SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM"

Transcript

1 Electronc Journal of Dfferental Equaton, Vol. 88, No. 96, pp. 5. ISSN: URL: or ftp ejde.math.txtate.edu logn: ftp SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM YUJI LIU Abtract. In th artcle, we tudy fve non-homogeneou mult-pont boundary-value problem BVP of econd order dfferental equaton wth the onedmenonal p-laplacan. Thee problem have a common equaton n dfferent functon doman and dfferent boundary condton. We fnd condton that guarantee the extence of at leat three potve oluton. The reult obtaned generalze everal known one and are llutrated by example. It alo hown that the approach for gettng three potve oluton by ung mult-fxed-pont theorem can be extended to nonhomogeneou BVP. The empha on the nonhomogeneou boundary condton and the nonlnear term nvolvng frt order dervatve of the unknown. Some open problem are alo propoed.. Introducton Mult-pont boundary-value problem BVP for econd order dfferental equaton wthout p-laplacan have receved a wde attenton becaue of ther potental applcaton and BVP are facnatng and challengng feld of tudy, one may ee the textbook by Ge [4]. There are four clae of uch BVP ncludng ther pecal cae tuded n known paper: x t ft, xt, x t =, t,, x = α xξ, x = β xξ, x t ft, xt, x t =, t,, x = α x ξ, x = β xξ,.. Mathematc Subject Clafcaton. 34B, 34B5, 35B. Key word and phrae. Second order; p-laplacan; potve oluton; mxed type mult-pont boundary-value problem. c 8 Texa State Unverty - San Marco. Submtted March 3, 8. Publhed July 5, 8. Supported by grant 6JJ58 from the Natural Scence Foundaton of Hunan provnce and grant from the Natural Scence Foundaton of Guangdong provnce, Chna.

2 Y. LIU EJDE-8/96 and x t ft, xt, x t =, t,, x = α xξ, x = β x ξ, x t ft, xt, x t =, t,, x = α x ξ, x = β x ξ,.3.4 where < ξ < < ξ m <, α, β R and f a contnuou functon. The man method to get oluton or multple potve oluton of thee BVP are a follow: fxed pont ndex theory [7, 8, 63, 64], or fxed pont theorem n cone n Banach pace [5, 7, 5, 35, 4, 4, 46], uch a the Guo-Kranoelk fxed-pont theorem [3, 44, 48, 5, 53, 57]; Leggett-Wllam theorem [33, 36, 5], the fvefunctonal fxed pont theorem []; the fxed pont theorem of Avery and Peteron [6], etc. Mawhn contnuaton theorem [, 9, 7, 8, 33, 34, 38, 39, 4, 4]; the hootng method [9, 5]; v upper and lower oluton method and monotone teratve technque [, 4, 67]; upper and lower oluton method and Leray-Schauder degree theory [3, 4, 5, 47], or the approach of a combnaton of nonlnear alternatve of Leray-Schauder wth the properte of the aocated vector feld at the x, x plane []; v the crtcal pont theory and varatonal method [3]; v topologcal degree theory [3, 4]; the Schauder fxed pont theorem n utable Banach pace [36, 4, 4, 43, 49]. In all the above paper, the boundary condton BC are homogeneou. However, n many applcaton, BVP cont of dfferental equaton coupled wth nonhomogeneou BC, for example y = λ y, ya = aα, t a, b, yb = β and y = y t yt α, ya = α, yb = β t a, b, whch are very well known and were propoed n 69 and 696, repectvely. In 964, the BVP tuded by Zhdkov and Shrkov [66] and by Lee [3] are alo nonhomogeneou. There are alo everal paper concerned wth the extence of potve oluton of BVP for dfferental equaton wth non-homogeneou BC. Ma Ruyun [45] tuded extence of potve oluton of the followng BVP contng of econd order dfferental equaton and three-pont BC x t atfxt =, t,, x =, x αxη = b,.5

3 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 3 Kwong and Kong [9] tuded the BVP y t = ft, yt, < t <, n θy co θy =, m y α yξ = b,.6 where ξ,, α, θ [, 3π/4], f a nonnegatve and contnuou functon. Under ome aumpton, t wa proved that there ext a contant b > uch that:.6 ha at leat two potve oluton f b, b ;.6 ha at leat one oluton f b = or b = b ;.6 ha no potve oluton f b > b. Palamde [[5]], under uperlnear and/or ublnear growth rate n f, proved the extence of potve oluton and monotone n ome cae of the boundary-value problem y t = ft, yt, y t, t, αy βy =, m y α yξ = b,.7 where α >, β >, the functon f contnuou, and ft, y, y, for all t [, ], y, y R. The approach baed on an analy of the correpondng vector feld on the face-plane and on Kneer property for the oluton funnel. Sun, Chen, Zhang and Wang [53] tuded the extence of potve oluton for the three-pont boundary-value problem u t atfut =, t, u =, m u α uξ = b,.8 where ξ,, α are gven. It wa proved that there ext b > uch that.8 ha at leat one potve oluton f b, b and no potve oluton f b > b. To tudy the extence of potve oluton of BVP.5,.6,.7,.8, the Green functon of the correpondng problem are etablhed and play an mportant role n the proof of the man reult. In recent paper, ung lower and upper oluton method, Kong and Kong [3, 4, 5] etablhed reult for oluton and potve oluton of the followng two problem and x t ft, xt, x t =, t,, x α x ξ = λ, x β xξ = λ, x t ft, xt, x t =, t,, x α xξ = λ, x β xξ = λ,.9. repectvely. We note that the boundary condton n [3, 4] are two-parameter non-homogeneou BC. There, the extence of lower and upper oluton wth certan relaton are aumed.

4 4 Y. LIU EJDE-8/96 In recent year, there have been many exctng reult concernng the extence of potve oluton of BVP of econd order dfferental equaton wth p-laplacan ubjected to dfferent mult-pont boundary condton: [x t] ft, xt, x t =, t,, x = α xξ, x = β xξ, [x t] ft, xt, x t =, t,, x = α x ξ, x = β xξ, [x t] ft, xt, x t =, t,, x = α xξ, x = β x ξ....3 Thee reult, can be found n [6, 8, 9,,, 3,,,, 37, 54, 55, 56, 58, 59, 6, 6, 6, 65]. In above mentoned paper, to obtan potve oluton, two knd of aumpton are uppoed. The frt one mpoed on α, β, the other one called growth condton mpoed on the nonlnearty f. To defne a cone P n Banach pace and to defne the nonlnear operator T : P P are mportant tep n the the proof of the reult. It eay to ee that x t =, t,, x = x = ha unque potve oluton xt = t t, but the BVP x t =, t,, x = A, x = B ha potve oluton xt = t B A t A f and only f A and B. It how u that the preence of nonhomogeneou BC can nduce nonextence of potve oluton of a BVP. Motvated by the fact mentoned above, th paper concerned wth the more generalzed BVP for econd order dfferental equaton wth p-laplacan coupled wth nonhomogeneou mult-pont BC;.e., [x t] ft, xt, x t =, t,, x = α x ξ A, x = β xξ B, [x t] ft, xt, x t =, t,, x = α xξ A, x = β x ξ B, [x t] ft, xt, x t =, t,, x = αx A, x = β xξ B,.4.5.6

5 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 5 and [x t] ft, xt, x t =, t,, x = α x ξ A, x = β x ξ B, [x t] ft, xt, x t =, t,, x = α xξ A, x = β xξ B,.7.8 where < ξ < < ξ m <, A, B R, α, α, β for all =,..., m, f contnuou and nonnegatve, called p-laplacan, x = x p x for x and = wth p >, t nvere functon denoted by x wth x = x q x for x and = wth /p /q =. The purpoe to etablh uffcent condton for the extence of at leat three potve oluton for.4.8. The reult n th paper are new nce there ext no paper concerned wth the extence of at leat three potve oluton of thee nonhomogeneou mult-pont BVP even when x = x. Maybe t the frt tme to ue the mult-fxed-pont theorem to olve thee knd of BVP. The remander of th paper organzed a follow: The man reult are preented n Secton Theorem.,.6,.,.5,.3. Some example to how the man reult are gven n Secton 3.. Man Reult In th ecton, we frt preent ome background defnton n Banach pace and tate an mportant three fxed pont theorem. Then the man reult are gven and proved. Defnton.. Let X be a em-ordered real Banach pace. The nonempty convex cloed ubet P of X called a cone n X f ax P for all x P and a and x X and x X mply x =. Defnton.. A map ψ : P [, a nonnegatve contnuou concave or convex functonal map provded ψ nonnegatve, contnuou and atfe ψtx ty tψx tψy, or ψtx ty tψx tψy, for all x, y P and t [, ]. Defnton.3. An operator T ; X X completely contnuou f t contnuou and map bounded et nto relatve compact et. Defnton.4. Let a, b, c, d, h > be potve contant, α, ψ be two nonnegatve contnuou concave functonal on the cone P, γ, β, θ be three nonnegatve contnuou convex functonal on the cone P. Defne the convex et: P c = {x P : x < c}, P γ, α; a, c = {x P : αx a, γx c}, P γ, θ, α; a, b, c = {x P : αx a, θx b, γx c}, Qγ, β;, d, c = {x P : βx d, γx c},

6 6 Y. LIU EJDE-8/96 Qγ, β, ψ; h, d, c = {x P : ψx h, βx d, γx c}. Lemma.5 []. Let X be a real Banach pace, P be a cone n X, α, ψ be two nonnegatve contnuou concave functonal on the cone P, γ, β, θ be three nonnegatve contnuou convex functonal on the cone P. There ext contant M > uch that αx βx, x Mγx for all x P. Furthermore, Suppoe that h, d, a, b, c > are contant wth d < a. Let T : P c P c be a completely contnuou operator. If C {y P γ, θ, α; a, b, c αx > a} = and αt x > a for every x n P γ, θ, α; a, b, c; C {y Qγ, θ, ψ; h, d, c βx < d} and βt x < d for every x n Qγ, θ, ψ; h, d, c; C3 αt y > a for y P γ, α; a, c wth θt y > b; C4 βt x < d for each x Qγ, β;, d, c wth ψt x < h, then T ha at leat three fxed pont y, y and y 3 uch that βy < d, αy > a, βy 3 > d, αy 3 < a. Chooe X = C [, ]. We call x y for x, y X f xt yt for all t [, ], defne the norm x = max{max t [,] xt, max t [,] x t }. It eay to ee that X a em-ordered real Banach pace. Chooe k, /, let σ = mn{k, k} = k. For a cone P X of the Banach pace X = C [, ], defne the functonal on P : P R by γy = max t [,] y t, y P, θy = βy = max yt, y P, t [,] max yt, y P, αy = mn yt, y P, t [k,k] t [k,k] ψy = mn yt, y P. t [k,k] It eay to ee that α, ψ are two nonnegatve contnuou concave functonal on the cone P, γ, β, θ are three nonnegatve contnuou convex functonal on the cone P and αy βy for all y P. Lemma.6. Suppoe that x X, xt for all t [, ] and x t decreang on [, ]. Then xt mn{t, t} max xt, t [, ].. t [,] Proof. Suppoe xt = max t [,] xt. If t, t, we get that there ext η t ξ t uch that Then xt x t xt x t = t[xt xt] t t[xt x] tt = tt tx ξ t ttx η tt tt tx η t ttx η tt =. xt t t xt t t x t t xt txt, t, t.

7 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 7 Smlarly xt txt, for t t,. It follow that xt mn{t, t} max t [,] xt for all t [, ]. The proof complete... Potve Soluton of.4. Frt, we etablh an extence reult for three decreang potve oluton of.4. We ue the followng aumpton: H f : [, ] [h,, ] [, contnuou wth ft, ch, B on each ub-nterval of [,], where h = P ; m β H A, B ; H3 α, β atfy m α m <, β < ; H4 h : [, ] [, a contnuou functon and ht on each ubnterval of [,]. Conder the boundary-value problem [y t] ht =, t,, y α y ξ = A, y β yξ =,. Lemma.7. Suppoe that H H4 hold. If y a oluton of., then y decreang and potve on,. Proof. Suppoe y atfe.. It follow from the aumpton that y decreang on [, ]. Then the BC n. and H3 mply y = α y ξ A α y A. It follow that y A α. We get y t for t [, ]. Then y = β yξ β y. So y. Then yt > y for t, nce y t on [, ]. The proof complete. Lemma.8. Suppoe that H H4 hold. If y a oluton of., then wth and yt = B h A h = t A h hudu d, α ξ A h hd A,.3 [ B h = β A h hudu d ξ β ] A h hudu d,

8 8 Y. LIU EJDE-8/96 where a = A P m α and m A b = α α Proof. It follow from. that yt = y t P m α P m y α hudu d, hd. and BC n. mply that y = α ξ y hd A,.4 and Let [ y = β y hudu d ξ β ] y hudu d. Gc = c It eay to ee that A Ga = G α A α On the other hand, one ee that m Gb b = α = ξ α = A P m α ξ c hd A. α hd b α P m α A P m α P m α A α α m α P m A α A b ξ P m α P m α P m α α hd A =. P m α P m α m α m α =. hd α m α hd

9 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 9 Gc c Hence Gb. It eay to know that contnuou and decreang on, and contnuou and ncreang on,, Hence Ga and Gb and m Gc lm c c =, lm Gc c c = α >, we get that there ext unque contant A h = y [b, a] uch that.3 hold. The proof completed. Note h = B/ β, and let xt h = yt. Then.4 tranformed nto the boundary-value problem Let P = [y t] f t, yt h, y t =, t,, y α y ξ = A, y β yξ =, { y X : yt for all t [, ], y t decreang on [, ], } yt mn{t, t} max yt for all t [, ]. t [,] Then P a cone n X. Snce yt = m β yξ m β y β m β ξ β max t [,] y t m = β ξ β γy, we obtan m max yt β ξ γy. t [,] β.5 It eay to ee that there ext a contant M > uch that y Mγy for all y P. Defne the nonlnear operator T : P X by T yt = B y where A y atfe A y = t A y fu, yu h, y udu d, y P, α ξ A y f, y h, y d A,.6 and B y atfe B y = β A y fu, yu h, y udu d ξ β A y fu, yu h, y udu d.

10 Y. LIU EJDE-8/96 Then for y P, T yt = t A y β β fu, yu h, y udu d ξ A y fu, yu h, y udu d. Lemma.9. Suppoe that H H3 hold. It eay to how that the followng equalte hold: [T y t] f t, yt h, y t =, t,, T y α T y ξ = A, T y β T yξ = ; T y P for each y P ; x a oluton of.4 f and only f x = y h and y a oluton of the operator equaton y = T y n P ; v T : P P completely contnuou. Proof. The proof of, and are mple. To prove v, t uffce to prove that T contnuou and T compact. We dvde the proof nto two tep: Step. Prove that T contnuou about y. Suppoe y n X and y n y X. Let A yn be decded by.3 correpondng to y n for n =,,,.... We wll prove that A yn A y a n tend to nfnty. Snce y n y unformly on [,] and f contnuou, we have that for ɛ =, there ext N, when n > N, for each t [, ], uch that ft, y n t h, y nt ft, y t h, y t max t [,] ft, y t h, y t. Hence Lemma.8 mple that A yn an element n the nterval [ m A α α P m α P m f, y n h, y nd, α A ] α m A α [ α A α ]. P m α P m α max ft, y t h, y t, t [,] It follow that {A yn } bounded. If {A yn } doe not converge to A y, then there ext two ubequence {A y nk } and {A y nk } of {A yn } wth A y nk C, A y nk C, k, C C. By the contructon of A yn, A y nk = α A y nk ξ f, y nk h, y n k d A.

11 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS Snce ft, y n t h, y nt unformly bounded, by Lebegue domnated convergence theorem, lettng k, we get C = α ξ C f, y h, y d A. Snce A y atfe A y = α ξ A y f, y h, y d A, Lemma.8 mple that A y = C. Smlarly, we can prove that A y = C. Th contradct to C C. Therefore for each y n y, we have A yn A y. It follow that A y contnuou about y. So the contnuty of T obvou. Step. Prove that T compact. Let Ω P bet a bounded et. Suppoe that Ω {y P : y M}. For y Ω, we have f, y h, y d It follow from the defnton of T and Lemma.8 that T yt = A y t β β max ft, u, v =: D. t [,],u [h,mh],v [M,M] fu, yu h, y udu d ξ m A α α A y fu, yu h, y udu d β P m α β ξ fu, yu h, y udu d P m α P m α m A α α P m fu, yu h, y udu α m A α D m α P m α m β ξ β m A α D m α P m m = E β ξ β E, T y t = A y t fu, yu h, y udu d fu, yu h, y udu fu, yu h, y udu d α

12 Y. LIU EJDE-8/96 m A α α P m α P m fu, yu h, y udu α m A α D m α P m α = E, where m A E = α α D P m fu, yu h, y udu d α For the unform contnuty of on the nterval [E, E], for each ɛ >, there ext a ρ > uch that Put Y = A y Y Y < ɛ, Y, Y [E, E], Y Y < ρ. t t fu, yuh, y udu, Y = A y fu, yuh, y udu. Snce Y Y = t t fu, yu h, y udu D t t, t eay to ee that there ext δ > ndependent of ɛ uch that Y Y < ρ for all t, t wth t t < δ. Hence there δ > ndependent of ɛ uch that T y t T y t = Y Y < ɛ, whenever t, t [, ] and t t < δ. Th how that T yt equ-contnuou on [,]. The Arzela-Akol theorem guarantee that T Ω relatve compact, whch mean that T compact. Hence the contnuty and the compactne of T mply that T completely contnuou. Theorem.. Suppoe that H H3 hold and there ext potve contant e, e, c, L = m α m α d β β m α ξ m α d, Q = mn { c c }, L ; P m α e W = k ; E = e. σ k k d L uch that If c e σ > e > e σ > e >, m A Q α α., Q > W.

13 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 3 A ft, u, v < Q for all t [, ], u [h, c h], v [c, c]; A ft, u, v > W for all t [k, k], u [e h, e /σ h], v [c, c]; A3 ft, u, v < E for all t [, ], u [h, e /σ h], v [c, c]; then.4 ha at leat three decreang potve oluton x, x, x 3 uch that x < e h, x k > e h, x 3 > e h, x 3 k < e h. Remark.. In paper [3], uffcent condton are found for the extence of oluton of.9 baed on the extence of lower and upper oluton wth certan relaton. Ung the obtaned reult, under ome other aumpton, the explct range of value of λ and λ are preented wth whch.9 ha a oluton, ha a potve oluton, and ha no oluton, repectvely. Furthermore, t proved that the whole plane for λ and λ can be dvded nto two djont connected regon E and N uch that.9 ha a oluton for λ, λ E and ha no oluton for λ, λ N. When applyng Theorem. to.9, t how u that.9 ha at leat three decreang potve oluton under the aumpton λ, λ and ome other aumpton. Remark.. Conder the cae A and B <, when H3 and H4 hold, we can prove mlarly that Lemma.7 and Lemma.8 are vald. Defne the ame operator T on the cone P. Theorem. how that.5 ha at leat three decreang and potve oluton y, y, y 3. Hence.4 ha at leat three decreang oluton x = y h, x = y h and x 3 = y 3 h, whch need not be B potve nce h = P m <. In cae A >, B and A >, B <, the β author could not get the uffcent condton guaranteeng the extence of multple potve oluton of.4. Proof of Theorem.. To apply Lemma.5, we prove that t hypothee are atfed. By the defnton, t eay to ee that α, ψ are two nonnegatve contnuou concave functonal on the cone P, γ, β, θ are three nonnegatve contnuou convex functonal on the cone P and αy βy for all y P, there ext contant M > uch that y Mγy for all y P. Lemma.8 mple that x = xt a potve oluton of.4 f and only f xt = yt h and yt a oluton of the operator equaton y = T y and T : P P completely contnuou. Correpondng to Lemma.5, c = c, h = σ e, d = e, a = e, b = e σ. Now, we prove that all condton of Lemma.5 hold. One ee that < d < a. The remander dvded nto four tep. Step. Prove that T : P c P c ; For y P c, we have y c. Then yt c for t [, ] and c y t c for all t [, ]. So A mple that ft, yt h, y t Q, t [, ]. It follow from Lemma.9 that T y P. Then Lemma.8 mple T yt = t A y β β fu, yu h, y udu d ξ A y fu, yu h, y udu d

14 4 Y. LIU EJDE-8/96 A m α α P m α P m α fu, yu h, y udu fu, yu h, y udu d β P m α P m β α ξ m A α α β P m α P m β α Q β ξ m A α α fu, yu h, y udu P m α Q Q d P m α P m β ξ α P m α m A α α Q Q d [ = Q m c. β β ξ Q P m α P m α m α α d m α fu, yu h, y udu d Q Q d Q Q d m α ] d Smlarly to the above dcuon, we have from Lemma.7 that m A A y α m α P m fu, yu h, y udu. α Then T y t T y = A y m A α α m A α α P m P m α α Q fu, yu h, y udu

15 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 5 Q m α Q c. It follow that T y = max{max t [,] T yt, max t [,] T y t } c. Then T : P c P c. Step. Prove that {y P γ, θ, α; a, b, c αy > a} = {y P γ, θ, α; e, e σ, c αy > e } and αt y > e for every y P γ, θ, α; e, e σ, c. Chooe yt = e σ for all t [, ]. Then y P and αy = e σ > e, θy = e σ e σ, γy = < c. It follow that {y P γ, θ, α; a, b, c : αy > a}. For y P γ, θ, α; a, b, c, one ha αy = Then mn yt e, θy = max yt e, t [k,k] t [k,k] σ Thu A mple Snce we get αt y σ [ σ [ e yt e σ, t [k, k], y t c. ft, yt h, y t W, αt y = A y β n [k, k]. mn T yt σ max T yt, t [k,k] t [,] β A y ξ [ σ A [ k σ k fu, yu h, y udu d A y ] fu, yu h, y udu d α A α k σ W k d = e. k γy = max t [,] y t c. ] fu, yu h, y udu d ] fu, yu h, y udu d k ] fu, yu h, y udu d Th complete Step. Step 3. Prove that {y Qγ, θ, ψ; h, d, c : βy < d} whch equal to {y Qγ, θ, ψ; σ e, e, c : βy < e } not empty, and βt y < e for every y Qγ, θ, ψ; h, d, c = Q γ, θ, ψ; σ e, e, c ;

16 6 Y. LIU EJDE-8/96 Chooe yt = σ e. Then y P, and ψy = σ e h, βy = θy = σ e < e = d, γy = c. It follow that {y Qγ, θ, ψ; h, d, c βy < d}. For y Qγ, θ, ψ; h, d, c, one ha ψy = Hence yt e σ So βt y = max T yt t [,] = A y β mn yt h = e σ, θy = max yt d = e, t [k,k] t [k,k] γy = max t [,] y t c. and c y t c, for t [, ]. Then A3 mple ft, yt h, y t E, t [, ]. β fu, yu h, y udu d ξ m A α α A y fu, yu h, y udu d β P m α P m β α ξ m A α α β P m α P m β α ξ P m α P m fu, yu h, y udu d α m A α α fu, yu h, y udu E E d P m α E P m β β ξ α P m α P m α m A α α E E d E P m α P m α fu, yu h, y udu fu, yu h, y udu d E E d E E d

17 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 7 [ = E m α m α d β β m α ] ξ m α d = e = d. Th complete Step 3. Step 4. Prove that αt y > a for y P γ, α; a, c wth θt y > b; For y P γ, α; a, c = P γ, α; e, c wth θt y > b = e σ, we have that αy = mn t [k,k] yt e and γy = max t [,] yt c and max t [k,k] T yt > e σ. Then αt y = mn T e yt σ βt y > σ = e = a. t [k,k] σ Th complete Step 4. Step 5. Prove that βt y < d for each y Qγ, β; d, c wth ψt y < h. For y Qγ, β; d, c wth ψt y < d, we have γy = max t [,] yt c and βy = max t [,] yt d = e and ψt y = mn t [k,k] T yt < h = e σ. Then βt y = max T yt mn t [,] σ T yt < e σ = e = d. t [k,k] σ Th complete the Step 5. Then Lemma.5 mple that T ha at leat three fxed pont y, y and y 3 uch that βy < e, αy > e, βy 3 > e, αy 3 < e. Hence.4 ha three decreang potve oluton x, x and x 3 uch that max x t < e h, t [,] max x 3t > e h, t [,] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] Hence x < e h, x k > e h, x 3 > e h, x 3 k < e h... Potve Soluton of.5. Now we prove the extence of three potve ncreang oluton of.5. We ue the aumpton: H5 f : [, ] [, [, [, contnuou wth ft, ch, on each ub-nterval of [,] for all c, where h = H6 A, B ; H7 α, β atfy m α, m β < ; Conder the boundary-value problem A P m α ; [y t] ht =, t,, y α yξ =, y β y ξ = B..7 Lemma.3. Suppoe that H4, H6, H7 hold. If y a oluton of.7, then y ncreang and potve on,.

18 8 Y. LIU EJDE-8/96 Proof. Suppoe y atfe.7. It follow from the aumpton that y decreang on [, ]. Then the BC n.7 and H4 mply y = β y ξ B β y. It follow that y. We get that y t for t [, ]. Then y = α yξ α y. It follow that y. Then yt > y for t, nce y t for all t [, ]. The proof complete. Lemma.4. Suppoe that H4, H6, H7 hold. If y a oluton of.7, then t yt = B h A h hudu d, wth and where B h = A h = β A h α ξ ξ α A h a = m B b = β β Proof. It follow from.7 that yt = y t B β, P m β P m y and the BC n.7 mply y = β y Let y = α ξ hd B,.8 β ξ α y Gc = c It eay to ee that B Ga = G β c B β β β ξ hudu d, hd. hudu d, hd B, hd B. B β hudu d. B

19 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 9 =. On the other hand, one ee that Gb m b = β = β B P m ξ hd b β P m β B P m B b β P m β B β P m P m β P m β P m β β Gc c ξ hd P m β P m β hd hd β m β =. Hence Gb. It eay to know that contnuou and decreang on, and contnuou and ncreang on,, Hence Ga and Gb and m Gc lm c c =, lm Gc c c = β >. Then there ext unque contant A h = y [a, b] uch that.8 hold. The proof complete. A Note h = P m, and xt h = yt. Then.5 tranformed nto the α boundary-value problem Let [y t] f t, yt h, y t =, t,, y α yξ =, y β y ξ = B, P = { y X : yt for all t [, ], y t decreang on [, ], yt mn{t, t} max t [,] yt for all t [, ]}. Then P a cone n X. Snce yt = m α yξ m α y α m α ξ α max t [,] y t = m α ξ α γy,.9 we have m max yt α ξ t [,] α γy. It eay to ee that there ext a contant M > uch that y Mγy for all y P.

20 Y. LIU EJDE-8/96 Defne the nonlnear operator T : P X by t T yt = B y A y fu, yu h, y udu d, y P, where A y atfe A y = and B y atfe B y = Then for y P, T yt = β A y α t ξ ξ α A y A y α f, y h, y d B,. fu, yu h, y udu d ξ α A y fu, yu h, y ud d. Lemma.5. Suppoe that H5, H6, H7 hold. Then the followng equalte hold: fu, yu h, y ud d. [T y t] f t, yt h, y t =, t,, T y α T yξ =, T y β T y ξ = B; T y P for each y P ; x a oluton of.5 f and only f x = y h and y a oluton of the operator equaton y = T y n cone P ; v T : P P completely contnuou. The proof of the above lemma mlar to that of Lemma.9 and t omtted. Theorem.6. Suppoe that H5 H7 hold and there ext potve contant e, e, c, P L = m β P m d β P ξ α α m β P m d, β Q = mn { c c } e, L ; W = k ; P m β σ k k d uch that c e σ > e > e σ > e >, E = e L. m B Q β β, Q > W.

21 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS If A, A and A3 from n Theorem. hold, then.5 ha at leat three ncreang potve oluton x, x, x 3 uch that x < e h, x k > e h, x 3 > e h, x 3 k < e h. Proof. To apply Lemma.5, we prove that all t condton are atfed. By the defnton, t eay to ee that α, ψ are two nonnegatve contnuou concave functonal on the cone P, γ, β, θ are three nonnegatve contnuou convex functonal on the cone P and αy βy for all y P, there ext contant M > uch that y Mγy for all y P. Lemma.5 mple that x = xt a potve oluton of.5 f and only f xt = yt h and yt a oluton of the operator equaton y = T y and T : P P completely contnuou. Correpondng to Lemma.5, c = c, h = σ e, d = e, a = e, b = e σ. Now, we prove that all condton of Lemma.5 hold. One ee that < d < a. The remander dvded n four tep. Step. Prove that T : P c P c ; For y P c, we have y c. Then yt c for t [, ] and c y t c for all t [, ]. So A mple that ft, yt h, y t Q, t [, ]. It follow from Lemma.5 that T y P. Then Lemma.4 mple T yt A y α fu, yu h, y udu d ξ α A y m B β β fu, yu h, y udu d α P m β P m ξ α β m B β α P m β P m β ξ α β P m β P m β m B β fu, yu h, y udu d β fu, yu h, y udu Q Q d P m β P m β m B β β fu, yu h, y udu fu, yu h, y udu d Q Q d

22 Y. LIU EJDE-8/96 P Q m β P m Q Q d β P ξ α α Q m β P m Q Q d β [ P = Q m β P m d β P ξ α α m β ] P m d β c. Smlarly to above dcuon, from Lemma.4, we have T y t T y = A y m B β β fu, yu h, y udu P m β P m β fu, yu h, y udu fu, yu h, y udu m B β m β P m Q β Q m β Q c. It follow that T y = max{max t [,] T yt, max t [,] T y t } c. Then T : P c P c. Step. Prove that {y P γ, θ, α; a, b, c αy > a} = {y P γ, θ, α; e, e σ, c : αy > e } and αt y > e for every y P γ, θ, α; e, e σ, c ; Chooe yt = t [, ]. Then y P and αy = e σ > e, θy = e σ e σ, γy = < c. It follow that {y P γ, θ, α; a, b, c αy > a}. For y P γ, θ, α; a, b, c, one ha αy = mn yt e, θy = max yt e, t [k,k] t [k,k] σ Then e yt e σ, t [k, k], y t c. Thu A mple ft, yt h, y t W, t [k, k]. Snce αt y = mn t [k,k] T yt σ max t [,] T yt, e σ for all γy = max t [,] y t c.

23 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 3 from Lemma.4, we have αt y σ max t [,] T yt [ = σ A y fu, yu h, y udu d ξ α α ] A h fu, yu h, y ud d [ σ B β fu, yu h, y udu d ξ α α B β ] fu, yu h, y ud d σ B β σ fu, yu h, y udu d k σ k k fu, yu h, y udu d k σ W k d = e. k fu, yu h, y udu d Th complete Step. Step 3. Prove that the et {y Qγ, θ, ψ; h, d, c βy < d} whch equal to {y Q γ, θ, ψ; σ e, e, c : βy < e } not empty, and βt y < e for every y Qγ, θ, ψ; h, d, c = Q γ, θ, ψ; σ e, e, c. Chooe yt = σ e. Then y P, and ψy = σ e h, βy = θy = σ e < e = d, γy = c. It follow that {y Qγ, θ, ψ; h, d, c : βy < d}. For y Qγ, θ, ψ; h, d, c, one ha ψy = mn yt h = e σ, θy = max yt d = e, t [k,k] t [k,k] γy = max t [,] y t c. Hence we have yt e σ and c y t c for t [, ]. Then A3 mple ft, yt h, y t E, t [, ]. So that βt y = max T yt t [,] = A y α fu, yu h, y udu d ξ α A y fu, yu h, y udu d

24 4 Y. LIU EJDE-8/96 m B β β P m β P m fu, yu h, y udu β fu, yu h, y udu d α P m β P m β ξ α fu, yu h, y udu d m B β β α P m β m B β β fu, yu h, y udu P m β P m β ξ α m B β β P m E E d β P E m β P m E E d β P ξ α α E m β P m β [ P = E m β P m d β P ξ α α m β P m β = e = d. E E d E E d ] d Th complete Step 3. Step 4. Prove that αt y > a for y P γ, α; a, c wth θt y > b; For y P γ, α; a, c = P γ, α; e, c wth θt y > b = e σ, we have that αy = mn t [k,k] yt e and γy = max t [,] yt c and max t [k,k] T yt > e σ. Then αt y = mn T e yt σ βt y > σ = e = a. t [k,k] σ Th complete Step 4. Step 5. Prove that βt y < d for each y Qγ, β; d, c wth ψt y < h. For y Qγ, β; d, c wth ψt y < d, we have γy = max t [,] yt c and

25 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 5 βy = max t [,] yt d = e and ψt y = mn t [k,k] T yt < h = e σ. Then βt y = max T yt mn t [,] σ T yt < e σ = e = d. t [k,k] σ Th complete the Step 5. Then Lemma.5 mple that T ha at leat three fxed pont y, y and y 3 n P uch that βy < e, αy > e, βy 3 > e, αy 3 < e. Hence.5 ha three ncreang potve oluton x, x and x 3 uch that Hence max x t < e h, t [,] max x 3t > e h, t [,] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] x < e h, x k > e h, x 3 > e h, x 3 k < e h. The proof complete. Remark.7. For.5, when A <, B, we can alo get the extence reult for three ncreang oluton of.5 mlarly, but the oluton need not be potve. By the way, t nteretng to etablh uffcent condton guarantee the extence of potve oluton of.5 when B <..3. Potve Soluton of.6. Now we prove an extence reult for three potve oluton of.6. We ue the followng there condton: H8 f : [, ] [h, R [, contnuou wth ft, c h, on each ub-nterval of [,] for all c, where h = H9 A, B ; H α, β atfy m β < and A B Conder the followng boundary-value problem P ; m β B P m β ; [y t] ht =, t,, y αy = D, y β yξ =,. Lemma.8. Suppoe that H4, H hold and D. If y a oluton of., then y potve on,. Proof. Suppoe y atfe.. It follow from aumpton H4 that y decreang on [, ]. If y >, the BC n. and H4 mply y t > for all t [, ]. Then y = β yξ β y. Then y. On the other hand, y = αy D. Th a contradcton nce y t >.

26 6 Y. LIU EJDE-8/96 If y and y, then we get that y t for all t [, ]. The BC n. and H4 mply y = β yξ β y. It follow that y. Then yt y for all t [, ]. H4 mple yt > for all t,. If y and y >, then y = αy D. It follow from. and H4 that y = β yξ β mn{y, y}. If y y, then y m β y mple that y. If y > y, then y > nce y. It follow from H4 that yt mn{y, y}. Then y potve on,. The proof complete. Lemma.9. Aume H4, H hold and D. If y a oluton of., then t yt = B h A h hudu, t [, ], where A h [b, ], [ α A h = ξ ] hudu D β A h β ξ A h B h = α A h b = Proof. From. t follow that y ξ D hudu β hudu d, hudu d hudu D, a = α β yt = y β = t y y β a β ξ. ξ β y, udu d, hudu d hudu d,

27 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 7 Thu Let y = α y [ α y = Gc =. y hudu D. ] hudu D ξ β y = [ α c c β [ α c ξ hudu d β hudu d. ] hudu D c hudu d hudu β c β ξ c hudu d ] D hudu d β β hudu d It eay to ee that Gc ncreang on,, G. Snce a = α β β ξ, we get D Gb = G = [ α D m β a β β ξ β a D D hudu ] D β a β a β hudu d hudu d

28 8 Y. LIU EJDE-8/96 [ α D β a β β ξ D we get y hudu D Let D ] D β a β a P m β a β d d =, = b. The proof complete. P 3 = { y X : yt for all t [, ], y t decreang on [, ], yt mn{t, t} max t [,] yt for all t [, ]}. Then P 3 a cone n X. Snce, for y P 3, we have we get yt = yt y y y θ t y m max t [,] y t β yξ m β y β m β ξ β max t [,] y t m = β ξ β γy, max yt t [,] m β ξ β γy. It eay to ee that there ext a contant M > uch that y Mγy for all y P 3. Suppoe that H hold. Let xt h = yt. Then.6 tranformed nto [y t] ft, yt h, y t =, t,, y αy B = A β, y β yξ =, Defne the nonlnear operator T 3 : P 3 X by t T 3 yt = B y A y fu, yu h, y udu d, y P 3, where [ α A y fu, yu h, y B ] udu A β β

29 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 9 = β A y β ξ A y fu, yu h, y udu d fu, yu h, y udu d, and B h = α A y fu, yu h, y B uduu A β. For y P 3, the defnton of A y mple T 3 yt = α A y = t t A y A y β fu, yu h, y udu A β fu, yu h, y udu d fu, yu h, y udu d ξ A y B β fu, yu h, y udu d. Lemma.. Suppoe that H8 H hold. Then T 3 y P 3 for each y P 3 ; x a oluton of.7 f and only f x = y h and y a oluton of the operator equaton T 3 y = y n P 3 ; T 3 : P 3 P 3 completely contnuou; v the followng equalte hold: [T 3 y t] f t, yt h, y t =, t,, T 3 y αt 3 y B ξ = A β, T 3 y β T 3 yξ = ; The proof of the above lemma mlar to that of Lemma.9, o t omtted. Theorem.. Suppoe that H8 H hold and that there ext potve contant e, e, c, L = β β ξ, Q = mn { c c }, ; L e W =. uch that c e σ k σ k kd > e > e σ > e >, ; E = e L B A P m m Q β β α m β, Q > W. ξ

30 3 Y. LIU EJDE-8/96 If A A3 n Theorem. hold, then.6 ha at leat three potve oluton x, x, x 3 uch that max x t < e h, t [,] mn x 3t > e h, t [k,k] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] The proof of the above theorem mlar to that of Theorem., o t omtted. Aume the followng three condton: H f : [, ] [h, R [, contnuou wth ft, c h, on each ub-nterval of [,] for all c, where h = A; H A, B ; H3 α, β atfy m β < and B A β ; Conder the boundary-value problem [y t] ht =, t,, y αy =, y β yξ = D,. Lemma.. Aume H4, H3 and D. If y a oluton of., then y potve on,. Proof. Suppoe y atfe.. It follow from the aumpton that y decreang on [, ]. If y <, the BC n. and H4 mply that y t < for all t [, ] and y. Then y = β yξ D β y D. D Then y P m. It follow from D that y y, a contradcton to β y t < for all t [, ]. If y and y >, we get that y t > for all t [, ]. The BC n. and H4 mply that y = αy. Then yt > y for all t [, ]. If y and y, then y = αy. It follow from. that y = β yξ D β mn{y, y}. If y y, then y m β y mple that y. If y > y, then y > nce y. It follow that yt mn{y, y}. Then y potve on,. The proof complete. Lemma.3. Aume H4, H3, D. If y a oluton of., then yt = B h A h hudu, t [, ], where A h [a, b], α A h t ξ hudu β

31 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 3 and a = D c β A h β, b = D c ξ Proof. It follow from. that Thu y = A h B h = α y yt = y hudu, β = β y t hudu d hudu d D =, ξ y ξ y hudu, c = α y β y β ξ y m β β ξ. hudu d, hudu d = αy. hudu d D, hudu d αy hudu d D. It follow from the proof of Lemma. that y. Let Gc = β c hudu d α β c β ξ c hudu d D. It eay to ee that Gc ncreang on, and Ga = G D a. Snce Gb = G D hudu c β α D c β D c β ξ D c hudu d hudu hudu d D

32 3 Y. LIU EJDE-8/96 D m D β c α β c β ξ D c D =, we get a y D c hudu. The proof complete. Let Suppoe that H3 hold. Let xt h = yt. Then.6 tranformed nto [y t] ft, yt h, y t =, t,, y y αy =, A β yξ = B β. P 3 = {y X : yt for all t [, ], y t decreang on [, ], yt mn{t, t} max yt for all t [, ]}. t [,] Then P 3 a cone n X. Snce, for y P 3, we have yt yt y y max t [,] y t α max t [,] y t = αγy, we get max t [,] yt αγy. It eay to ee that there ext a contant M > uch that y Mγy for all y P 3. Defne the nonlnear operator T 3 : P 3 X by T 3yt = B y A y fu, yu h, y udu d, y P 3, where and Then = β A y β B y = T 3yt = = ξ t t t A y A y A y A y A y fu, yu h, y udu d α A y fu, yu h, y A udu d B β. fu, yu h, y udu d α A y. fu, yu h, y udu d α A y fu, yu h, y udu d fu, yu h, y udu d α A y, y P 3. Lemma.4. Aume H H3. Then the followng hold: T 3y P 3 for each y P 3; x a oluton of.6 f and only f x = y h and y a oluton of the operator equaton T 3y = y n P 3;

33 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 33 T 3 : P 3 P 3 completely contnuou; v the followng equalte hold: [T 3y t] f t, yt h, y t =, t,, T 3y αt 3yξ =, T 3y β T 3yξ = B β A; The proof of the above lemma mlar to that of Lemma.9, o t omtted. Theorem.5. Suppoe that H H3 hold and there ext potve contant e, e, c, uch that c e σ and Q = mn { c, d α W = σ mn { k k E = > e > e σ > e > e d α c } ; k d, k k kd } e. α β α m B Q β β β ξ, Q > W. B ; A β, If A A3 defned n Theorem. hold, then.6 ha at leat three potve oluton x, x, x 3 uch that max x t < e h, t [,] mn x 3t > e h, t [k,k] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] The proof of the above theroem mlar to that Theorem.6 and t omtted. Remark.6. Kwong and Wong [9], Palamde [5] tuded the extence of potve oluton of.6 and.7 the man reult may be een n Secton. When applyng Theorem. to.6, we get three potve oluton f θ, π/] and the other aumpton n Theorem. hold..4. Potve Soluton of.7. We prove extence reult for three potve oluton of.7. The followng aumpton are ued n th ub-ecton. H4 f : [, ] [, [, [, contnuou wth ft, ch, on each ub-nterval of [,] for all c, where h = A; H5 α, β atfy m α <, m β < ; H6 A, B wth B A P m β.

34 34 Y. LIU EJDE-8/96 Suppoe that H4 H6 hold and conder the boundary-value problem [y t] ht =, t,, y α y ξ =, y β y ξ = D,.3 Lemma.7. Aume H4, H5, H6 and D. If y a oluton of.3, then y potve on,. Proof. Suppoe y atfe.3. It follow from the aumpton that y decreang on [, ]. Then the BC n.3 and H4 mply y = β y ξ D β y. It follow that y. We get y t for t [, ]. Then y = α yξ α y. It follow that y. Then yt > y for t, nce y t for all t [, ]. The proof complete. Lemma.8. Aume H4 H6. If y a oluton of.3, then t yt = B h A h hudu d and there ext unque A h [a, b] uch that A h = β A h and B h = α A h a = m D b = β β Proof. It follow from.3 that yt = y The BC n.3 mply y = y = t ξ ξ hd D,.4 hudu, D β, P m β P m y β y α y β ξ hudu d hd D, ξ hudu. hd.

35 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 35 Let It eay to ee that Ga = On the other hand, Gc = c D β D β Gb m b = β = β c β β β D P m ξ D β hd D. D β D =. ξ hd b β P m β D P m D b β P m β D β P m P m β P m β P m β β Gc c ξ hd ξ P m β hd D P m β hd β m β =. hd Hence Gb. It eay to know that contnuou and decreang on, and contnuou and ncreang on,, Hence Ga and Gb and m Gc lm c c =, lm Gc c c = β >. Then there ext unque contant A h = y [a, b] uch that.4 hold. The proof complete. Suppoe H6 hold. Let xt A = yt. Then.7 tranformed nto Let [y t] f t, yt h, y t =, t,, y α y ξ =, y β y A ξ = B β, P 4 = {y X : yt for all t [, ], y t decreang on [, ], yt ty for all t [, ]}..5

36 36 Y. LIU EJDE-8/96 Then P 4 a cone n X. For y P 4, nce yt = yt y y α max t [,] y t = we get max yt t [,] α γy. α γy, It eay to ee that there ext a contant M > uch that y Mγy for all y P. Defne the operator T 4 : P 4 X by t T 4 yt = B y A y fu, yu h, y udu d, y P 4, where A h = and Then β A h B y = ξ α A y T 4 yt = α A y t It follow from Lemma.8 that B A P m β β fu, yuh, y A udu B β,.6 A y A y B ξ ξ fu, yu h, y udu. A P m fu, yu h, y udu fu, yu h, y udu d. β P m β P m β Lemma.9. Suppoe that H4 H6. Then the followng equalte hold: m β β fu, yu h, y udu. [T 4 y t] f t, yt h, y t =, t,, T 4 y α T 4 y ξ =, T 4 y T 4 y P 4 for each y P 4 ; β T 4 y A ξ = B β ;

37 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 37 x a oluton of.7 f and only f x = y h and y a oluton of the operator equaton y = T 4 y n P 4 ; v T 4 : P 4 P 4 completely contnuou. The proof of the above lemma mlar to that of Lemma.9; o we omt t. Theorem.3. Suppoe that H4 H6 hold, and there ext potve contant e, e, c, and P L = m β P m d β P α m β P m ξ, β uch that c e σ W = Q = mn { c L, e c k σ k k d > e > e σ > e >, P m β } ; ; E = e L A B P m m Q β β β, Q > W. If A A3 n Theorem. hold, then.7 ha at leat three ncreang potve oluton x, x, x 3 uch that max x t < e h, t [,] mn x 3t > e h, t [k,k] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] The proof of the above theorem mlar to that of Theorem.6; Therefore, t omtted..5. Potve Soluton of.8. Fnally, we prove an extence reult for three potve oluton of.8. The followng aumpton wll be ued n the proof of all reult n th ubecton. H7 f : [, ] [h, R [, contnuou wth ft, c h, on A each ub-nterval of [,] for all c, where h = P ; m α H8 α, β atfy m α m <, β < ; H9 A, B wth B P m β P m Conder the boundary-value problem α A. [y t] ht =, t,, y α yξ =, y β yξ = B,..7 Lemma.3. Aume H4, H8, H9. If y a oluton of.7, then y potve on,.

38 38 Y. LIU EJDE-8/96 Proof. Suppoe y atfe.7. It follow from the aumpton that y decreang on [, ]. Then the BC n.7 and H4 mply that yt mn{y, y} for all t [, ]. Then y α mn{y, y}..8 Smlarly, we get y β mn{y, y}..9 It follow from.8 and.9 that mn{y, y} mn { m α, } β mn{y, y}. Then H8 mple that mn{y, y}. So yt mn{y, y} for all t [, ]. The proof complete. Lemma.3. Aume H4, H8, H9. If y a oluton of.7, then there ext unque A h [, b] uch that β ξ α A h hudu d where b = α A h ξ β A h hudu B a Proof. From.7 t follow that yt = y, a = m t hudu d hudu d B =. α ξ y β β ξ. The BC n.7 mple ξ y = y α α y and Then y y hudu d ξ = y β β y β α ξ α y hudu d. hudu d hudu d B. hudu d

39 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 39 Let y ξ β y Gc = β α c ξ β c hudu d ξ α c hudu d = β ξ α α c β c β ξ c hudu d B =. hudu d B hudu d hudu d hudu d hudu d B. It eay to ee that Gc ncreang on, and and G = β ξ α α hudu d β hudu d β ξ hudu d B <, Gb = G hudu B a = β ξ α α B hudu d a β B hudu d a β ξ β α B a hudu d B ξ α B d a

40 4 Y. LIU EJDE-8/96 β B d a β B d B =. a ξ Then G <, Gb and that Gc ncreang on, mply that A h = y [, b] and A h atfe β ξ α A h hudu d Let α A h ξ β A h hudu d hudu d B =. Let xt h = yt. Then.8 tranformed nto [y t] f t, yt h, y t =, t,, y α yξ =, y β yξ = B β α A, P 5 = { y X : yt for all t [, ], y t decreang on [, ], yt mn{t, t} max yt for all t [, ]} t [,] Then P 5 a cone n X. For y P 5, nce yt = yt y y. y θ t y max t [,] y t m α yξ m α y α m α ξ α max t [,] y t m = α ξ α γy, we get m max yt α ξ t [,] α γy. It eay to ee that there ext a contant M > uch that y Mγy for all y P 5.

41 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 4 Defne the operator T 5 : P 5 X by where and T 5 yt = B y β B y = t α A y A y ξ α A y ξ β A y α fu, yu h, y udu d, y P 5, fu, yu h, y udu d ξ α A y fu, yu h, y udu d fu, yu h, y udu d B =. Lemma.33. Aume H7, H8, H9. Then the followng equalte hold: fu, yu h, y udu d. [T 5 y t] f t, yt h, y t =, t,, T 5 y α T 5 yξ =, T 5 y β T 5 yξ = B β α A ; T 5 y P 5 for each y P 5 ; x a oluton of.8 f and only f x = y h and y a oluton of the operator equaton y = T 5 y; v T 5 : P 5 P 5 completely contnuou. The proof mlar to that of Lemma.9; therefore, t omtted. Theorem.34. Suppoe that H7, H8, H9 hold, and that there ext potve contant e, e, c, L = m β m β d α d, α W = ξ Q = mn { c L m β m β } ; c, e k σ k k d P m β P m β ; E = e L.

42 4 Y. LIU EJDE-8/96 uch that c e σ > e > e σ > e >, m B Q β β, Q > W. If A A3 n Theorem. hold, then.8 ha at leat three potve oluton x, x, x 3 uch that max x t < e h, t [,] mn x 3t > e h, t [k,k] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] The proof of the above theorem mlar to that of Theorem.; t omtted. For.8, we have the followng aumpton: H9 f : [, ] [h, R [, contnuou wth ft, c h, on B each ub-nterval of [,] for all c, where h = P ; m β H α, β atfy m α <, m β < ; H A, B wth B P m β P m Conder the boundary-value problem α A. [y t] ht =, t,, y α yξ = A, y β yξ =,. Lemma.35. Aume H4, H, H. If y a oluton of., then y potve on,. The proof of the above lemma mlar to that of Lemma.4; t omtted. Lemma.36. Aume H4, H, H. If y a oluton of., then yt = B h A h hudu d. where α t β β A h α ξ A h ξ A h hudu d hudu d hudu d A =, b = hudu A, a a = α β β ξ α α ξ, B h = β β y hudu d. ξ

43 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 43 Proof. It follow from. that yt = y The BC n. mple y = y β β and Then Let y t y = y α α α β y ξ ξ β y α ξ ξ y Gc = α β c α ξ y hudu d y hudu d. y hudu d β ξ hudu d hudu d A. hudu d hudu d A =. c hudu d c = α β α β ξ α c ξ c hudu d A c hudu d hudu d A. hudu d hudu d It eay to ee that Gc decreang on, and G = α β β hudu d ξ α hudu d

44 44 Y. LIU EJDE-8/96 and Gb = G ξ α = α β hudu A a β ξ α ξ α α β ξ α β α ξ hudu d A <, hudu A d a hudu A d a hudu A d A a A a A d a d A d A =. a Then G <, Gb and that Gc decreang on, mply that A h = y [b, ] and A h atfe α β β A h α ξ A h ξ A h hudu d hudu d hudu d A =. Let xt h = yt. Then.8 tranformed nto Let [y t] f t, yt h, y t =, t,, y α yξ = A α β B, y β yξ =, P 6 = { y X : yt for all t [, ], y t decreang on [, ], yt mn{t, t} max ytfor all t [, ]} t [,].

45 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 45 Then P 6 a cone n X. For y P 6, nce yt = m β yξ m β y β m β ξ β max t [,] y t m = β ξ β βy, we get m max yt β ξ t [,] β γy. It eay to ee that there ext a contant M > uch that y Mγy for all y P 6. Defne the operator T 6 : P 6 X by T 6 yt = B y A y fu, yu h, y udu d, y P 6, where A h [b, ] atfe t α β β ξ A h α ξ A h and B h atfe B h = β β ξ A h hudu d hudu d hudu d A =, y Lemma.37. Suppoe that H9 H hold. Then the followng equalte hold: hudu d. [T 6 y t] f t, yt h, y t =, t,, T 6 y α T 6 yξ = A α β B, T 6 y β T 6 yξ = ; T 6 y P 6 for each y P 6 ; x a oluton of.8 f and only f x = y h and y a oluton of the operator equaton y = T 6 y; v T 6 : P 6 P 6 completely contnuou. The proof of the above lemma mlar to that of Lemma.9; we omt t.

46 46 Y. LIU EJDE-8/96 Theorem.38. Suppoe that H9 H hold and that there ext potve contant e, e, c, L = m β m β d α d, uch that c e σ α W = ξ Q = mn { c L m β m β } ;, c P m β e k σ k k d > e > e σ > e >, m B Q β β P m β ; E = e L, Q > W. If A A3 n Theorem. hold, then.8 ha at leat three potve oluton x, x, x 3 uch that max x t < e h, t [,] mn x 3t > e h, t [k,k] mn x t > e h, t [k,k] mn x 3t < e h. t [k,k] The proof of the above theorem mlar to that of Theorem.; t omtted. Remark.39. In paper [3, 5], uffcent condton are found for the extence of oluton of.. It wa proved that the whole plane dvded by a contnuou decreang curve Γ nto two djont connected regon E and N uch that. ha at leat one oluton for λ, λ Γ, ha at leat two oluton for λ, λ E \ Γ, and ha no oluton for λ, λ N. The explct ubregon of E where. ha at leat two oluton and two potve oluton, repectvely. When applyng Theorem.3 to., t how u that. ha at leat three potve oluton under the aumpton λ P m β P m α λ and ome other aumpton. When applyng Theorem.34 to., t how u that. ha at leat three potve oluton under the aumpton λ P m α P m β λ and ome other aumpton. Remark.4. In paper [58], the author tuded the extence of multple potve oluton of. under the aumpton α β for all =,..., m and other aumpton, when we apply Theorem.34 and Theorem.38 to., the aumpton α β for all =,..., m are deleted. So Theorem.34 and Theorem.38 generalze and mprove the theorem n [58]. Remark.4. The extence problem on multple potve oluton of.8 olved n the cae A, B, but uch problem reman unolved n the cae A, B <, A <, B and A <, B <..

47 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS Example Now, we preent three example, whoe three potve oluton can not be obtaned by theorem n known paper, to llutrate the man reult. Example 3.. Conder the boundary-value problem x t ft, xt, x t =, t,, x = 4 x /4, x = 4 x/. 3. Correpondng to.4, one ee that x = x = x, α =, ξ = /4, ξ = /, α = /4, α =, β =, β = /4, A =, B =. Chooe k = /4, then σ = 4, chooe e =, e = 5, c =. Then L = m α m α d β β m α ξ m α d = 99, Q = mn { c c, L W = uch that c e σ If and e k σ k k d > e > e σ > e >, P m α m A Q α α } = ; 99 = 6; E = e L, Q > W. 5 99x, x [, 4], 6 99, x [4, 44], 6 4 f u = 99 x , x [44, 54], 4, x [54, 4], x 64, x 4, = 99. ft, u, v = f u n t u v, t eay to ee that c e > e σ > e σ > e >, m A Q α α, Q > W and A ft, u, v < 99 for all t [, ], u [4, 4], v [, ]; A ft, u, v > 6 for all t [/4, 3/4], u [54, 84], v [, ]; A3 ft, u, v 99 for all t [, ], u [4, 44], v [, ]; then Theorem. mple that 3. ha at leat three decreang and potve oluton x, x, x 3 uch that x < 4, x 3/4 > 54, x 3 > 4, x 3 3/4 < 54.

48 48 Y. LIU EJDE-8/96 Example 3.. Conder the boundary-value problem x t ft, xt, x t =, t,, x = x /4, x = 4 x /4 4 x / Correpondng to.7, one ee that x = x = x, α =, ξ = /4, ξ = /, α = /, α =, β = /4 = β, A =, B = 5, h =. Chooe k = /3, then σ = /3, e =, e = 8, c = 3 and L = W = uch that c e σ If α Q = mn { c L, e P m β P m β P m β P m β k σ k k d > e > e σ > e >, c d P m β ξ = 55 8, } = 48 ; = 43; E = e L A B P m m Q β β β, Q > W. = 3. A ft, u, v < 48 for all t [, ], u [, 3], v [3, 3]; A ft, u, v > 43 for all t [/3, /3], u [8, 7], v [3, 3]; A3 ft, u, v 3 for all t [, ], u [, 6], v [3, 3]; then Theorem.3 mple that 3. ha at leat three potve oluton x, x, x 3 uch that max x t <, t [,] max x 3t >, t [,] mn x t > 8, t [/3,/3] mn x 3t < 8. t [k,k] Example 3.3. Conder the boundary-value problem x t ft, xt, x t =, t,, x = x/4 x/, x = 4 x/4 x/ 8. 4 Correpondng to.8, one ee that x = x = x, ξ = /4, ξ = /, α = /, α = /3, β = /4 = β, A =, B = 8, h P m = 6. I= β

49 EJDE-8/96 SOLUTIONS TO SECOND ORDER BVPS 49 Chooe k = /4, then σ = /4. Chooe e = 5, e = 5, c = 4 and L = m β m β d α α m β ξ m β d = 48 64, W = uch that c e σ If Q = mn { c L, e k σ k k d c P m β P m β } 56 = ; 48 = 8; E = e L > e > e σ > e >, m B Q β β, Q > W. = A ft, u, v < for all t [, ], u [4, 44], v [4, 4]; A ft, u, v > 8 for all t [/4, 3/4], u [54, 44], v [4, 4]; A3 ft, u, v 3 48 for all t [, ], u [4, 4], v [4, 4]; then Theorem.34 mple that 3.3 ha at leat three potve oluton x, x, x 3 uch that max x t < 54, t [,] max x 3t > 54, t [,] mn x t > 54, t [k,k] mn x 3t < 54. t [k,k] Acknowledgement. The author grateful to the anonymou referee for h/her detaled readng and contructve comment whch mprove the preentaton of th artcle. The author alo want to thank the managng edtor of th journal for h uggeton. Reference [] R. Agarwal, D. O Regan, P. Palamde; The generalzed Thoma-Ferm ngular boundaryvalue problem for neutral atom. Math. Method n the Appl. Sc. 96, pp [] D. Anderon, R. Avery, J. Henderon; Corollary to the fve functonal fxed pont theorem. Journal of Nonlnear Stude. 8, pp [3] S. Chen, J. Hu, L. Chen, and C. Wang; Extence reult for n-pont boundary-value problem of econd order ordnary dfferental equaton. J. Comput. Appl. Math. 85, pp [4] W. Cheung, J. Ren; Potve oluton for m-pont boundary-value problem. J. Math. Anal. Appl. 335, pp [5] K. Demlng; Nonlnear Functonal Analy, Sprnger, Berln, Germany, 985. [6] H. Feng, W. Ge; Trple ymmetrc potve oluton for mult-pont boundary-value problem wth one-dmenonal p-laplacan. Math. Comput. Modellng. 478, pp [7] M. Feng, W. Ge; Potve oluton for a cla of m-pont ngular boundary-value problem. Math. Comput. Modellng. 467, pp [8] H. Feng, W. Ge; Extence of three potve oluton for m-pont boundary-value problem wth one-dmenonal p-laplacan. Nonl. Anal. 688, pp 7-6.

50 5 Y. LIU EJDE-8/96 [9] H. Feng, W. Ge, M. Jang; Multple potve oluton for m-pont boundary-value problem wth a one-dmenonal p-laplacan. Nonl. Anal. 688, pp [] H. Feng, H. Lan, W. Ge; A ymmetrc oluton of a mult-pont boundary-value problem wth one-dmenonal p-laplacan at reonance. Nonl. Anal. In Pre 7. [] H. Feng, H. Pang, W. Ge; Multplcty of ymmetrc potve oluton for a mult-pont boundary-value problem wth a one-dmenonal p-laplacan. Nonl. Anal. In Pre 7. [] G. Galan, A. Palamde; Potve oluton of three-pont boundary-value problem for p-laplacan ngular dfferental equaton, Electronc Journal of Dfferental Equaton. 65, pp -8. [3] M. Garca-Hudobro, R. Manaevch, P. Yan and M. Zhang; A p-laplacan problem wth a mult-pont boundary condton. Nonl. Anal. 594, pp [4] W. Ge; Boundary Value Problem for Ordnary Dfferental Equaton, Scence Pre, Bejng, 7. [5] D. Guo, V. Lakhmkantham; Nonlnear Problem n Abtract Cone, Academc Pre, Orlando, 988. [6] C. Gupta; A pror etmate and olvablty of a non-reonant generalzed mult-pont boundary-value problem of mxed Drchlet-Neumann-Drchlet type nvolvng a p-laplacan type operator. Applcaton of Mathematc. 57, pp [7] G. Infante, J. Webb; Nonzero oluton of Hammerten ntegral equaton wth dcontnuou kernel. J. Math. Anal. Appl. 7, pp 3-4. [8] G. Infante, J. Webb; Three boundary-value problem wth oluton that change gn. J. Integ. Eqn. Appl. 53, pp [9] G. Infante, M. Zma; Potve oluton of mult-pont boundary-value problem at reonance. Nonl. Anal. In Pre 7. [] D. J, M. Feng, W. Ge; Multple potve oluton for mult-pont boundary-value problem wth gn changng nonlnearty. Appl. Math. Comput. 968, pp 5-5. [] D. J, W. Ge; Multple potve oluton for ome p-laplacan boundary-value problem. Appl. Math. Comput. 877, pp [] Y. J, Y. Guo, J. Zhang; Potve oluton for econd-order qua-lnear mult-pont boundaryvalue problem. Appl. Math. Comput. 897, pp [3] L. Kong, Q. Kong; Second-order boundary-value problem wth nonhomogeneou boundary condtonii. J. Math. Anal. Appl. 337, pp [4] L. Kong, Q. Kong; Mult-pont boundary-value problem of econd order dfferental equatoni. Nonl. Anal. 584, pp [5] L. Kong, Q. Kong; Second-order boundary-value problem wth nonhomogeneou boundary condton. Mathematche Nachrchten. 785, pp [6] N. Komatov; Symmetrc oluton of a mult-pont boundary-value problem. J. Math. Anal. Appl. 395, pp [7] N. Komatov, A mult-pont boundary-value problem wth two crtcal condton. Nonl. Anal. 656, pp [8] N. Komatov; A ymmetrc oluton of a mult-pont boundary-value problem at reonance. Abtract and Appled Analy. 6, Artcle ID 54. [9] M. Kwong, J. Wong; The hootng method and non-homogeneou mult-pont BVP of econd order ODE. Boundary Value Problem. 7 7, Artcle ID 64. [3] B. A. Lawrence; A varety of dfferentablty reult for a mult-pont boundary-value problem. J. Comput. Appl. Math. 4, pp [3] E. S. Lee; Qua-lnearzaton, non-lnear boundary value problem and optmzaton. Chemcal Engneerng Scence. 966, pp [3] F. L, Y. Zhang; Multple ymmetrc nonnegatve oluton of econd-order ordnary dfferental equaton. Appl. Math. Letter. 74, pp [33] B. Lu; Solvablty of mult-pont boundary-value problem at reonance-part IV. Appl. Math. Comput. 433, pp [34] B. Lu; Solvablty of mult-pont boundary-value problem at reonance II. Appl. Math. Comput. 363, pp [35] B. Lu; Potve oluton of a nonlnear four-pont boundary-value problem. Appl. Math. Comput. 554, pp [36] Y. Lu; Non-homogeneou boundary-value problem of hgher order dfferental equaton wth p-laplacan. Electronc Journal of Dff. Eqn. 8, pp -43.

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian Electronc Journal of Dfferental Equatons, Vol. 2828, No. 2, pp. 43. ISSN: 72-669. URL: http://ejde.ath.txstate.edu or http://ejde.ath.unt.edu ftp ejde.ath.txstate.edu logn: ftp NON-HOMOGENEOUS BOUNDARY-VALUE

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function

Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function Proc Indan Acad Sc Math Sc Vol 2 No 4 November 2002 pp 55 562 Prnted n Inda Certan fractonal dervatve formulae nvolvng the product of a general cla of polynomal and the multvarable -functon R C SONI and

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

arxiv: v3 [math.ca] 4 Jul 2013

arxiv: v3 [math.ca] 4 Jul 2013 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα