Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Quantitative Aptitude 1 Algebraic Identities Answers and Explanations"

Transcript

1 Quntittive ptitude lgebric Identities nswers nd Eplntions P- (S) d 5 6 b 7 c 8 b 9 c 0 d d 5 d 6 d 7 b 8 9 c 0 c c b c 9 d 0 b d b b 5 6 b 7 c 8 b 9 c 0 d c c b c 5 d 6 c 7 d 8 b 9 c 50 b. Q + y + z ( )( )( ) + y + z yz ( ) Given 997, y 998, z 999 Q + y y yz z [ y z y yz z] + + [( y) + (y z) + (z ) ] [ ] d Q + b + c 8 ( ) + (b ) + (c ) 0 If + y + z 0, then + y + z yz 0 ( ) + (b ) + (( ) ( )( )(b ) (c ) Given + nd y + y nd y Q + y y ( y ) [( + y)( y)] b If + b + c 0, then + b + c bc b c + + bc c b + b + c bc bc bc. 7. c + b + c bc 0 ( + b + c)( + b + c b bc c) 0 ( b c)[( b) (b c) + (c ) ] 0 Q + b + c 0 Then, ( b) + (b c) + (c ) 0 b b c c 0 b 0 b b c 0 b c c 0 c b c. 8. b Q + b b + () b + b + b c 5 yz + z + y y z 7 yz 7 5 yz + z + y Q ( + y+ z) + y + z + ( y+ yz+ z) ( ) ( ) + y + z + y+ z y+ yz+ z + y + z y + z ( b), (b c) 5, (c ) Q + b + c bc ( + b + c)[ + b + c b bc c] ( + b + c) [ + b + c b bc c] ( + b + c) [( b) + (b c) + (c ) ] Q / Eercise - EX-50/PS/7 / Pge

2 + b + c bc + b+ c 6. d. d [( b) + (b c) + (c ) ] ( ) + ( 5 ) + ( ) [ ]. b c + + b c b c b c + + b + b c c b c + +. b c. d ( ) + (b + ) + (c + ) 0 0 ; b + 0 b c + 0 c b + 7c ( ) + 7 ( ) y y 0 ( + ) + y nd y 0 + y 5.. ( + ) + (b ) + (c ) b 0 b c 0 c + b + c d Similrly, b 5 + ; + c > > < b < c. b c. 7. b + b + c + + b + c + + b b + + c c + 0 ( ) + (b ) + (c ) 0 0 ; b 0 b nd, c 0 c + b + c. 8. y + y 7 y k y k + y 7k ( + y) ( y) 9k k y 8k 6k 8k k y k. 9. c + b + c 0 + b c; b + c, c + b + b + b + c + c + c b 0. b c + + b+ c c + + b Epression ( ) ( ) 9. + b + b b b b...(i) gin, b + c c b c b On multiplying (f) & (ii) bc b. b...(ii) EX-50/PS/7 / Pge Q / Eercise -

3 . c + b 5b + b 5 b. c. b + b 5 b On squring both sides, b + b 5 b b b + 5. b p+ p + k ( ) k d c p + p. + k b k ± 8. 8 c d + b b b c + d + b + b c d + b + b b (y componendo nd dividendo) c d b (c d) b c d (c + d) (c d) b.. + b b 0... (i) We know, 6 + b 6 ( ) + (b ) ( + b ) ( b + b ) ( + b ) 0 0 [From eqution (i)] ubing both sides, ( ) Now, ( 6 + ) + ( 6 + ) ( + ) ( 6 + ) 0. + Multiplying both sides by + ubing both sides, y + + y y y ( + y) y + y + y y + y + y 0 y ( y) ( + y + y ) c y ( + y) + y y ubing both sides, + y + y ( + y) y + y + y y y 9. d y y Q / Eercise - EX-50/PS/7 / Pge

4 ubing both sides, y z + y + ( z) 0 + y z + yz + y + ( z).y ( z) 0.. b + On cubing both sides, (i) ( ) d + (Given) +...(i) Epression ( + ) 6 + ( + ). 6 + ( ) [ ].. b +. b On cubing both sides ( + ) On squring ( + ) + + ( + ) ( + ) + ( + )... (i) gin, cubing ( + ) + ( + ) ( + ) + + ( ) + + ( + ) ( + ) 8 ( + ) + ( + ) 8 ( + ) + ( + ) ( + ) + ( + ) 5 ( + ) ( + ) ( + ) 5 ( + ) 5 ( + ) + 5 ( + ). EX-50/PS/7 / Pge Q / Eercise -

5 5. b b b b b ( b) ( b) b b + b b b + b 0 + b ( + b) ( b + b) b ( + b + c) + b + c + (b + bc + c) 6 + (b + bc + c) b + bc + c (6 ) b + bc + c + b + c bc ( + b + c) ( + b + c b bc c) 6 bc 6( ) (y (i)] 6 bc bc bc c + y + z yz ( + y + z) [( y) + (y z) + (z ). c Epression ( + y + z)( + y z) y z Putting, y, z (+ 9 )( + ). 7. c + b + c bc will be minimum if b, c Lest vlue b On squring both side, On squring gin, + + ( + + )(0 + + ) b p q On cubing both sides, (p q) 6 p 8q + p. q p. q 6 p 8q + pq 6p q 6 p 8q 6pq (p q) 6 p 8q 6pq 6 p 8q pq c ( ) 0 0. d On cubing, +. ( ) c d + y + + y y 0 ( ) + y 0 0 nd y 0 + y + 0. Q / Eercise - EX-50/PS/7 / Pge 5

6 6. c p 99 (Given) p(p + p + ) p + p + p p + p + p + (p + ) (99 + ) (00) d 997 y 998 z 999 y y z z y + z y yz z ( + y + z y yz z) ( y y y z yz z z) [( y) (y z) (z ) ] + + [( ) ( ) () ] + + (+ + ) c t t + 0 t + t t + t t + t On cubing both sides, t + t t t t t 6 t t t t 50. b ( b) b + b + k ( ).. + k k (). 8. b p + p + p 7 p + p + p (p + ) () p + p p + p +. EX-50/PS/7 / Pge 6 Q / Eercise -

7 Quntittive ptitude Logrithm Identities nd Progressions nswers nd Eplntions P- (S) b c c d 5 b 6 c c 0 c c b c b 5 c 6 c 7 8 d 9 0 b b c d 8 9 b 0 c b d d c 5 d 6 b 7 d 8 d 9 b 0 c b d b 5 b 6 b 7 8 d 9 c 50 d. b logloglog6 log (log (log6)) loglog ( ) log ( log) log. ( Qlog6 log log ) 5. b + y Q log (log + logy) 5 ( + y) log log(.y) ( + y) log log(.y) y + y + y (y) y 5 5. c log0 79 log log0 + y + y y 5 5 y y log0 log log0 6log0 log log0 y. y + log c logloglog 0 0 loglog log 8.. d Q log (b) 6. c y log( + y) log y + y 5y 5 y log log5 y log logy log5. log + log b + log b log b log log + + b b + logb + logbb 7. log + log + log 6 log + log + log log n [ Q logm nlogm] 8. log b. b Q / Eercise - EX-50/PS/7 / Pge

8 Let 7log + 5log + log 5 80 m Q log logm logn n 7(log6 log5) + 5(log5 log) + (log8 log80) 7(log log( 5)) + 5(log5 log(8 ) + (log log(6 5)) 7(log log log5) + 5(log5 log log) + (log log log5) log. 9. c Let logy logz.y logz log.zlog logy logy logz log y z.. logz log logy y z logy logz logz y.. logz log y logz y. 0. c Let log b log b c log c k k b, b k c, c k k.b k.c k (bc) k b c.. c Q log 0 log 0 log0 log0 log0 00 log0 log logb log ( Q b ). b Q + b c c b...(i). c Given series is n P. S n n [ + (n )d] n 5,, d 5 S n [ + (5 )] 5 [ + 8] 5.. b Given series is GP.,r nd T n Q T n r n 56 n n 7 n 8. 8 n c Lst term + (n )d + (50 ) c Let its n th term be. Q 68, d 68 + (n ) ( ) 6 n + n 8 n th term + 6d 8...(i) th term + d 66...(ii) y using equtions (i) nd (ii), we get 0, d, Then, its 0 th term is ( ) d Let the nth term be Let + log c+ b log (c ) b log b (c + ) + log b (c ) log b (c + )(c ) log b (c ) log b b log b b. (from (i)) Q 5 nd r, then n n n 7 n 7 n EX-50/PS/7 / Pge Q / Eercise -

9 9. Let the rithmetic men be, nd, then,,,,, re in P d b, here b,, n n+ d 7 + So, the required rithmetic mens re + 7, + 7 8, Hence, three.m s re, 8, Q, b nd c re in GP b c Tking logrithm on both sides, we get log b log (c) log b log + log c log b log + log c log b is the rithmetic men of log nd log c. Therefore, log, log b nd log c re in P.. b,,,,... re in P. nd + (n )d 5.5 +( )d (Since n ) d b The students will follow the rule 75, 70, 65,..., (n P series) where n + (n )d Here n 75 nd d (n ) ( 50) n 5 n 6. Hence, number of rounds c Let the numbers be ( d),, ( + d). Then, ( d) + + ( + d) 7 ( d) ( + d) 5 ( d ) 5 7(9 d ) 5 9 d 5 d d± If d, then numbers re 5, 7, 9 If d, then numbers re 9, 7, 5.. lerly, the numbers between 00 nd 00 which re divisible by re 0, 0, 07,..., 99. Let n be the number of terms in P. Then, n (n ) 98 n n 0 n 67 n 67 + n Sum ( ) ( 0 99) , 9 6, then r (i) r (ii) On dividing eqution (ii) by (i), we get 8 r 6 5 r 8 r 8 r Substituting the vlue of r in eqution (i), we get The GP is,,, Given sequence is,,,, The reciprocl of the sequence is in P i.e., 0 8,,, It cn be written s,,,,... Here in P,, d 8th term, 8 + (n )d + (8 ) Here 8th term of HP is. 7. d We hve; b lerly, R.H.S. is geometric series with first term nd common rtio. b b b b b + Hence, the vlue of b b + is. 8. Given, r, lst term l 9 nd sum S 8. Let be the first term. lr S, 8 9 r b Here 6, common rtio r 0 r (0 ) r 9, then 0th term 9 ( 6) ( 6) 5. Q / Eercise - EX-50/PS/7 / Pge

10 0. c Here,, r 89 Sum of si terms, S6 6. ( ) 6. b Let be the first term nd d be the common difference of the given P. Then, p times p th term q times q th term. p [ + (p ) d] q [ + (q ) d] p [ + (p ) d] q [ + (q ) d] 0 (p q) + [p (p )] q (q )] d 0 (p q) + [(p q ) (p q)] d 0 (p q) + (p q) (p + q ) d 0 (p q) [ + (p + q ) d] 0 + (p + q ) d 0 p+q 0 The (p + q)th term of the given P is zero.. d Sum 9 ( + r + r +... ) 9 r 9 Sum of the squres 7 ( + r + r +... ) 7 (i) 7 (ii) r On dividing the squre of (i), by (ii), we get ( r) ( 9) r + r r. 7 r Putting r in (i), we get 9 9 The GP is 9, 9, 9, d Let nd d be the first term nd common difference of given P. Then, S sum of n terms n S [ + (n )d] (i) S sum of n terms n S [ + (n )d] (ii) nd S sum of n terms n S [ + (n )d] (iii) n Now, S S [ + (n )d] n [ + (n )d] n [ + (n ) d] n (S S ) [ + (n ) d] S.. c Here, 7, d n 0 n + (n )d (n ) 9 7 9(n ) n 8. n d lerly, repetition tkes plce for ech set of four terms. Hence, 507 th term will be 507, when divided by, gives s reminder nd rd term is. 6. b Sum of n terms of GP n (r ) (when r > ) r 8 ( ) 6560 (656 ) d, b, b is n P with first term nd common difference b Now, t 0 + (0 ) ( b) 0 9b (i) t 0 + (0 ) ( b) 0 9b (ii) From eqution (i) (ii), 0 0 9b + 9b 0b 0 b From eqution (i), 0 9b 9 t 9 + ( ) ( ) d Epression n(n+ ) n(n+ ) n n + n+ n n + n + n +. EX-50/PS/7 / Pge Q / Eercise -

11 9. b First term, n ommon difference d n + n + n n n nth term + (n ) d + (n ). n + n n n n+. n n 0. c Epression to n terms ( to n terms) ( to n terms) 9 9 [(0 ) + (00 ) + (000 ) +... to n terms] 9 [( to n terms) n] [Q hs been dded n times] 9 [ 0 ( to n terms) n] n ( 0 ) 0. n [ Q to n terms 0 n 0 n. 8 9 ( ). b We know tht n(n + ) n (000 + ) n 0 ] n to n terms is Geometric series whose first term is nd the common rtio (r) is. n ( r ) Sn r n n n. n n. n n.. d ( ) Number of terms 99 Middle term th term 00. Second Method It is n rithmetic series., n 98, d common difference Number of terms n n + ( n )d 98 + (n ) (n ) n Middle term th term 50 + (50 ) b Q ( + b) ( b) b (0 + 5) (0 5) n n. 5. b The lrgest number will be 6. For n (n ).n(n + ) 6, for n, (n ) (n) (n + ) etc. 6. b Epression, n n(n + )(n + ) Q / Eercise - EX-50/PS/7 / Pge 5

12 8. d S S ( ) ( ) We know tht sum of squres of first n odd nturl numbers n(n ) Sum of squres of first n even nturl numbers n(n + )(n + ) Hence, S 5( 5 5 ) 5(5 + )( 5 + ) S c n n(n + )(n + ) ( ) ( ) d Using formul n n(n + ) we hve, (55) EX-50/PS/7 / Pge 6 Q / Eercise -

13 Quntittive ptitude Mensurtion- (Solid Figures) nswers nd Eplntions P- (S) d b b d 5 b 6 d 7 b 8 9 d 0 b d c 5 6 b 7 b 8 d 9 c 0 b b c d 5 b 6 7 d 8 b 9 0 d d d 5 b 6 d 7 d 8 b 9 d 0 b d c c 5 b 6 c 7 b 8 9 d 50. d Thickness of the wood.5 cm cm Internl length of bo cm. Internl bredth of bo cm. Internl height of bo cm. Volume of the bo 5 7 cm. 7 Volume of one brick 6 cm. Let the required number of bricks be n. Volume of thebo 5 7 n Volume of one brick 7 5. b Let the dimensions of the rectngulr bo be 5, 6 nd. Totl surfce re (lb + bh + hl) ( ) Volume of the bo m. 6. d Volume of wter to be filled in tnk m Volume of wter flow into tnk per hour m/hour Time required to fill 8 m wter level in tnk hours b Totl re of room to be pinted [ + ] + 5 m cm bricks. 7. b Q hectre 0,000 m re of the ground m Volume of rin wter collected m b Rte of flow of wter m/min 60 Fll of wter into the se in one minute m 0,00,000 litre.. d The dimensions of the new room re ll twice the originl one. Hence, the re shll be four times the originl one. ost shll be four times the originl cost of covering the wlls with pper. Hence, cost of covering the wlls of new room with pper 80 `,90. 0 cm 0 cm 0 cm 5 cm 5 cm Volume of the bo length bredth height cm. 5 cm Q / Eercise - EX-50/PS/7 / Pge

14 9. d Let sides of the cuboid be l, b nd h. Then, lb, bh 0, hl 5 lb bh hl 0 5 (lbh) 600 lbh 60 cm. 0. Volume of wter to be filled Wter flowing per hour out of pipe π (7 0 ) 5 0 Totl required time hours b cm cm 8 cm Length of bo ( ) 8 cm Width of bo 8 cm Height of bo cm Surfce re of bo 8 + ( + 8) cm.. d Volume of the bo (56 5 8) cm Volume of sop cke (8 5 ) cm Number of sop ckes c Let r be the rdius of the hole. Thickness t + r 0 r 0 t V r 000 Internl volume π ( ) 000π( 0 t) Volume of solid cylinder V π( 0) ( 000) ( ) π V ( 0 t) V ( 0 ) Thickness of the shell is 5 cm.. Number of turns 0 t t 5 0 Length of cylinder 0 imeter of wire 0. 9 Length of wire in ech turn 5 cm 7 Length of totl wire 5 0 cm 5.6 m. 5. re of curved surfce πrh π b Volume of ech mrble Q π 880 cm. 7 r π. π Volume of wter tht rises in the cylinder πr h 7 π. (5.6) 7 7 π 5.6 Totl number of mrbles... π b Volume of wter through circulr pipe Volume of wter through cistern Time πrh volume of cistern volume of wter/sec through pipe sec hour 0 minutes. 600 πrh πrh π r h 8. d Volume of wter column n volume of sphericl mrble (where, n is the totl number of sphericl mrbles submerged).. π (9). n π 9 9. π 9 9 n... π c Volume of erth dug out π () 0 m Volume of erth dug out QRise in field level re of rec tngulr field 0 0 cm EX-50/PS/7 / Pge Q / Eercise -

15 0. b π r r 7 Volume of cylinder 7 r πr h cm 7. b If the height of incresed wter level be h cm, then π rh πr h h cm. c Initil re of the cylinder Volume of the new cylinder. πr h πr h π (.r).h Increse in re (. ) πr h 0. πr h Percentge increse 0.πr h 00.% πrh. re of the curved surfce 6 5 sq. cm. π rh + π r π r 6 π r r 9 π r 9 7 cm. d Volume of wter drwn from cylinder 5 5 π rh h h 000 cm h cm b ircumference of the bse of the cone π r m r 7 m, height 9 m Volume of ir contined in the conicl tent πr²h m R h r V π R h V π (r) (r) π (9r r) 9πr. 7. d Let the rdius of their bse be r nd the height be h. Slnt height of the cone Then, πrh πrl rh r h r π π + h h r + h h + r r h i.e. :. l h r + 8. b We hve r R h H or R r, V πr²h, V π R²H V RH V r h 7 V cm dditionl wter cm. 9. Volume of cone rh π π 6 6 Volume of sphere Hence, r 6 cm. r π r π π 6 6 Q / Eercise - EX-50/PS/7 / Pge

16 0. Volume of cone π rh 7 7 cu.cm. Volume of cubicl block 0 5 cm. 00 cm. Wstge of wood 00 cm cm % Wstge % 00. d Let height nd rdius both of cylinder chnge by %, then volume chnges by + + % % ( )% 7.8%. Volume of the cone π rh, new height h + 00%h Percentge increse in volume 00%. d Rdius of lrger sphere R units Its volume R π cu. units Volume of smller cone R π cubic units Volume of smller sphere R π π r πr R R r r Surfce re of smller sphere Surfce re of lrger sphere πr :πr r :R R :R : ( ) : ( ) :. d re of the curved surfce πrl where, l r h () (60) 6 68 cm + + re of the curved surfce π rl 60 7 Totl cost of pinting 5 60 `.9 ppro b Volume of the copper sphere Volume of the wire Let l be the length of the wire. Then, π π (0.) l π 6 l,800 cm 8 m. π d Surfce re of sphere πr Volume of sphere r π π r πr r unit. Volume π () 6π unit Now, let the rdii of the spheres be,, nd. Totl volume r π ( ) π + () + () + () (8 ) π 7 6π π 8 8 Therefore, rdius of lrgest sphere unit. EX-50/PS/7 / Pge Q / Eercise -

17 7. d Volume of hemisphere r π So, π r 6. r.6 π r 6 r 6 6. Let the volume be 8 nd 7 Their rdii re nd The rtio of their surfce re : 9 : 9. c Originl surfce re of sphere πr Surfce re of sphere π(r) 6πr πr (originl surfce re). c Surfce re of sphere r π r r 6 i.e. :. r r b curved surfce re of hemisphere Rtio curved surfce re of cone r πr π r r + h :. [ Qr h] r cm 5. b Lterl surfce re of prism Perimeter of bse height cm. 9. d Volume of bigger sphere (8) π Let n be the number of smller spheres. Then, n π () π(8) n b Volume of sphere Volume of wire π (r) l π (0.) 600 Let rdius of sphere be r. Then, r 6 r cm. π π. d Volume of the sphere or 88 π r () r π 6. c Volume of pyrmid 6 bsere 9 se re cm bse re height Q se re (where is one side of the bse of the pyrmid) 8 cm Perimeter of the bse of the pyrmid cm. or r () 7 7 or r The curved surfce of the sphere πr 6 cm. 7 Q / Eercise - EX-50/PS/7 / Pge 5

18 7. b E 9. d Totl surfce re Perimeter of bse height + re of bse (5 + ) cm. F 50. re of the tetrhedron re of bse height Height of the tringle cm re of the lterl surfce of pyrmid re of tringle bse height cm. re of the bse 9 cm (side) Now, length of the perpendiculr In the equilterl tringle 9 9 cm 8. re of the bse of prism cm. Volume re of bse height 8 9 height 8 height 9 cm. 9 Height 7 6 cm Required re cm. EX-50/PS/7 / Pge 6 Q / Eercise -

19 Quntittive ptitude Geometry - Qudrilterls, ircles & oordinte Geometry nswers nd Eplntions P- (S) c d b b 5 d 6 c 7 b 8 b 9 d 0 c b c c 0 d c c 5 b 6 7 b 8 c 9 b 0 c d b b 5 b 6 d 7 c 8 c 9 d 0 d c b d d 5 b 6 c 7 b 8 9 c 50 c. c 0º 0º 0º 80º 60º E 0º 60º 0º In E, E 80º nd E 60º. E 0º, 0º (ngles in the sme segment). lso, 0º (given). bisects. nd subtend 0º t the circumference.. subtends 0º t (... E 80º, E 0º) subtends 60º t ( ).. 0º nd 0º. bisects.. d 5 cm E 9 cm re of trpezium ( ) 5 ( ) F 5 7 F F 5 cm F + F. b EF Now, F nd EF 5 cm 9 5 F cm F + F cm. P O S Q cm PQR 0 PQO 60 In POQ, OPQ 80º 90º 60º 0º sin OPQ OQ PQ OQ PQ sin 0º 6 QS (OQ) 6 cm. {Q OS OQ}. b Sum of the ngles of regulr polygon of n sides (n ) 90º (n ) 90º 080º n n + 6 n 8. R Q / Eercise - EX-50/PS/7 / Pge

20 5. d If the number of sides of regulr polygon be n, then (n ) n (n ) 5n 6n 5n n. 0. P 6. c Sum of interior ngles of regulr polygon (n ) 90º Where n number of sides (n ) 90º 0º n n 6 n n b Q Q { is rhombus} P In s PQ nd Q, P Q; Q: Q Q PQ nd Q re similr. + Q Q + P Q + Q E Point is the mid-point of E. Q is the mid-point of E, In s Q nd QE, Q QE Q QE Q QE oth tringles Q nd QE re similr. Q QE Q Q :.. c Q Q :. H O G F 8. b O E The length of the digonl of is. y midpoint theorem, the length of ech side of squre 9. d 90º (ngle of semi-circle) 0º 80º 90º 0º 60º gin, + 80º 80º 60º 0º EFGH is.. Let O be the centre of the circles. If touches the inner circle t, then O is perpendiculr to nd is the midpoint of. O O 5 cm. cm. The sum of opposite ngles of concylic qudrilterl 80º º O 5 cm cm EX-50/PS/7 / Pge Q / Eercise -

21 . b We hve, TQR similr to PTR, ( R is common QTR TPQ, lternte segment) TQ PT PT QR 6 TR.5 cm. QR TR TQ 7.. c r cm L M O 6 cm 8 cm r E is the bisector of. Let r be the rdius of the circle. Then, In MO, 8 + r... (i) In LO, 6 + ( + ) r... (ii) Solving (i) nd (ii), we get 6 cm nd r 0 cm imeter 0 0 cm. lternte: r 6 r 8 r 0 cm cm P ~ P P 5. P cm P 5. is tngent to circle t. is chord through. Hence, E 6º (ngle between the chord nd tngent is equl to the ngle in the lternte segment.) E + E + E 80º (Sum of the ngles of tringle) E 80 {6 + 6 } N P P 90º ; N P 8 cm ; P 6 cm P + P cm Now, PN PN 90 {Q N is the foot of the perpendiculr drwn from the point P on } P N + NP nd P N + NP P P N N 6 6 (0 ) cm c O P PO OP 90º nd O 0º P 60º {Q Sum of ll ngles of qudrilterl is 60º} lso, line PO bisects P eqully in two prts. PO 0 P 60 :. PO 0 0. S T Q O P R OQ OP 90º QOP + QP 80º QOP 80º º 8º QOP SOR RTS {Q ngle mde by the rc on the circumcircle is hlf the ngle mde t the centre} RTS 8 7. Q / Eercise - EX-50/PS/7 / Pge

22 . M nd M re secnts to the circle from the sme point M. M M M M (M + ) 5 M (6 + ) 5 M 0 5 M M 8 cm M M 8 5 cm.. d X P Q T R S Join XT perpendiculr to line l. QT RT...(i) PT ST...(ii) (Perpendiculr from the centre of circle to chord bisects the chord.) Subtrcting (i) from (ii), we get PT QT ST RT PQ SR Hence, SR cm.. c Let ech side of the tringle be cm. E R Then, r G cm l. c Required re of the tringle 56 cm. P R O Q S OP OR 5 cm, PQ 6 cm nd RS 8 cm. Since O PQ nd O RS, then P Q cm nd R S cm. In OP, right-ngled t, OP O + P 5 O + O O cm Similrly, in OR, OR O + R 5 O + O O cm Now O O cm. 5. b OQ OR OP (Rdii of the sme circle) ORQ OQR 0º Similrly, OPQ OQP 0º PQR OQP + OQR 0º + 0º 70º Since POR PQR 70º 0º (ngle t the centre is twice the ngle t circumference). G cm Let rdius of circumcircle be R cm nd rdius of incircle be r cm. Then, R G R nd cm. r G E πr πr cm 6. O Let nd be the centres of the two circles.. 5 O O nd O O Since 5 cm EX-50/PS/7 / Pge Q / Eercise -

23 O O cm re of the portion bounded by the rcs re of sq. (re of qudrnt) π () ( π) sq. cm. ommon chord (O) 5 cm. 0. c Trnsverse common tngent 7. b P S 5 cm cm R Q O (r + r ) () (5 + ) Let be the chord of length 6 cm. 5º O 5º { Q O 90 } cm cos O O cos 5º O O cm 8. c O cm. Length of the direct common tngent 5 cm O cm O is right-ngled tringle, right-ngled t. So, + O O O 5 cm, O cm Hence, cm. () 6 cm. 9. b Let be squre nd cm P P Q Q R R S S cm cm S cm cm P cm cm Q cm cm R cm. d (distnce between two centres) (r r ) () (7 ) 69 5 cm. E lso [ngle between the chord nd tngent is equl to the ngle mde by the chord in the lternte segment] In 7 cm. E Q / Eercise - EX-50/PS/7 / Pge 5

24 . b PR PQ + PR + 5 PR 5 5 cm O P r re of tringle Semiperimeter of tringle. b O 0º OP 90º OP 90º P + O + OP + OP 60º P + 0º + 90º + 90º 60º P 80º 0º 70º + 5 (Pythogoren Triplet] is right ngled tringle. 90º ngle t the circumference Since, imeter of circle 5 cm ircum rdius.5 cm. 5. b Simply, check through options & find Pythgoren Triplet 7. c 8. c 6 cm [Or, in the bove figure, QR r + + r r ] O P Join. O + O ( + ) In P P + P P eterior ngle sum of interior opposite ngles P O (50 + 0) 5. P O 6. d P Sides 8,, 0 r r r r + r P O 0º O 5º In P P P + P 5º (Eterior ngle) 9. d P r Q r r + r R Q O QOR 0º OPR 5º QPR 0º 55º R EX-50/PS/7 / Pge 6 Q / Eercise -

25 OR OP OPR PRO 5º. d y y d 70 OQR ORQ 5 PRQ 5º + 5º 60º E H G F E H E F G F G H E + E + G + G H + F + F + H cm (0, ) (0, ) (, 0) (, y ) (, 0) + y Required ltitude Since point is the intersection of lines y + 0 nd + y Solving the two equtions, we get nd y units.. d Y Q(5, ). c Y P(, 0) X (0, ) y PQ (5 ) ( 0) + PQ re of circle with rdius PQ π(pq) π(5) 5π sq. units.. b re of tringle Y O (0, ) (, 0) ()() (, 0) X + y ()() 6 sq. units. O 90º dimeter {if ngle mde by chord on the circle is 90º, then the chord is the dimeter of the circle} + 5 rdius.5. X 5. b Eqution of line is y 7. Points (, b) nd ( +, b + k) re lying on the line. Then, b 7 b 7 nd + (b + k) 7 + b k b k 0 k 0 {Q b + 7 0} k. 6. c (0,) O y (0,) (,0) (,0) y 0 is the eqution of y-is. y 0 is the eqution of -is. Putting 0 in + y, y Putting y 0 in + y, Putting 0 in + y 6 y 6 y Q / Eercise - EX-50/PS/7 / Pge 7

26 Putting y 0 in + y 6 6 O ; O O ; O Required re O O 9. c Y X O P Q X sq. units. 7. b + 0 nd y 9 0 y, 8. + y 8... (i) y... (ii) Eqution (i) + (ii) gives, 6 + y y y 9 y Putting y in (ii) y (p, q) (, ) nd hence, p + q 7 Y Eqution of stright line prllel to -is ; y Here, Eqution is : y 50. c + y 0... (i) + y 0 y From eqution (i), y + y 0 0y 0 y 0 0 (, b) (, ) + b + EX-50/PS/7 / Pge 8 Q / Eercise -

27 Quntittive ptitude 5 Trigonometric Rtios nd Identities nswers nd Eplntions P- (S) b c c 5 c 6 c 7 c 8 d 9 d 0 b c c b 9 b 0 c c b c 5 b 6 b 7 8 c 9 c 0 b d d 5 6 b 7 c 8 c 9 d 0 d b b 5 6 d 7 d 8 b 9 c 50 d. b sin6 sec cos8 cosec8 ( ) ( ) cos 90 6 cosec 90 cos8 cosec8 cos8 cosec 8 (). cos8 cosec 8 [Q sin (90º θ ) cos θ cosec (90º θ ) sec θ ]. c tn5 tn5 tn0 tn5 tn65 tn85 ( tn5 tn85 )( tn5 tn65 ) tn0 [Q tn 5 ] ( ) ( ) tn5 tn 90 5 tn5 tn 90 5 tn0 ( tn5 cot5 )( tn5 cot 5 ) tn0.. tn tn tn...tn89 ( ) ( ) ( ) tn tn tn tn87 tn88 tn89 cot89 cot88 cot87...tn87 tn88 tn89 ( cot89 tn89 )( cot88 tn88 )( cot87 tn87 )...(cot tn )tn c ( cos 60 + sin 0 ) ( tn 60 + cot 5 ) + sec 0 ( ) () c 6. c + ( + ) sinθ + sinθ + sinθ sinθ + sinθ sin θ + sinθ + sinθ sinθ + cos θ cos θ cos θ cos θ sin cot cos lternte method: cos sin ( cos ) + sin ( + cos )( cos ) cos sin ( cos ) + sin cos cos + cos cosec. sin sec θ+ tn θ. Q / Eercise - 5 EX-505/PS/7 / Pge

28 7. c tnθ sec θ + tn θ cosθ sec θ 5 cosθ cosθ b cos(0º + ) sin0º cos(0º + ) sin(90º 60º) cos(0º + ) cos60º 0º + 60º 0º. cot + cot cot + cot. c ( ) [cosec ] + (cosec ) ( Q + cot cosec ) cos ec cos ec + + cos ec cosec cosec. 8. d 9. d 5sin 0 cos 5 tn sin0 cos60 + tn5 5 ( ) π π< < eists in III qudrnt. Hence, sin is negtive nd tn is positive. sin ± cos sin sin, cos ec. Using sinα sinβ cos( α β) cos( α+β ), we get sin sin cos( ) cos( + ) cos cos.. c Using + sin sin sin cos 5. + nd cos cos sin sin + sin cos sin sin We get, cos cos + sin sin + cot. ( sinθcosθ) (sin θ) sin θcos θ ( + cos θ) cos θ ( cos θ) sin nd tn cos tn cosec sin( ) sin( ) sin0º 0º... (i) nd cos( + ) cos( + ) cos60º + 60º...(ii) From (i) nd (ii), we get 5º nd 5º. EX-505/PS/7 / Pge 6. sin θ tn θ. cos θ sin θ (cosθ ) sin θ (cosθ ) sin θ+ (cosθ ) sin θ (cosθ ) sin θ+ cos θ cosθ+ sin θ(cosθ ) sin θ cos θ+ cosθ cosθ+ sinθ sinθcos cos θ+ cosθ ( cos θ ) + sin θ( cos θ) cos θ( cos θ) ( + sin θ) + sin θ. cosθ cosθ Q / Eercise - 5

29 7. Given sin α cos α 6 cot 6 α cot cos α α cot α 6 sin α sin α cot α 6 sin α cot α sin α cosec α cot α. 8. b ( + tnθ + sec θ)( + cot θ cosec θ) 9. b sinθ cosθ cosθ cosθ sinθ sinθ cosθ+ sinθ+ sinθ+ cosθ cosθ sinθ (sinθ+ cos θ) sinθcosθ + sinθcosθ. sinθcosθ sin sin cos + cos cos sin cos sin tn. + cos cos 0. c We hve, cos θ cot θ sin θ cot θ+ cosec θ cos θ sin θ sin θ cos θ sin θ sin θ cos θ. ( Qcos cos sin ). c We hve, sin(60 +θ) sin(60 θ ) cos60 sinθ [ Q cos.sin sin( + ) sin( )] sinθ sin θ tn( + ) π π tn( + ) tn tn Q π ' ' ' ' c c 599 π 8π c u n cos n α + sin n α u 6 cos 6 α + sin 6 α (cos α) + (sin α) (cos α + sin α) cos α sin α(sin α + cos α) [Q + b ( + b) b( + b)] cos α sin α u cos α + sin α. (cos α) + (sin α) (cos α + sin α) cos α. sin α cos αsin α u 6 u + ( sin α cos α) ( sin α cos α) b ( + sec 0º + cot 70º)( cosec 0º + tn 70º) ( + sec 0º + tn 0º)( cosec 0º + cot 0º) [Q tn (90º θ) cot θ; cot(90º θ) tn θ ] sin0 cos cos0 cos0 sin0 sin0 + cos0 + sin0 cos0 ( ) cos0 + sin0 sin0 cos0 sin0 + cos0 sin0. b tn + tn tn( + ) tn tn We hve, 7 tn nd 8 tn 5 cos 0 + sin 0 + sin0 cos0 sin0 cos0. [Q sin θ + cos θ ] Q / Eercise - 5 EX-505/PS/7 / Pge

30 6. b sin α + 5 cos α 7 sin α + 5( sin α) 7 sin α sin α 7 5 sin α sin α sin α sin α + 0 sin α 8 0 sin α (5 sin α ) + (5 sin α ) 0 ( sin α + )(5 sin α ) 0 sin α 5 cos α cosα cot α sinα {becuse sin α sin θ sin 0º θ 0º θ 5º cos(75º θ) cos(75º 5º) cos 60º. } + sin θ + sinθ sin θ sin θ + sin θ 0 sin θ + sin θ 0 sinθ or sin θ.. cos θ sin θ cos θ ividing by cos θ, sec θ tn θ ( + tn θ) tn θ tn θ tn θ + 0 tn θ or tn θ. ut tnθ { Qsinθ cos θ} tn θ.. d sin θ + cos θ cos(90 θ ) ividing both sides by sin θ, + cotθ cot θ. sinθ 8. c P sinθ P cosθ On squring nd dding, P sin θ + P cos θ + P (sin θ + cos θ) P P. 9. c nd re complementry ngles. So, + 90º 90º sin sin (90º ) cos cos cos (90º ) sin tn tn (90º ) cot cot cot (90º ) tn Given, sin cos + cos sin tn tn + sec cot sin + cos cot tn + sec tn b sec θ + tn θ sinθ + cosθ cosθ + sin θ cosθ + sin θ + sinθ cos θ. cos + cos cos cos sin Squring both sides, cos sin sin + sin cos + cos.. d.m. G.M. 5. sec α+ 9cos α sec α 9cos α sec α+ 9cos α 6sec αcosα Lest vlue of sec α+ 9cos α. sin + cos sin cos cos sin cos + sin + cos sin cos sin + + cos sin( cos ) + sin cos + + sin cos ( + cos ) sin ( + sin) cos + sin cos + sin. 6. b sin θ + sin θ ( sin θ) (cos θ) cos θ EX-505/PS/7 / Pge Q / Eercise - 5

31 7. c sin θ 0.7 cos θ sin θ (0.7) c.sin 60º tn 0º sec 60º cot 5º 9. d + sinθ + sinθ ( + sin60 + sin60 ) + + ( + + ) ( + + ) ( + ) + ( ) ( + + ) cos0 θ cos 0. d tn θ e sec θ + tn θ cosec θ sec θ + tn θ tn θ cosec θ sec θ + tn θ sin θ cosθ sinθ sec θ + tn θ sec θ ( + tn θ) ( ) + tn θ (+ tn θ) e ( ) ( + tn θ + e ) ( ). sin 60º tn 0º tn 5º cosec 60º cot 0º sec 5º. ( ) 0.. b Epression cos 60 + sec 0 tn 5 sin 0 + cos 0 + [Q sin θ + cos θ ] sin θ + 5 cos θ 5...(i) Let 5 sin θ cos θ...(ii) On squring nd dding both equtions ( sin θ + 5 cos θ) + (5 sin θ cos θ) sin θ + 5 cos θ + 0 sin θ cos θ + 5 sin θ + 9 cos θ 0 sin θ cos θ sin θ + 9 cos θ + 5 cos θ + 5 sin θ (sin θ + cos θ) + 5 (cos θ + sin θ) ±.. b tn sin 5º cos 5º + sin 0º + + tn tn 5º 5º 5. sin cos ( 6º) cos (90º ) cos ( 6º) 90º 6º 90º + 6º + 6º 6 9 Q / Eercise - 5 EX-505/PS/7 / Pge 5

32 6. d Epression + θ θ sin + sin sinθ + sinθ + θ + θ θ θ ( sin )( sin ) + ( sin )( sin ) ( sin θ )(+ sin θ ) (+ sin θ)( sin θ) (+ sin θ) ( sin θ) + sin θ sin θ (+ sin θ) ( sin θ) + cos θ cos θ + sinθ sinθ + cosθ cosθ + sinθ+ sinθ sec θ. cosθ cosθ 9. c tn θ sin θ sinθ sin θ cosθ cosθ cosθ sin θ cos θ sin θ cos θ 7. d tn + cot sec, cosec tn + cot ( + tn ) ( + cot ) tn + cot ( + tn + cot + cot tn tn + cot tn cot cot tn [tn cot ] 8. b cos θ cos θ + 0 ( cos θ ) 0 cos θ 0 cos θ cos θ cos 60 θ 60º tn (θ 5º) tn (60º 5º) tn 5º 50. d 60 90º 60º 80º 90º 60º 0º cos cos 0º :. EX-505/PS/7 / Pge 6 Q / Eercise - 5

33 Quntittive ptitude 6 Trigonometric Identities (ont.), Heights nd istnces nswers nd Eplntions P- (S) b b c c 5 b 6 d 7 c 8 b 9 d 0 b b b b 5 d 6 c 7 8 b 9 c 0 b c b 5 b 6 d 7 8 c 9 b 0 b b d b 5 b 6 d 7 d 8 b 9 0 c d c b b 5 b 6 b c. b Mimum vlue of sin θ + b cos θ + b Mimum vlue of sin θ + cos θ tnθ 5 5tnθ b tn θ cot θ Q cosec θ cot θ cosec θ + cot θ c cosecθ cotθ 7...(i) cosec θ cot θ (cosecθ + cotθ) (cosecθ cotθ) cosecθ + cotθ cosec θ cot θ 7...(ii) On dding both equtions. 7 cosecθ cosecθ 5 8. c 5 tn θ tnθ 5 5sinθ cosθ 5sinθ+ cosθ ividing numertor nd denomintor by cos θ. sinθ cosθ 5 cos θ cos θ sinθ cosθ 5 + cos θ cos θ 5. b cosec º cot 67º sin º sin 67º cot 67º.cosec (90º 67º) cot 67º sin º sin 90º º) cot 67º sec 67º cot 67º sin º cos º cot 67º cosec 67º cot 67º cosec 67º sec º Q sec(90 θ ) cosec θ; sin(90 θ ) cos θ& cosec (67 ) cot 67º 6. d Epression cosec 8º cot 7 cosec 8º tn 7º [Q tn θ. cot θ ] cosec 8º tn (90º 8º) cosec 8º cot 8º [Q tn (90º θ cotθ; cosec θ cot θ ] 7. c tn θ + 9 cot θ ( tnθ cotθ) + Minimum vlue [Q ( tnθ cotθ) 0]. 8. b sin 7 cos sin (90º ) 7 90º 8 90º 5º tn 9 + cot 9 tn 5º + cot 5º + Q / Eercise - 6 EX-506/PS/7 / Pge

34 9. d cos º, cos º, cosº,... cos 90º... cos 00º 0 [cos90º 0] 0. b sec cosecy cos siny π sin siny 7. sinθ cosθ cosθ+ sinθ ividing numertor nd denomintor by sin θ. cotθ cot θ+ cot θ cot θ + cot θ cot θ y π + y π sin ( + y) sin π. b cos θ + cos θ cos θ cos θ sin θ tn θ cos θ tn θ + cos θ cos θ + cos θ. sec θ + tn θ 7 + tn θ + tn θ 7 tn θ 7 6 tn θ tnθ θ 60º.. b sinθ + cosecθ sinθ + sinθ sin θ sinθ + 0 (sinθ ) 0 sinθ cosecθ sin 00 θ + cosec 00 θ +.. b cos α + cos β sin α + sinβ sin α + sin β 0 sin α 0 & sin β 0 α β 0 tn α + sin 5 β d cosθ + secθ cosθ + cosθ cos θ cosθ + 0 (cosθ ) 0 cosθ secθ cos 6 θ + sec 6 θ + 6. c tn 7θ tn θ tn 7θ cot θ tnθ tn 7θ tn (90º θ) 7θ 90º θ 9θ 90º θ 0º tn θ tn 0º EX-506/PS/7 / Pge 8. b sin θ + cosec θ sin θ + sinθ sin θ sin θ + 0 (sin θ ) 0 sin θ cosec θ sin 9 θ + cosec 9 θ + 9. c sinθ cosθ y k k sin θ; y k cos θ + y k (sin θ + cos θ) k k + y sin θ cos θ y y k k k y + y 0. b Epression cosecθ cot θ sinθ cosec θ cot θ cosec θ cosec θ cot θ cosec θ + cot θ cosec θ cot θ [cosec θ cot θ & cosec θ] sinθ Method-: cosθ sinθ sinθ sinθ sinθ sin θ + cosθ cosθ sinθ sin θ( cos θ) cos θ + cosθ sin θ( cos θ) cos θ ( cos θ+ ) cos θ cot θ. sin( cos θ) sinθ. c tn θ cot θ 0 tn θ cot θ tn (90º θ) θ 90º θ θ 90º θ 5º sin θ + cos θ sin 5º + cos 5º + Q / Eercise - 6

35 . tn θ + cot θ tn θ + tnθ tn θ+ tnθ tn θ + tn θ tn θ tn θ + 0 (tn θ ) 0 tn θ 0 tn θ tn 5º θ 5º. 6. d 8 m Pole In, Rope 0 8 sin0 6 m. 7.. b h k, k (k) + k 5k 5k sin + cot + k k + 5k k Epression sin cos9 + 8cos 60 cos7 sin7 sin cos9 + 8 cos(90 ) sin(90 9) sin + cos9 8 sin cos9 [sin (90º θ) cos θ; cos (90º θ) sin θ] b Epression cot 9º cot 7º cot 6º cot 8º cot 9º cot 7º cot (90º 7º) cot (90º 9º) cot 9º cot 7º tn 7º tn 9º [tn (90º θ) cot θ; cot (90º θ) tn θ] cot 9º tn 9º cot 7º tn 7º [tn (90º θ) (tn θ, cot θ ] 0 60 O 00 m Let h be the height of tower. In, h h tn60...(i) In O, h h tn0...(ii) From (i) nd (ii), we get h 00 m. 8. c m 5 0 Let be light horse nd nd be two points on the opposite bnks of river In, 60 tn 5 60 tn 5 60 m Similrly, in, 60 tn tn 0 60 m Width of the river ( + ) m. Q / Eercise - 6 EX-506/PS/7 / Pge

36 9. b F E 0 5 E 90 m h 7 m 7 m 60 Let be building nd be tower. In E, tn5 E E E In, tn m Height of the tower m.. b 60 Let be cliff nd be tower of height h. In, 90 tn 60º 90 0 m. In E, E 90 h tn 0º E 0 90 h 0 h m. R 0. b 0 m h 90 α α 9 ft 6 ft Let h be the height of the tower. Then, h tnα 6 tn (90º α) cot α h 9 h h tn α cot α 6 9 h h feet. 90 θ θ S P Q 0 m Let RS be building. In RSQ, 0 tn θ + 0 In RSP, tn (90º θ) 0...(i) cot θ 0...(ii) From (i) nd (ii), or 0 ( cn not be negtive) 0 m. EX-506/PS/7 / Pge Q / Eercise - 6

37 . d 60 6 m Let the height of the wll () be h m. h tn 60 6 h 6 tn 60º h 6 h 6.7 h m.. b h 6. d From (i) nd (ii), we get ( ) ( + ) m. h uilding 56m In, tn tn 60 0 E Pole m. θ 60 Let be the flg stff nd let θ be the ngle between the sun rys nd the ground t the time of longer shdow. In, tn 60º h In, h tnθ h h tnθ tnθ θ b 7. d ird ird m Let the height of the tower be m. In, tn In, tn 60 tn 60 h...(i)...(ii) 60 0 S N oy Let distnce covered in min be. 50 cot0º + 50 cot 60º 00 m Speed of bird km/hr m/min 50 m Q / Eercise - 6 EX-506/PS/7 / Pge 5

38 8. b 0. c m Let be the broken prt of the tree. tn 0º sin Totl height m h E. d Q 0 0 m P 5 d Let the height of tower be h m nd distnce of foot of tower from point P be d m. In PO, h tn5 h d d In QO, h h tn0 0 + d 0 + h h 0 + h 0 + h h h + h O ( ) Height of tower 5( + ) m. 5( + ) h 60 d Let the height of tower be h m nd distnce between the building nd the tower be d m. In, 60 tn60 d 60 d 60 d In E, 60 h 60 h tn0 d h 60 h 5 m 0 60 nd position of plnes 5 m Let metre In, tn 60º 5 + In, tn 0º h h 0 m Height of tower 0 m (5) metre. EX-506/PS/7 / Pge 6 Q / Eercise - 6

39 . c. b m Tower h metre 0º 5º 60 metre metre From, tn 5º Tower units Shdow units tn ( ) 0º tn 0º 6 5. b h (ssuming h be the height of flg pole) h 75 feet 6. b P Q h h. b From, tn 0º h + 60 h h+ 60 h h + 60 h h 60 h( ) ( + ) h ( )( + ) ( + ) 0 metre 500 m 0 60 P & Q re the positions of the plne P 60º; Q 0º P 500 metre. In P, tn 60º P metre In Q, tn 0º Q metre PQ metre 000 m trvelled in 5 sec. Speed of plne m/sec Post 5 feet The post breks t point. feet (5 ) feet 0º From, sin 0º feet. θ 90 θ Q P Tower h units Let, Q θ P 90º θ P ; Q b From Q, tnθ Q h Q / Eercise - 6 EX-506/PS/7 / Pge 7

40 tn θ h b From P tn(90º θ) h P EX-506/PS/7 / Pge 8... (i) cot θ h... (ii) y multiplying (i) nd (ii) h h tnθ. cotθ b h b h b m River 00 metre Height of plne h metre metre (let) (00 ) metre From, tn 60º h h metre h metre... (i) From, tn 0º h 00 h 00 h 00 [From eqution (i)] h + h 00 h + h 00 h 00 h metre metre 9. h metre, h metre h 90 θ O θ metre h 50. c O O metre From O, tn θ h h... (i) From O, tn (90º θ) O cotθ h h... (ii) Multiplying both equtions, h h tn θ. cot θ 8h [Q tnθ cotθ ] h 5000 m 8 h 60 60º 5º 5000 metre metre From, tn 60º metre metre From, tn 5º m. Q / Eercise - 6

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl

Διαβάστε περισσότερα

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w)

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Chapter 8 Exercise 8.1

Chapter 8 Exercise 8.1 hapter 8 ercise 8.1 Q. 1. (i) 17.5 = 10 8 = 10 10 = (17.5) = 80 = (17.5) 10 = 0 = 7 (ii) 1 = 10 9 15 = 10 9 9 = 10 9 = 150 = 0 = 50 (iii) = 1 = 16 = 6 = 6 = 6 = 6 (iv) ll three triangles are similar. =

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208 THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA,

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B'' Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION. FREE Download Study Package from website:  2 5π (c)sin 15 or sin = = cos 75 or cos ; 12 SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB = Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

x. x > 1 x 6 x. , 0 b ±a c Ø d 0, 4a. Exercise a x a b. e f b i c d + +

x. x > 1 x 6 x. , 0 b ±a c Ø d 0, 4a. Exercise a x a b. e f b i c d + + MATHEMATICS Higher Level (Core) ANSWERS ANSWERS Eercise. 0 0 c d 0 0 e f 0 [] ] [ c ]0] d ] 0] e ][ f ] [ ] [ c + c d + + c + d e + + 0 + f + i - + ii 0 + i + ii + 0 {±} {±0} c Ø d {} e {} f {0} - 0 0

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Spherical quadrangles with three equal sides and rational angles

Spherical quadrangles with three equal sides and rational angles Also vilble t http://mc-journl.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 1 (017) 415 44 Sphericl qudrngles with three equl sides nd rtionl ngles Abstrct

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions Physics/Astronomy 6, Problem set 5, Due /17 Solutions Reding: Ch. 3, strt Ch. 4 1. Prove tht R λναβ + R λαβν + R λβνα = 0. Solution: We cn evlute this in locl inertil frme, in which the Christoffel symbols

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 24-29 Ιουνίου, 2015, Βελιγράδι, Σερβία

19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 24-29 Ιουνίου, 2015, Βελιγράδι, Σερβία 19 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΝΕΩΝ 4-9 Ιουνίου, 015, Βελιγράδι, Σερβία Lnguge: Ελληνικά Παρασκευή, 6 Ιουνίου 015 Πρόβλημα 1. Βρείτε όλους τους πρώτους αριθμούς, b, c και όλους τους ϑετικούς ακεραίους

Διαβάστε περισσότερα

Chapter 1 Complex numbers

Chapter 1 Complex numbers Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i)

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Electromagnetic Waves I

Electromagnetic Waves I Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα