THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE"

Transcript

1 THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208

2

3 THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208

4 THIS BOOKLET IS NOT AN ORIGINAL COPY, BUT A RE-TRANSCRIPTION OF THE BOOKLET PROVIDED TO STUDENTS DURING MATSEC EXAMINATION SESSIONS FOR PURE MATHEMATICS (AM27/IM27). EFFORT WAS MADE TO ENSURE THAT THIS RE-TRANSCRIPTION IS AS ACCURATE AS POSSIBLE. TRANSCRIBED BY LUKE COLLINS CREATED WITH L A TEX 2ε AVAILABLE TO DOWNLOAD FOR FREE AT MMXVIII

5 CONTENTS Pge MENSURATION ALGEBRA 2 HYPERBOLIC FUNCTIONS 3 CIRCULAR FUNCTIONS 4 COORDINATE GEOMETRY 5 CALCULUS I INFINITE SERIES 6 II DERIVATIVES 7 III INTEGRALS 8 IV APPLICATIONS 9 V APROXIMATIONS 2 VECTORS 2 MECHANICS 3 PROBABILITY 4 STATISTICS 6 I FORMULAE 6 II TABLES 8

6

7 MENSURATION Circle Are of circle, rdius r is πr 2 Circumference of circle is 2πr Sphere Volume of sphere, rdius r, is 4 3 πr3 Surfce re of sphere is 4πr 2 Right circulr cylinder Volume of cylinder, rdius r nd height h is πr 2 h Curved surfce re is 2πrh Right circulr cone Volume of cone, rdius r, nd height h is 3 πr2 h Curved surfce re is πrl where l is the slnt height of the cone.

8 ALGEBRA Fctors 3 + b 3 = ( + b)( 2 b + b 2 ) 3 b 3 = ( b)( 2 + b + b 2 ) Permuttions nd Combintions ( ) n n n! C r = = r r!(n r)! n P r = n! (n r)! Finite Series n q=0 ( + qd) = n 2 [2 + (n )d]; n q=0 r q = ( rn ) r n = r=r n 2 n(n + ); r=r 2 = n 6 n(n + )(2n + ); r 3 = r= 4 n2 (n + ) 2 ( + x) n = + nx + n(n ).2 x ( ) n x r + + x n r (n +ve int.) de Moivre s Theorem If n is n integer, (cosθ + isinθ) n = cosnθ + isinnθ. If n is rtionl number, cosnθ + isinnθ is one of the vlues of (cosθ + isinθ) n. 2

9 HYPERBOLIC FUNCTIONS sinhx = ex e x 2 coshx = ex + e x 2 sinh x = ln[x + (x 2 + )] Principl vlue of cosh x = ln[x + (x 2 )] (x ) tnh x = / 2 ln + x x ( x < ) 3

10 CIRCULAR FUNCTIONS sin 2 A + cos 2 A = sec 2 A = + tn 2 A cosec 2 A = + cot 2 A If sinθ = sinα, If cosθ = cosα, If tnθ = tnα then θ = nπ + ( ) n α then θ = 2nπ ± α then θ = nπ + α where n = 0,±,±2,... sin(a ± B) = sinacosb ± cosasinb cos(a ± B) = cosacosb sinasinb tna ± tnb tn(a ± B) = tnatnb sina + sinb = 2sin / 2 (A + B)cos / 2 (A B) sina sinb = 2cos / 2 (A + B)sin / 2 (A B) cosa + cosb = 2cos / 2 (A + B)cos / 2 (A B) cosa cosb = 2sin / 2 (A + B)sin / 2 (A B) 2sinAcosB = sin(a + B) + sin(a B) 2cosAsinB = sin(a + B) sin(a B) 2cosAcosB = cos(a + B) + cos(a B) 2sinAsinB = cos(a B) cos(a + B) sin2a = 2sinAcosA cos2a = cos 2 A sin 2 A = 2sin 2 A = 2cos 2 A tn2a = 2tnA tn 2 A If tn A 2 = t, then sina = 2t t2 ; cosa = + t2 + t 2 4

11 COORDINATE GEOMETRY Perpendiculr distnce from (h,k) to x+by+c = 0 is h + bk + c ( 2 + b 2 ) The cute ngle between two lines with grdients m, m 2 is tn m m 2 + m m 2 Are of Tringle is x x 2 x 3 / 2 [x (y 2 y 3 ) + x 2 (y 3 y ) + x 3 (y y 2 )] = / 2 y y 2 y 3 Circle The eqution x 2 + y 2 + 2gx + 2 f y + c = 0 represents circle with centre t ( g, f ) nd rdius (g 2 + f 2 c). The prmetric equtions of circle with centre t (,b) nd rdius r re x = + r cost, y = b + r sint. Point dividing P P 2 in the rtio k : hs coordintes ( x + kx 2 + k, y + ky 2 + k, z ) + kz 2 + k Angle φ between two lines with direction cosines l, m, n : l, m, n ±(ll + mm + nn ) is given by cosφ = (l 2 + m 2 + n 2 ) (l 2 + m 2 + n 2 ) Distnce from P (x,y,z ) to plne Ax + By +Cz + D = 0 is Ax + By +Cz + D (A 2 + B 2 +C 2 ) Plne distnce p from origin, direction cosines of norml l, m, n, lx + my + nz = p. Line through (x,y,z ), direction cosines l, m, n. x x l = y y m = z z = t. n 5

12 CALCULUS I. INFINITE SERIES Tylor s Theorem f (+x) = f ()+x f ()+ x2 2! f ()+ + xr (r )! f (r ) ()+, with reminder term xr r! f (r) ( + θx), where 0 < θ <. Mclurin s Theorem f (x) = f (0) + x f (0) + x2 2! f (0) + + xr (r )! f (r ) (0) +, with reminder term xr r! f (r) (θx), where 0 < θ <. expx e x = + x + x2 xr + + 2! r! + * log e ( + x) ln( + x) = x x2 2 + x3 3 vlid for < x. + ( )r xr r + sinx = x x3 3! + x5 5! + ( )r x 2r+ (2r + )! + * cosx = x2 2! + x4 4! + ( )r x 2r (2r)! + * sinhx = / 2 (e x e x ) = x + x3 3! + x5 x2r ! (2r + )! + * coshx = / 2 (e x + e x ) = + x2 2! + x4 x2r + + 4! (2r)! + * * These series re vlid for ll finite x. 6

13 II DERIVATIVES f (x) x n sinx cosx tnx cotx secx cosecx e x x ( > o) log e x lnx sinhx coshx uv u v f (x) nx n cosx sinx sec 2 x cosec 2 x secxtnx cosecxcotx e x x ln x coshx sinhx uv + u v (vu uv )/v 2 7

14 III INTEGRALS (Constnts of integrtion re omitted; ln log e ) f (x) ( 2 x 2 ) ( 2 + x 2 ) ( 2 + x 2 ) x ( 2 + x 2 ) ( 2 x 2 ) sinx cosx f (x)dx ( sin x ) ( x ) tn ln{x + (x ( )} or sinh x ) ( 2 + x 2 ) ln{x + (x 2 2 ( )} or cosh x ) cosx sinx tn x ln(sec x) cot x ln(sin x) secx ln(secx + tnx) { ( x or ln tn 2 + π )} 4 cosecx lntn x 2 coshx sinhx u dv dx sinhx coshx uv v du dx dx 8

15 IV APPLICATIONS For curve y = f (x), x b. Are between curve nd x-xis = y dx Men vlue = y dx b Volume of revolution bout x-xis = π y 2 dx Centroid of re between curve nd x-xis hs coordintes x = xy dx y dx ; y = / 2 y 2 dx y dx Centroid of solid of revolution bout x-xis: x = xy 2 dx y 2 dx 9

16 For the re shown in Figure y First moment bout x-xis = 2 y 2 dx y = f (x) First moment bout y-xis = xy dx Second moment bout x-xis = 3 y3 dx 0 Fig. b x Second moment bout y-xis = x 2 y dx For the solid of revolution shown in Figure 2 First moment bout xy-plne = 0 y y = f (x) First moment bout yz-plne = π xy 2 dx 0 b x Second moment bout x-xis = π 2 y4 dx Second moment bout y-xis = π y 2 (x 2 + y2 4 ) dx Fig. 2 0

17 Length of rc = (dy) t 2 2} { + dx = (ẋ 2 + ẏ 2 )dt dx Are of surfce of revolution = 2π y { + ( dy) 2} dx dx t t 2 = 2π y (ẋ 2 + ẏ 2 )dt t { + ( dy) 2} 3/2 Rdius of curvture ρ = dx d 2 y dx 2 = (ẋ2 + ẏ 2 ) 3/2 ẋÿ ẍẏ Polr Coordintes θ 2 Are enclosed by curve = / 2 r 2 dθ θ Length of rc = θ 2 θ {r 2 + ( dr dθ ) r 2 2} dθ = r { + r 2 ( dθ ) 2} dr dr / d p Rdius of curvture ρ = r dr

18 V APPROXIMATIONS Trpezoidl Rule: y dx / 2 h{(y o + y n ) + 2(y + y y n )} Simpson s rule (n even) y dx / 3 h{(y o + y n ) + 4(y + y y n ) + 2(y 2 + y y n 2 ) Newton s pproximtion to root of f (x) = 0: x n+ = x n f (x n) f (x n ) VECTORS Line through point, position vector, prllel to b r = +tb Position vector of point dividing the line joining P, Q with position λp + µq vectors p, q in the rtio λ : µ is λ + µ Plne through point, position vector, perpendiculr to n (r ). n = 0 Sclr product =. 2 = 2 cosθ = x x 2 + y y 2 + z z 2 i j k Vector product = 2 = 2 = 2 sinθ ˆn = x y z x 2 y 2 z 2 2

19 MECHANICS Centre of mss Arc, rdius r, ngle 2θ r sinθ/θ from centre Sector of circle, rdius r, ngle 2θ 2 3 r sinθ/θ from centre Hemisphere, rdius r 3 8 r from centre Hemisphericl shell, rdius r 2 r from centre Solid cone, height h 2 from vertex Conicl shell, height h 2 3 h from vertex Moments of inerti Rod, length 2l, bout perpendiculr xis through centre 3 ml 2 Disc, rdius r, bout perpendiculr xis through centre 2 mr 2 Hoop, rdius r, bout dimeter 2 mr 2 Solid sphere, rdius r, bout dimeter 2 5 mr 2 Sphericl shell, rdius r, bout dimeter 2 3 mr 2 Prllel xes theorem I A = I G + M(GA) 2 Perpendiculr xes theorem for lmin I oz = I ox + I oy Simple hrmonic motion d 2 y dt 2 = ω2 x, ( dx) 2 = ω 2 ( 2 x 2 ), x = sin(ωt + ε) dt Compound pendulum Period = 2π (k 2 + h 2 )/gh Components of ccelertion r r θ 2 long rdius vector 2ṙ θ + r θ perpendiculr to rdius vector 3

20 PROBABILITY Probbility lws P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) P(B A) Discrete vrible X with probbility function P(X = x) Continuous vrible X with probbility density function f (X) Distribution function F(X) F(x o ) = P(X x o ) = x x o P(x) Expecttion of X E(X) = ΣxP(X = x) Expecttion of g(x) E[g(x)] = Σg(x)P(X = x) F(x) = P(X < x) x o = f (x) dx E(X) = x f (x) dx E[g(X)] = g(x) f (x)dx Vrince σ 2 Vr(X) = E[{X E(X) 2 }] Covrince Cov(X,X 2 ) = E[{X E(X )}{X 2 E(X 2 )}] Correltion coefficient ρ 2 (X,X 2 ) ρ 2 = Cov(X,X 2 ) {Vr(X )Vr(X 2 )} Liner regression coefficient, β 2, for X on X 2 β 2 = Cov(X,X 2 ) Vr(X 2 ) 4

21 Probbility generting function G(z) G(z) = P(0) + P()z + P(2)z P(r)z r +, where P(r) = P(X = r) Binomil distribution (X, p,n) P(X = k) = ( N k E(X) = N p ) p k ( p) N k Vr(X) = N p( p) G(z) = [pz + ( p)] N Poisson distribution (X,m) P(X = k) = e m m k k! E(X) = m Vr(X) = m G(z) = e m e mz Norml distribution If X is distributed N(µ,σ 2 ) then X µ σ is distributed N(0,) where σ is the stndrd devition nd σ 2 is the vrince. 5

22 STATISTICS µ, σ 2 popultion men nd vrince X i ith rndom selection in smple size n Smple men X = n ΣX i Smple vrince S 2 = n Σ(X i X) 2 E(S 2 ) = σ 2 E(X) = µ Vr(X) = Vr(X) n = σ 2 n One smple t-test t n = X µ o S/ n Two smple t-test t n +n 2 2 = X X 2 S ( + ) n n 2 where S 2 = Σ(x x ) 2 + Σ(x 2 x 2 ) 2 n + n 2 2 nd n, n 2 re the sizes of the two smples 6

23 Pired smple t-test t n = s 2 = Vr(y) Y S ( ) where Y j = X j X 2 j ( j =,2,3,...,n) nd n Spermn s rnk correltion coefficient ρ ρ = 6Σ d2 n(n 2 ) Kendll s rnk correltion coefficient r ( ) ( ) Number of greed Number of different pir rnkings pir rnkings r = = Number of pirs S 2n(n ) Pired smple Wilcoxon (n > 8) T = (sum of the rnks with the less frequent sign) Z = T T s distributed N(0,); T = n(n + ) ; s 2 n(n + )(2n + ) =

24 Tble The stndrdised norml distribution Entry represents re under the stndrdized norml distribution from the men to Z Z Z 8

25 Tble 2 Percentge points of Student s t-distribution α v t α,v α t 9

26 Tble 3 Percentge points of the χ 2 distribution α v α χ 2 α,v 20

27 Tble 4 Upper percentge points of the F-distribution () α = 0.0 v v α F α,v,v 2 2

28 Tble 4 (continued) () α = v v

29 Tble 4 (continued) () α = 0.05 v v

30

31

32

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795) List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables

Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables Lund University Centre for Mthemticl Sciences Mthemticl Sttistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (06) Probbility theory Bsic probbility theory Let S be smple spce, nd let

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations Quntittive ptitude lgebric Identities nswers nd Eplntions P- (S) d 5 6 b 7 c 8 b 9 c 0 d d 5 d 6 d 7 b 8 9 c 0 c c b 5 6 7 8 c 9 d 0 b d b b 5 6 b 7 c 8 b 9 c 0 d c c b c 5 d 6 c 7 d 8 b 9 c 50 b. Q +

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x) Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

11.4 Graphing in Polar Coordinates Polar Symmetries

11.4 Graphing in Polar Coordinates Polar Symmetries .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1) x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Friday 12 June 2015 Morning Time: 2 hours 30 minutes You

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα