polinoame ciclotomice Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice

Διαβάστε περισσότερα

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ]. Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea

Διαβάστε περισσότερα