B A B A A 1 A 2 A N = A i, i=1. i=1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "B A B A A 1 A 2 A N = A i, i=1. i=1"

Transcript

1 Κεφάλαιο 2 Χώρος πιθανότητας και ενδεχόμενα 2.1 Προκαταρκτικά Εστω ότι κάποιος μας προτείνει να του δώσουμε δυόμισι ευρώ για να παίξουμε το εξής παιχνίδι: Θα στρίβουμε ένα νόμισμα μέχρι την πρώτη φορά που θα φέρουμε Κορώνα (Κ), κι όσο πιο αργά συμβεί αυτό, δηλαδή όσο πιο πολλές συνεχόμενες φορές φέρουμε Γράμματα (Γ) στην αρχή, τόσο πιο μεγάλο θα είναι το κέρδος μας: Αν το νόμισμα έρθει Κ στην πρώτη ρίψη, θα μας δώσει ένα ευρώ. Αν έρθει Γ και μετά Κ, θα μας δώσει δύο ευρώ. Γενικά, αν έρθει (n 1) φορές Γ και τη φορά n έρθει Κ, θα πάρουμε n ευρώ. Αμέσως γεννιούνται μερικά προφανή ερωτήματα: Μας συμφέρει να παίξουμε; Πόσο πιθανό είναι να κερδίσουμε πιο πολλά χρήματα από όσα δώσαμε για να παίξουμε; Αν παίξουμε πολλές φορές, τελικά τι είναι πιο πιθανό, να βγούμε κερδισμένοι ή χαμένοι; Είναι «δίκαιη» η τιμή των 2.5 ευρώ; Τι θα πει ακριβώς «δίκαιη» τιμή; Ολα αυτά τα ερωτήματα θα απαντηθούν με συστηματικό τρόπο στα επόμενα κεφάλαια. Προς το παρόν, αυτό που παρατηρούμε είναι η αναγκαιότητα να δώσουμε μια μαθηματική περιγραφή στο πιο πάνω παιχνίδι. Να ορίσουμε, πρώτα από όλα, τι θα πει «πιθανότητα» και να βρούμε τρόπους να υπολογίζουμε ποσοτικά και με ακρίβεια τις απαντήσεις σε ερωτήματα όπως τα πιο πάνω. Αυτό στα μαθηματικά είναι η διαδικασία κατά την οποία περιγράφουμε ένα πραγματικό φαινόμενο μέσω ενός μαθηματικού «μοντέλου». Σε κάποιες περιπτώσεις, αυτή η διαδικασία μάς είναι τόσο οικεία που ούτε καν της δίνουμε σημασία για παράδειγμα, όταν βλέπουμε σε ένα χάρτη 7

2 8 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ μια ευθεία γραμμή να αναπαριστά ένα δρόμο, δεν σκεφτόμαστε «Α, βέβαια, εδώ επικαλούμαι την προσεγγιστική αναπαράσταση ενός μέρους της επιφάνειας του πλανήτη Γη μέσω του μοντέλου της επίπεδης γεωμετρίας»! Η μοντελοποίηση φαινομένων που περιέχουν στοιχεία τυχαιότητας, και η εξοικείωση με αυτήν τη διαδικασία αποτελούν δύο από τους κεντρικούς μας στόχους. Αν και δεν είναι ο μόνος, μάλλον ο πιο συνηθισμένος τρόπος για να προσεγγίσουμε κατ αρχήν διαισθητικά την έννοια της πιθανότητας είναι μέσω της έννοιας της «συχνότητας». Π.χ., αν στρίψουμε ένα «δίκαιο» νόμισμα N φορές και φέρουμε k φορές Κορώνα (Κ), για μεγάλα N συχνά παρατηρούμε ότι, k N = ποσοστό από Κ 1 2 ή 50%. Και όσο μεγαλώνει το πλήθος N των ρίψεων, αντιστοίχως μεγαλώνει και το πλήθος k των φορών που φέραμε Κ, έτσι ώστε, μακροπρόθεσμα, k N 1, καθώς το N. 2 Υπό αυτή την έννοια, λέμε ότι «η πιθανότητα το νόμισμα να έρθει Κ είναι 1/2». 2.2 Σύνολα Ενα μεγάλο μέρος του μαθηματικού λεξιλογίου που θα χρησιμοποιήσουμε βασίζεται στα βασικά στοιχεία της θεωρίας συνόλων. Ξεκινάμε υπενθυμίζοντας κάποιος γνωστούς ορισμούς: Ορισμός 2.1 (Πράξεις συνόλων) 1. Ενα σύνολο είναι μια συλλογή στοιχείων. Για παράδειγμα, τα = { 1, +1}, = {3, 5, 9}, Γ = Z = {..., 1, 0, 1, 2,...} = οι ακέραιοι αριθμοί, = R = οι πραγματικοί αριθμοί, E = {,, 5, {5}, R} είναι όλα σύνολα. 2. Οταν κάποιο στοιχείο α ανήκει σε κάποιο σύνολο, γράφουμε α. Αν το α δεν ανήκει στο, γράφουμε α. Π.χ., πιο πάνω έχουμε, 3, αλλά, Το είναι υποσύνολο του αν κάθε στοιχείο του ανήκει και στο, οπότε γράφουμε ή. 4. Το κενό σύνολο ή {} έχει την ιδιότητα ότι δεν περιέχει κανένα στοιχείο, δηλαδή α για οποιοδήποτε α. Στις πιθανότητες, ανάλογα με το πρόβλημα που θα εξετάζουμε, όλα τα σύνολα που μας ενδιαφέρουν θα είναι υποσύνολα ενός βασικού συνόλου, το οποίο συνήθως συμβολίζεται ως Ω.

3 2.2. ΣΥΝΟΛΑ 9 5. Η ένωση δύο συνόλων, είναι το σύνολο που αποτελείται από όλα τα στοιχεία που ανήκουν στο ή στο (ή και στα δύο). Γενικότερα, η ένωση ενός πεπερασμένου πλήθους συνόλων 1, 2,..., N συμβολίζεται ως, 1 2 N = N i, και περιέχει όλα τα στοιχεία του 1, τα στοιχεία του 2 κλπ. Βλ. Σχήμα Η τομή δύο συνόλων, είναι το σύνολο που αποτελείται από όλα τα στοιχεία που ανήκουν και στο και στο. Γενικότερα, η τομή ενός πεπερασμένου πλήθους συνόλων 1, 2,..., N συμβολίζεται ως, 1 2 N = i=1 N i, και αποτελείται από τα στοιχεία που περιέχονται σε όλα τα i. Βλ. Σχήμα Το συμπλήρωμα ενός συνόλου που είναι υποσύνολο του βασικού συνόλου Ω, αποτελείται από όλα τα στοιχεία του Ω που δεν ανήκουν στο. Βλ. Σχήμα 2.1. i=1 Σχήμα 2.1: Γραφική αναπαράσταση της ένωσης, της τομής και του συμπληρώματος συνόλων. Παράδειγμα 2.1 Εστω Ω το σύνολο όλων των δυνατών αποτελεσμάτων από τη ρίψη δύο νομισμάτων, δηλαδή, Ω = {KK, KΓ, ΓK, ΓΓ}. Η περίπτωση του να φέρουμε Κ την πρώτη φορά μπορεί να περιγραφεί ως το σύνολο, = {Κ την πρώτη φορά} = {KK, KΓ}, το οποίο είναι ένα υποσύνολο του Ω. Παρατηρούμε ότι το μπορεί και να εκφραστεί ως, = {KK} {KΓ} = {ΓΓ, ΓK} = Ω.

4 10 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ Παράδειγμα 2.2 Από 50 φοιτητές που βρίσκονται σε μια αίθουσα, οι 20 έχουν αυτοκίνητο, οι 10 έχουν μοτοσυκλέτα, και οι 25 δεν έχουν κανένα από τα δύο. Επιλέγουμε έναν φοιτητή στην τύχη. Εδώ μπορούμε να ορίσουμε τα εξής σύνολα. Βλ. Σχήμα 2.2. Ω = Ολοι οι 50 φοιτητές = Οσοι έχουν αυτοκίνητο M = Οσοι έχουν μοτοσυκλέτα E = Οσοι έχουν τουλάχιστον το ένα από τα δύο μέσα = Οσοι έχουν και τα δύο. Θα απαντήσουμε στα εξής απλά ερωτήματα: (α ) Πόσοι φοιτητές είναι στο E; (β ) Πόσοι φοιτητές είναι στο ; (γ ) Ποια είναι η πιθανότητα ο επιλεγμένος φοιτητής να έχει αυτοκίνητο; M Σχήμα 2.2: Γραφική αναπαράσταση των συνόλων στο Παράδειγμα 2.2. Για το (α ), εφόσον είναι 50 συνολικά οι φοιτητές, δηλαδή το πλήθος των στοιχείων του Ω ισούται με 50, #Ω = 50, και αφού μας δίνεται ότι 25 φοιτητές δεν έχουν ούτε αυτοκίνητο ούτε μοτοσυκλέτα, εύκολα υπολογίζουμε ότι, #E = #{όσοι έχουν τουλάχιστον το ένα από τα δύο} = #[{όσοι δεν έχουν κανένα από τα δύο} ] = = 25, όπου πιο πάνω και σε ολόκληρο το βιβλίο, χρησιμοποιούμε τον συμβολισμό # για το πλήθος των στοιχείων ενός οποιουδήποτε συνόλου.

5 2.2. ΣΥΝΟΛΑ 11 Για το (β ), από τη γραφική αναπαράσταση στο Σχήμα 2.2, παρατηρούμε πως, #( M) = # + #M #, όπου αφαιρούμε τα στοιχεία του συνόλου για να μη μετρηθούν δύο φορές. Παρατηρούμε επίσης ότι M = E και #E = 25 από το (α ), ενώ μας δίνεται και ότι # = 20 και #M = 10, άρα, # = = 5. [Παρένθεση. Αν και δεν έχουμε ακόμα ορίσει την έννοια της πιθανότητας, μπορούμε να προσεγγίσουμε το ερώτημα (γ ) διαισθητικά. Εφόσον η επιλογή του φοιτητή είναι τυχαία, η ζητούμενη πιθανότητα «ο επιλεγμένος φοιτητής να έχει αυτοκίνητο», δηλαδή η πιθανότητα να επιλέξουμε από όλο το Ω έναν φοιτητή που να είναι στο σύνολο, λογικά μπορεί να υπολογιστεί ως η πιθανότητα του «ο επιλεγμένος φοιτητής να ανήκει στο», δηλαδή, # #Ω = = 2 5 = 0.4 = 40%.] Συμβολισμός. Οπως θα δούμε στην επόμενη ενότητα, οποιαδήποτε ενδεχομένη έκβαση ενός τυχαίου πειράματος είτε αυτή περιγράφεται περιφραστικά, π.χ., «ο επιλεγμένος φοιτητής να έχει αυτοκίνητο», είτε ως κάποιο υποσύνολο του Ω όπως πιο πάνω συχνά αναφέρεται απλά ως ένα ενδεχόμενο. Η πιθανότητα οποιουδήποτε ενδεχομένου μάς ενδιαφέρει σε κάποιο πρόβλημα συμβολίζεται ως Pr, από το αγγλικό «probability» που σημαίνει πιθανότητα. Παράδειγμα 2.3 Ρίχνουμε ένα «δίκαιο» νόμισμα 2 φορές. Εδώ το σύνολο όλων των δυνατών αποτελεσμάτων είναι το, Ω = {KK, KΓ, ΓK, ΓΓ}. Εστω το ενδεχόμενο του να έρθει Κ την πρώτη φορά, και το ενδεχόμενο να έρθει το ίδιο αποτέλεσμα δύο φορές, δηλαδή, = {KK, KΓ} = {KK, ΓΓ}. KK Σχήμα 2.3: Σχηματική αναπαράσταση των συνόλων στο Παράδειγμα 2.3.

6 12 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ [Παρένθεση. Και πάλι, αν και δεν έχουμε ακόμα ορίσει την έννοια της πιθανότητας, διαισθητικά μπορούμε να κάνουμε κάποιους απλούς υπολογισμούς. Παρατηρούμε ότι, εφόσον το νόμισμα είναι δίκαιο, είναι λογικό να υποθέσουμε ότι καθένα από τα τέσσερα δυνατά αποτελέσματα (που αντιστοιχούν στα 4 στοιχεία του Ω) έχουν την ίδια πιθανότητα, δηλαδή 1/4. Άρα υπολογίζουμε εύκολα τις πιθανότητες, για παράδειγμα, των εξής ενδεχομένων: Pr({Κ την 1η φορά}) = Pr() = Pr({KK, KΓ}) = # = 2/4 = 1/2, #Ω Pr({δύο φορές το ίδιο}) = Pr() = Pr({KK, ΓΓ}) = # = 2/4 = 1/2, #Ω Pr({δύο φορές Κ})) = Pr({KK}) = #{KK} #Ω = 1/4, και παρομοίως, η πιθανότητα να φέρουμε δύο φορές Γ είναι κι αυτή 1/4.] 2.3 Χώρος πιθανότητας και ενδεχόμενα Ορισμός 2.2 (Χώρος πιθανότητας και ενδεχόμενα) 1. Ο χώρος πιθανότητας ή δειγματικός χώρος Ω είναι το σύνολο όλων των δυνατών αποτελεσμάτων ενός τυχαίου πειράματος. 2. Οποιοδήποτε υποσύνολο Ω του χώρου πιθανότητας Ω ονομάζεται ενδεχόμενο. 3. Τα ενδεχόμενα που αποτελούνται από ένα μόνο στοιχείο, δηλαδή τα υποσύνολα Ω της μορφής = {ω} για κάποιο ω Ω, λέγονται στοιχειώδη ενδεχόμενα. 4. Δύο ενδεχόμενα, είναι ξένα όταν δεν έχουν κανένα κοινό στοιχείο, δηλαδή αν και μόνο αν, =. Διαισθητικά, τα, είναι ξένα αν είναι αδύνατον να συμβούν συγχρόνως. Παρατηρήσεις 1. Ο χώρος πιθανότητας μπορεί πάντα να εκφραστεί ως η ένωση τόσων στοιχειωδών ενδεχομένων όσα τα στοιχεία που περιέχει. Π.χ., αν Ω = {ω 1, ω 2,..., ω N }, τότε, Ω = {ω 1 } {ω 2 } {ω N }. Και γενικότερα, κάθε ενδεχόμενο μπορεί να εκφραστεί ως ένωση τόσων στοιχειωδών ενδεχομένων όσα τα στοιχεία που περιέχει. Επίσης σημειώνουμε πως δύο οποιαδήποτε στοιχειώδη ενδεχόμενα {ω 1 } και {ω 2 } είναι ξένα μεταξύ τους αρκεί, βεβαίως, να μην είναι τα ίδια, δηλαδή το στοιχείο ω 1 να είναι διαφορετικό απ το ω 2.

7 2.3. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ Στο πιο πάνω παράδειγμα της ρίψης δύο δίκαιων νομισμάτων, ο χώρος πιθανότητας ήταν Ω = {KK, KΓ, ΓK, ΓΓ} και εξετάσαμε τα ενδεχόμενα = {KK, KΓ} και = {KK, ΓΓ}, τα οποία μπορούν να εκφραστούν ως ενώσεις στοιχειωδών ενδεχομένων: = {KK} {KΓ}, = {KK} {ΓΓ}. Παρατηρούμε ότι έχουμε τις πιθανότητες (όπως υπολογίστηκαν πιο πάνω), Pr() = 1/2, Pr({KK}) = 1/4, και (Pr{KΓ}) = 1/4. Άρα έχουμε τις «παράλληλες» σχέσεις: = {KK} {KΓ} και Pr() = Pr({KK}) + Pr({KΓ}). Αργότερα θα δούμε πως, όταν κάποιο ενδεχόμενο μπορεί να εκφραστεί ως ένωση δύο άλλων ενδεχομένων = Γ, η μόνη περίπτωση κατά την οποία μπορούμε να είμαστε βέβαιοι ότι θα ισχύει και η αντίστοιχη σχέση για τις πιθανότητες, Pr() = Pr() + Pr(Γ) είναι όταν τα, Γ είναι ξένα. 3. Οταν ένα ενδεχόμενο περιγράφει την περίπτωση να συμβεί κάποιο γεγονός που μας ενδιαφέρει (π.χ. αν το είναι το ενδεχόμενο του να φέρουμε την πρώτη φορά Κ ρίχνοντας ένα νόμισμα), τότε το συμπλήρωμά του περιγράφει το αντίθετο γεγονός, δηλαδή την περίπτωση να μη συμβεί το (π.χ, πιο πάνω το αντιστοιχεί στο να φέρουμε την πρώτη φορά Γ). Παρομοίως, η ένωση δύο ενδεχομένων, είναι το ενδεχόμενο του να συμβεί το ή το Β, και η τομή τους περιγράφει το ενδεχόμενο του να συμβούν και τα δύο. Τέλος, παραθέτουμε κάποιες βασικές σχέσεις που ικανοποιούν οι πράξεις της ένωσης, της τομής και του συμπληρώματος συνόλων. Για οποιαδήποτε υποσύνολα,, Γ του Ω, έχουμε: = Ω 3. = 4. ( Γ) = ( ) ( Γ) 5. ( Γ) = ( ) ( Γ) 6. ( ) = 7. ( ) =. Κλείνουμε αυτό το κεφάλαιο με ένα ενδιαφέρον παράδειγμα το οποίο, αν και απλό, αν δεν το έχετε ξαναδεί, ίσως σας κινήσει ιδιαίτερα το ενδιαφέρον.

8 14 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ Παράδειγμα 2.4 (Παιχνίδι Monty Hall) Σε ένα τηλεπαιχνίδι ο διαγωνιζόμενος επιλέγει μία από τρεις κουρτίνες, αφού του πουν πως μία από αυτές κρύβει ένα δώρο και οι άλλες δύο δεν κρύβουν τίποτα (χωρίς, φυσικά, να του πουν πού είναι το δώρο). Αφού διαλέξει, ο παρουσιαστής τού ανοίγει μία από τις άλλες δύο κουρτίνες, του δείχνει ότι εκεί δεν υπάρχει τίποτα, και δίνει στον διαγωνιζόμενο τη δυνατότητα να κρατήσει την αρχική του κουρτίνα ή να διαλέξει την άλλη κουρτίνα της οποίας το περιεχόμενο παραμένει κρυφό. Ο διαγωνιζόμενος επιλέγει, και το παιχνίδι τελειώνει, είτε με νίκη του διαγωνιζόμενου (αν το δώρο βρίσκεται πίσω από την κουρτίνα της τελικής του επιλογής), είτε με ήττα του διαγωνιζόμενου (αν το δώρο δεν βρίσκεται πίσω από την κουρτίνα που επέλεξε). Πώς μπορούμε να περιγράψουμε το χώρο πιθανότητας; Υπάρχουν διάφοροι τρόποι να περιγραφούν όλες οι δυνατές εκβάσεις του παιχνιδιού. Μια επιλογή είναι η ακόλουθη. Εστω πως ονομάζουμε κουρτίνα την κουρτίνα όπου βρίσκεται το δώρο, και κουρτίνες, τις άλλες δύο. Μπορούμε να περιγράψουμε τα αποτελέσματα ως τριάδες της μορφής (X, X, X), όπου τα X παίρνουν τιμές, ή, και το πρώτο στοιχείο δείχνει την επιλογή του διαγωνιζόμενου, το δεύτερο την κουρτίνα που αποκαλύφθηκε, και το τρίτο την κουρτίνα που επέλεξε τελικά ο διαγωνιζόμενος. Προφανώς υπάρχουν 3 επιλογές για το πρώτο στοιχείο. Αλλά για το δεύτερο στοιχείο υπάρχουν 2 επιλογές αν ο διαγωνιζόμενος έχει αρχικά επιλέξει την κουρτίνα με το δώρο, ενώ υπάρχει μόνο μία αν ο διαγωνιζόμενος έχει επιλέξει κενή κουρτίνα. Για το τρίτο στοιχείο, υπάρχουν πάντα δύο επιλογές. Ο αντίστοιχος χώρος πιθανότητας Ω περιέχει τις 8 δυνατές τριάδες (X, X, X) και έχει σχεδιαστεί στο Σχήμα 2.4. Ω (,, ) (,, ) * (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) * * * Σχήμα 2.4: Ο χώρος πιθανότητας του Παραδείγματος 2.4. Στο πρώτο βήμα ο διαγωνιζόμενος επιλέγει μία κουρτίνα, στο δεύτερο ο παρουσιαστής ανοίγει μία από τις άλλες δύο, και στο τρίτο ο διαγωνιζόμενος αλλάζει αν θέλει την επιλογή του. Τα τέσσερα αποτελέσματα που αντιστοιχούν σε «νίκη» είναι σημειωμένα με.

9 2.3. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ 15 Αν θέλουμε τώρα να ορίσουμε, π.χ., το ενδεχόμενο N =«ο παίκτης κέρδισε το δώρο», παρατηρούμε πως τα αποτελέσματα που καταλήγουν σε νίκη για τον διαγωνιζόμενο είναι εκείνα που έχουν τελευταίο στοιχείο το, δηλαδή, N = {,,, }. Σημείωση. Αυτό το παιχνίδι ήταν επί χρόνια τηλεπαιχνίδι στην Αμερική, γνωστό με το όνομα «Monty Hall». Τα βασικό ερώτημα, το οποίο θα εξετάσουμε αργότερα, είναι, «Ποια είναι η πιο συμφέρουσα στρατηγική για τον παίκτη να κρατήσει την αρχική του κουρτίνα ή να αλλάξει;»

10 16 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ 2.4 Ασκήσεις 1. Τυχαία παιδιά. Εστω πως εκτελείται το ακόλουθο πείραμα: Ενα ζευγάρι κάνει n παιδιά, καθένα εκ των οποίων μπορεί να είναι αγόρι ή κορίτσι. Περιγράψτε το χώρο πιθανότητας αυτού του πειράματος. 2. Κι άλλα τυχαία παιδιά. Εστω πως εκτελείται το ακόλουθο πείραμα: Ενα ζευγάρι κάνει παιδιά επ άπειρο, μέχρι να κάνει το πρώτο κορίτσι, και μετά σταματάει. Περιγράψτε το χώρο πιθανότητας αυτού του πειράματος. 3. Δύο διαδοχικές ζαριές. Ρίχνουμε ένα ζάρι 2 φορές και καταγράφουμε τα δύο αποτελέσματα με τη σειρά που ήρθαν. (αʹ) Ποιος είναι ο χώρος πιθανότητας Ω; (βʹ) Περιγράψτε τα ακόλουθα ενδεχόμενα ως υποσύνολα του Ω: i. =«Ζάρι 1 = Ζάρι 2» (δηλαδή διπλές) ii. =«Άθροισμα 4» iii. =«Πρώτο ζάρι 4» iv. D =«Άθροισμα 7» v. E =«Δεύτερο ζάρι 5» 4. Υπάρχουν και περίεργοι χώροι πιθανότητας. Εστω πως ρίχνουμε ένα βελάκι σε ένα στόχο με σχήμα κύκλου, και ακτίνα 20 cm. Αν πετύχουμε το στόχο το βελάκι μένει καρφωμένο, και αν αστοχήσουμε το βελάκι πέφτει στο πάτωμα και το κλέβει ο σκύλος μας. Ορίστε το χώρο πιθανότητας Ω ώστε να περιγράφει όλα τα δυνατά αποτελέσματα, δηλαδή όλες τις θέσεις στις οποίες μπορεί να καταλήξει το βελάκι μας, συμπεριλαμβανομένου του στόματος του σκύλου! 5. Δύο ταυτόχρονες ζαριές. Λύστε την Άσκηση 3, υποθέτοντας πως τα ζάρια ρίχνονται ταυτόχρονα, και δεν είμαστε σε θέση να τα ξεχωρίζουμε μεταξύ τους. 6. Τρία νομίσματα. Ρίχνουμε τρία νομίσματα. Περιγράψτε το χώρο πιθανότητας Ω του πειράματος και τα ενδεχόμενα =«τρεις φορές το ίδιο αποτέλεσμα», =«τις πρώτες δύο φορές Γράμματα», =«περισσότερες Κορώνες από Γράμματα», ως υποσύνολα του Ω. 7. Άσπρες και μαύρες μπάλες. Ενα κουτί περιέχει μία άσπρη μπάλα και 3 πανομοιότυπες μαύρες μπάλες. (αʹ) Επιλέγουμε μια μπάλα στην τύχη και χωρίς να την ξαναβάλουμε στο κουτί επιλέγουμε άλλη μία (δηλαδή έχουμε επιλογή χωρίς επανατοποθέτηση). Περιγράψτε το χώρο πιθανότητας Ω 1 αυτού του πειράματος.

11 2.4. ΑΣΚΗΣΕΙΣ 17 (βʹ) Αν η επιλογή άσπρης μπάλας μάς δίνει κέρδος 10 ευρώ και η επιλογή μαύρης μπάλας μάς δίνει κέρδος 5 ευρώ, περιγράψτε το ενδεχόμενο συνολικά στις δύο επιλογές να κερδίσουμε 10 ευρώ. (γʹ) Αν, αφού επιλέξουμε την πρώτη μπάλα, την ξαναβάλουμε στο κουτί πριν επιλέξουμε τη δεύτερη, έχουμε επιλογή με επανατοποθέτηση, και προκύπτει ένα διαφορετικό πείραμα. Περιγράψτε το χώρο πιθανότητας Ω 2 αυτού του πειράματος, και το ενδεχόμενο συνολικά στις δύο επιλογές να κερδίσουμε 15 ευρώ. 8. Λειτουργία δικτύου. Εστω τα ενδεχόμενα =«Σήμερα θα πέσει το δίκτυο», =«Σήμερα είναι εργάσιμη μέρα», =«Σήμερα ο τεχνικός είναι στο εργαστήριο». Να εκφραστούν τα πιο κάτω ενδεχόμενα ως σύνολα, συναρτήσει των συνόλων,, : (αʹ) D =«Σήμερα θα πέσει το δίκτυο και είναι εργάσιμη μέρα» (βʹ) E =«Σήμερα είναι αργία και θα πέσει το δίκτυο» (γʹ) F =«Σήμερα θα πέσει το δίκτυο, είναι εργάσιμη, και ο τεχνικός δεν είναι στο εργαστήριο» (δʹ) G =«Σήμερα ή θα πέσει το δίκτυο και είναι αργία, ή θα πέσει το δίκτυο και ο τεχνικός είναι στο εργαστήριο, ή δεν θα πέσει το δίκτυο» 9. Απλά διαγράμματα ενδεχομένων. Στα τρία διαγράμματα του Σχήματος 2.5, να σκιαστούν (αντιστοίχως) τα τρία ενδεχόμενα, ( ), ( ) D. D Σχήμα 2.5: Άσκηση Τρεις ζαριές. Ρίχνουμε ένα ζάρι 3 φορές. Περιγράψτε το χώρο πιθανότητας Ω και τα ενδεχόμενα: =«Την 1 η και 3 η φορά ήρθε 6», =«την 1 η φορά ήρθε 1 και τη 2 η και 3 η φορά ήρθε το ίδιο αποτέλεσμα» και =«τρεις φορές ήρθε το ίδιο ζυγό αποτέλεσμα».

12 18 ΚΕΦΑΛΑΙΟ 2. ΧΩΡΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΕΝΔΕΧΟΜΕΝΑ 11. Σταθερά και κινητά τηλέφωνα. Ενα δίκτυο τηλεφωνίας αποτελείται από 400 σταθερά τηλέφωνα και 50 κινητά. Επιλέγουμε δύο τηλέφωνα στην τύχη, όπου στην 2 η επιλογή δεν επιτρέπουμε να επιλεγεί το ίδιο τηλέφωνο με την 1 η : Περιγράψτε το χώρο πιθανότητας. Επιπλέον, αν η επιλογή σταθερού τηλεφώνου έχει κόστος 1 ευρώ και η επιλογή κινητού 5 ευρώ, περιγράψτε τα ενδεχόμενα Α =«συνολικά οι 2 επιλογές κόστισαν 6 ευρώ» και Β =«συνολικά οι 2 επιλογές κόστισαν 11 ευρώ». 12. Το πρόβλημα των τριών φυλακισμένων. Σε μια φυλακή, ο διευθυντής αποφασίζει να απονείμει χάρη σε έναν από τους τρεις φυλακισμένους (η φυλακή είναι μικρή!) και να εκτελέσει τους άλλους δύο. Ενας από τους τρεις φυλακισμένους ζητά από τον δεσμοφύλακα να του αποκαλύψει ποιος από τους άλλους δύο κρατούμενους θα εκτελεστεί, με τη λογική ότι υπάρχει πάντοτε κάποιος τέτοιος. Ο δεσμοφύλακας το κάνει, και κατόπιν του παρέχει τη δυνατότητα να αλλάξει θέση με αυτόν του οποίου την τύχη δεν αποκάλυψε. Ο φυλακισμένος έχει την επιλογή να δεχθεί ή να αρνηθεί. Να περιγράψετε το χώρο πιθανότητας αυτού του τυχαίου πειράματος. 13. Monty Hall 2. Επαναλάβετε το Παράδειγμα 2.4 με την ακόλουθη τροποποίηση: Οι κουρτίνες έχουν πάρει το όνομά τους πριν τοποθετηθεί το δώρο, και έτσι τα αποτελέσματα είναι τετράδες, αντί για τριάδες. 14. Monty Hall 3. Επαναλάβετε το Παράδειγμα 2.4 με την ακόλουθη τροποποίηση: Ο διαγωνιζόμενος δεν αλλάζει ποτέ κουρτίνα. 15. Monty Hall 4. Επαναλάβετε το Παράδειγμα 2.4 με την ακόλουθη τροποποίηση: Ο διαγωνιζόμενος αλλάζει πάντα κουρτίνα.

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Γιάννης Κοντογιάννης Σταύρος Τουμπής ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Γιάννης Κοντογιάννης Σταύρος Τουμπής ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΤΗΝ

Διαβάστε περισσότερα

Λύσεις 1ης Ομάδας Ασκήσεων

Λύσεις 1ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,

Διαβάστε περισσότερα

#(A B) = (#A)(#B). = 2 6 = 1/3,

#(A B) = (#A)(#B). = 2 6 = 1/3, Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.

Διαβάστε περισσότερα

X i = Y = X 1 + X X N.

X i = Y = X 1 + X X N. Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

36 = Pr(B) = Pr(Γ E) = Pr(Γ) Pr(E) = = Pr(B) = Pr(B Γ) Pr(B) Pr(Γ) = 1 6. Pr(A B) = Pr(A) Pr(B).

36 = Pr(B) = Pr(Γ E) = Pr(Γ) Pr(E) = = Pr(B) = Pr(B Γ) Pr(B) Pr(Γ) = 1 6. Pr(A B) = Pr(A) Pr(B). Κεφάλαιο 5 Ανεξαρτησία και δεσμευμένη πιθανότητα Ας πούμε πως ένας μετεωρολόγος μάς πληροφορεί ότι, με βάση τα ιστορικά στατιστικά στοιχεία του καιρού στην Αθήνα, βρέχει μία στις 9 μέρες. Αν για κάποιο

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

Λύσεις 4ης Ομάδας Ασκήσεων

Λύσεις 4ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. Ζυγοβίστι Λύσεις 4ης Ομάδας Ασκήσεων Τμήμα Α Λ αʹ Το συνολικό πλήθος των τερμάτων που θα σημειωθούν είναι X + Y, και η μέση

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή: Αβεβαιότητα Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 0 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή: Αβεβαιότητα 9 Οκτωβρίου 0 / 5 Ανάγκη θεωρίας επιλογής υπό αβεβαιότητα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

Λύσεις 2ης Ομάδας Ασκήσεων

Λύσεις 2ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. (Μπάλες Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ (αʹ Έστω A το ενδεχόμενο να επιλέξουμε τουλάχιστον μια άσπρη μπάλα. Θα υπολογίσουμε

Διαβάστε περισσότερα

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία Κεφάλαιο 1 Πιθανότητες 1.1 Δειγματικός χώρος - Ενδεχόμενα 1.1.1 Κατανόηση εννοιών - Θεωρία 1. Ποιό πείραμα λέγεται αιτιοκρατικό και ποιό πείραμα τύχης; 2. Τι ονομάζουμε δειγματικό χώρο ενός πειράματος

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ασκηση 1. (αʹ) Αν συµβολίσουµε µε Λ τη λάθος απάντηση

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες

Διαβάστε περισσότερα

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής:

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής: Άσκηση 1: Ένα κουτί περιέχει 3 άσπρες και 2 μαύρες μπάλες. Αφαιρούμε τυχαία δύο μπάλες διαδοχικά. Ποια η πιθανότητα η πρώτη μπάλα να είναι άσπρη και η δεύτερη μπάλα να είναι μαύρη; Λύση: Αρχικά ορίζουμε

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο

Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο Τίτλοσ βιβλίου «Θεωρία Πιθανοτήτων και Στατιςτική Επιχειρήςεων» ςυγγραφείσ, Παπαδόγγονασ Θ. και Φιλιππάκησ Μιχαήλ, εκδόςεισ τςότρασ, Κωδικόσ Βιβλίου ςτον Εφδοξο:

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π ι θ α ν ό τ η τ ε ς : Ο τομέας των Εφαρμοσμένων Μαθηματικών, που ασχολείται με την αξιολόγηση κατάλληλων στοιχείων έτσι ώστε να είναι μετρήσιμη η προσδοκία μας για την πραγματοποίηση

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ 1 1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Ασκήσεις σχ. βιβλίου σελίδας 26 28 Α ΟΜΑΔΑΣ 1. Ένα κουτί έχει τρεις μπάλες, μια άσπρη, μια μαύρη και μια κόκκινη. Κάνουμε το εξής πείραμα : παίρνουμε από το κουτί μια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Y = X 1 + X X N = X i. i=1

Y = X 1 + X X N = X i. i=1 Κεφάλαιο 7 Διακριτές κατανομές Στο προηγούμενο κεφάλαιο είδαμε πως η έννοια της τυχαίας μεταβλητής Τ.Μ., δηλαδή μιας τυχαίας ποσότητας X που προσδιορίζεται από το σύνολο τιμών της S και την πυκνότητά της

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-16 ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: α) Να γεννηθούν δύο κορίτσια και ένα αγόρι σε τρεις

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 1: Στοιχεία Πιθανοθεωρίας Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Τυχαία Μεταβλητή (Random variable-variable aléatoire) Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα)

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα) Πιθανότητες & Στατιστική Μέρος I. Εισαγωγή στις Πιθανότητες. 3 βασικές έννοιες Τυχαία Πειράματα (φαινόμενα) Δειγματικός χώρος Ενδεχόμενα Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής,

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι- Υποστόχοι- Δραστηριότητες Ασημίνα Ασβεστά, Κωνσταντίνα Ζαχαροπούλου, Σοφία Αιζενμπαχ Πείραμα Τύχης Πιθανότητα Ενδεχομένου ΠΕΙΡΑΜΑ ΤΥΧΗΣ Α Β Γ Δ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Ιανουάριος 2014 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Σειρά Θέμα Ι (ΟΛΑ) Θέμα ΙΙ (2 από τα 3) Βαθμός /1 /1 /1 /1 /1 /2,5 /2,5 /2,5 /10 ΘΕΜΑ Ι: Ασχοληθείτε και με τα πέντε ερωτήματα.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων

Διαβάστε περισσότερα

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a) Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

Εισαγωγή στη διακριτή πιθανότητα

Εισαγωγή στη διακριτή πιθανότητα Κεφάλαιο 11 Εισαγωγή στη διακριτή πιθανότητα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Ross 1976, Grinstead and Snell 2012 και Hoel, Port, and Stone 1971. 11.1 Πειράματα 11.1.1 Ρίψη

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8 Λύσεις του τέταρτου φυλλαδίου ασκήσεων 2 2 = 8 Ίδια Ρίχνουμε ένα νόμισμα τρεις φορές και θεωρούμε το ενδεχόμενο να προκύψουν και οι δυο όψεις του νομίσματος καθώς

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 07-May-18 1 1 Θεωρία πιθανοτήτων 07-May-18 2 2 Τι είδαμε την προηγούμενη φορά Μία τυχαία μεταβλητή Vείναι κάθε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 1.1 Δειγματικός χώρος Ενδεχόμενα i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Προσδιορίζουν το δειγματικό χώρο ενός πειράματος τύχης και ενδεχόμενα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα