1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these"

Transcript

1 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these

2 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

3 2. If f is an even function and f 1 exists, then f 1 (e) + f 1 (-e) = 1] 0 2] 1 3] -1 4] e

4 2. Solution :Given that f is an even function then f (-x) = f (x) Diff. w.r.t x f 1 (-x)(-1) = f 1 (x) Substitute x = e f 1 (-e)(-1) = f 1 (e) f 1 (e) + f 1 (-e) =0 Answer 1] 0

5 3.If f (x) = e x g (x), g(0) = 2, g 1 (0) =1, then f 1 (0) is equal to 1]1 2] 3 3] 2 4] 0

6 3.Solution :Given that f (x) = e x g (x), g(0) = 2, g 1 (0) =1, Since f (x) = e x g (x), Diff. w.r.t x f 1 (x) = e x g 1 (x) + g(x) e x Substitute, x = 0 f 1 (0) = e 0 g 1 (0) + g(0) e 0 = 1(1) + 2 (1) = = 3 Answer : 2] 3

7 4. The derivative of an even function is always 1] an odd function 2] an even function 3] does not exist 4] none of these

8 4. Solution : The derivative of an even function is always an odd function Answer : 1] odd function

9 5. Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to 1] ½ 2] 2 3] 2/3 4] -½

10 5. Solution : Given that Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to Since : fog = I (fog ) x = x f [g(x)] = x Diff.w.r.t x f 1 [ g (x)]. g 1 (x) = 1 Substitute : x = a f 1 [g(a)]. g 1 (a) = 1 f 1 (b). 2 = 1 f 1 (b) = 1/2 Answer 1] 1/ 2

11 6.If y = Tan -1 4x + Tan x 1 + 5x 2 3 2x then dy/dxis equal to 1] 1 2] x x 2 3] 1 4] x 2

12 6.Solution : y =Tan -1 4x + Tan x 1 + 5x 2 3 2x Since: Tan -1 x ±Tan -1 y = Tan x ±y 1 + xy Y = Tan -1 5x + x + Tan -1 2/3 +x 1 5x.x 1 (2/3)x Y = Tan -1 5x Tan -1 x + Tan -1 2/3 + Tan -1 x

13 Y = Tan -1 5x +Tan -1 2/3 diff.w.r.t x dy/dx= x 2 Answer 2] x 2

14 (sin x).. 7. If y = (sinx) (sin x) then dy/dx= 1] y 2 2] y 2 sin x sinx(1-logy) 1 logy 3] y 2 cot x 4] y 2 tanx 1 -logy 1 logy

15 7. Solution: Given that y = (sinx) (sin x).. (sin x) Y = [f(x)] y then dy = y 2 f 1 (x) dx f(x) (1 log y ) Y = ( sin x ) y dy = y 2 cosx y 2 cot x dx (1 log y ) sin x 1 log y Answer : 3] y cot x 1-logy

16 8. If x y = e x y, then dy / dx is equal to 1] y 2] x (1 + log x) 2 (1 + logx) 2 3] log x 4] none of these ( 1 + logx ) 2

17 8. Solution : Given that : x y = e x y y log x = (x y) log e e y log x + y = x y ( 1 + log x ) = x y = x 1 + log x Diff. y w.r.t x dy log x dx (1 + logx) 2 Answer : 3] log x (1 + logx) 2

18 9. If 3 sin (xy) + 4 cos( xy) = 5, then dy/ dx 1] -y / x 2] 3 sin (xy) + 4 cos(xy) 3 cos(xy) 4 sin ( xy) 3] 3cos (xy) + 4 sin (xy) 4 cos(xy) 3 sin (xy) 4] none of these

19 9. Solution: Given that 3 sin (xy) + 4 cos( xy) = 5, Take xy= k Diff. w.r.t x x dy+ y = 0 dx dy = -y dx x Answer : 1] y/x

20 10. If f (x)=cos -1 1 ( log x ) 2,then f 1 (e) is 1 + ( log x ) 2 1] 1 / e 2] 1 3] 2 / e 4] 2e

21 10. (x)=cos -1 1 ( log x ) ( log x ) 2 cos -1 1 f 2 ( x ) 2 Tan -1 [f(x)] 1 + f 2 (x) f (x) = 2 Tan -1 ( log x) Diff. w.r.t x f 1 ( x ) = ( logx) 2 x

22 f 1 ( x ) = ( logx) 2 x Substitute : x = e f 1 (e) ( log e e) 2 e 2e e Answer : 1] 1 e

23 11. If 2x 2 + 4xy + 3y 2 = 0, then d 2 y / dx 2 = 1] 0 2] ½ 3] 1 4] ¾ (2x+y) 2

24 11. Solution :Given that 2x 2 + 4xy + 3y 2 = 0, ax 2 + 2hxy + by 2 = 0 then d 2 y = 0 dx 2 Answer : 1] 0

25 12. ltf (x + y) = f(x). f(y) for all x and y. suppose f(5) = 2, f 1 (0) =3, then f 1 (5)= 1] 3 2] 2 3] 6 4]-1

26 12. Solution:Given that f (x + y) = f(x). f(y) f(5) = 2, f 1 (0) =3, then f 1 (5)= consider f ( x + 5 ) = f (x) f (5) Diff. w.r.t x f 1 ( x + 5) = f 1 ( x) f (5) Sub x = 0 f 1 ( ) = f 1 (0) f (5) f 1 (5) = 3 (2) = 6 Answer : 3] 6

27 13. The differential co-efficient of f(sinx) w.r.tx where f (x) = logxis 1] tan x 2] cotx 3] (cosx) 4] 1/x

28 13. Solution: The differential co-efficient of f (sinx) w.r.tx where f (x) = logxis Diff. f (sinx) w.r.t x f 1 ( sinx) cosx since f (x) = log x 1 cosx = cot x f 1 (x) = 1 sinx x Answer: 2] cotx

29 14. If y = 1 + x + x to dy/ dx = [ x < ] 1] x/y 2] x 2 / y 2 3] -y 2 4] y 2

30 14. Solution : Given that : y = 1 + x + x to [ x < ] which represents a geometric series S = a, where r < 1 r y = 1 1 -x Diff. y.w.r.t x dy/dy = -1 (-1) = 1 (1-x) 2 (1-x) 2 = y 2 Answer : 4] y 2

31 15.If f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) then f 1 (o) = 1] 0 2] 1 3] -1 4] 2

32 15. Solution: Given that : f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) log f (x) = log ( 1+x) + log (1+x 2 ) + log (1+x n ) Diff. w.r.t x f 1 (x) = 1 2x n x n-1 f(x) 1 + x 1 + x x n f 1 (0) = 1 2(0) n(0) f(0) f 1 (0) = 1 Answer : 2] 1

33 16. If y = Tan -1 log (e/x 2 ) + Tan 4 +2logx log (ex 2 ) 1-8 logx then d 2 y/dx 2 = 1] 2 1] 2 2] 1 3] 0 4] -1

34 16.y = Tan -1 log (e/x 2 ) +Tan logx log (ex 2 ) 1-8 logx y = Tan logx + Tan log x log x 1 4(2 logx) Y= Tan -1 1-Tan -1 (2logx ) + Tan Tan -1 (2logx ) diff. w.r.t x dy/dx= 0 d 2 y = 0 Answer : 3] 0 dx 2 Answer : 3] 0

35 17.If y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to terms then dy/dx = 1] sec 2 x 2] sec 2 x 2y-1 1-2y 3] Tanx 4] Tan x 2y-1 2y-1

36 17. y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to y = f(x) + f(x) + to dy f 1 (x) dx 2y 1 dy sec 2 x -1 Tan x dx 2y-1 2y-1 Answer : 3] Tan x 2y-1

37 18. Let f be a function defined for all x Є.R If f is differentiable and f (x 3 ) = x 5 ( x 0 ) then the value of f 1 ( 27) is 1]15 2] 45 3] 0 4] 10

38 18. Solution: Given that f (x 3 ) = x 5 ( x 0 ) Diff. w.r.t x f 1 (x 3 ) 3x 2 = 5x 4 f 1 ( 3 3 ) = f 1 (27 ) = 5 (3) = 15 Answer: 1] 15

39 19. If log sinx y = cosx then dy/ dx= 1] [ cosx cotx sinxlog sinx] 2] y [ cosxcotx+ sin x log sinx] 3] [cosx cotx sinxlog sinx] 4] y [cosxcotx sinxlog sinx]

40 19. Solution: log sinx y = cosx then = Y = (sinx) cosx y = [f (x)] g(x) dy= [ f(x)] g(x) g (x) f 1 (x) + g 1 (x) log f (x) dx f(x) dy= ( sinx) cosx cosx cosx -sinx log sin x dx sinx = y [cosx cotx sinxlog sinx] Answer: 4] y [cosx cotx sinxlog sinx]

41 20. If y = sinx. Sin2x. sin3x.. Sinnx then dy/dx= n 1] y k cot kx 2] y k cot kx k=1 k=1 n 3] y k TAnkx 4] y k Tan kx k=1 k=1 n n

42 20. Solution : If y = sinx. Sin2x sin3x.. Sinnx log y = log sinx+ log sin 2x +. + log sinnx y 1 cosx 2 cos2x 3 cos3x +..+ n cosnx y sinx sin2x sin3x sinnx Y 1 = y [ cotx+ 2cot 2x +. + k cot k x] n Y 1 = y k cot kx K=1 Answer : 1] n y k cot k x K=1

43 21. If y = 1+ logx+ (logx) 2 + ( logx) ! terms then d 2 y /dx 2.. to 1] 1 / x 1] 1 / x 2] 2 / x 3] 1 4] 0

44 21. Solution: y = 1+ logx+ (logx) 2 + ( logx)3 +.. to 2 3! e x = 1 + x + x 2 + x 3 +. to 2! 3! y = e log x y = x dy/dx = 1 d 2 y dx 2 = 0 Answer: 4] 0

45 22. If y = sec x + Tanx and o < x < π. then dy secx Tanx dx 1] sec x [ secx Tanx ] 1] sec x [ secx Tanx ] 2] Tan x [ secx + tanx ] 3] secx [secx + Tanx] 4] Tan x [ secx Tanx]

46 22. Solution : If y = sec x + Tanx and o < x < π. secx Tanx y = (sec x + Tanx) 2 sec 2 x Tan 2 x y = secx + Tan x dy = secx Tan x + sec 2 x dx = secx [Tan x + secx] Answer: 3] secx [ Tan x + secx]

47 23. If g is the inverse function of f and f 1 (x) = 1 then g 1 (x) is equal to 1 + x n, 1] 1+(g (x)) n 2] 1 g (x) 3] 1 + g (x) 4] 1 (g(x)) n

48 23. Solution : Given that: g is the inverse function of f and f` (x) = x n, and also f = g -1 (fog) = I ( identity function) (fog) x = x f ( g (x)] = x diff. w.r.t x f 1 [g(x)] g 1 (x) = 1 1 g 1 (x) = 1 1+ (g(x) n g (x) = 1+ [g(x) n Answer 1] 1 + [ g (x)] n

49 24. If f (x) is an odd differentiable function defined on (-, ) such that f 1 (3) = 2, then f 1 (-3) equals : 1] 0 1] 0 2] 1 3] 2 4] 4

50 24. Solution : Given that f (x) is an odd differentiable function : f (-x) = -f (x) Diff w.r.t x f 1 (-x) (-1) = - f 1 (x) f 1 (-x) = f 1 (x) since f 1 (3) = 2 f 1 (-3) = f 1 (3) f 1 (-3) = 2 Answer: 3] 2

51 25.A differentiable function f(x) is such that f (1) = 7 and f 1 (1) = 1/7. If f -1 exists and f -1 = g, then 1] g 1 (7) = 1/7 2] g 1 (7) = 7 3] g 1 (1) = 1/7 4] g 1 (1) = 8

52 25.Solution : Given that : f -1 = g, f(1) = 7, and f 1 (1) = 1/7 go f = I ( gof) x = x g [ f (x)] = x g 1 [(f(x)]. f 1 (x) =1 g 1 [f(1)]. f 1 (1) = 1 g 1 (7). 1/7 = 1 g 1 (7) = 7 Answer 2] g (7) = 7

53 If x = e Tan [y x x] then dy/dx= 1] 2x [1 + Tan x (log x )] + x sec 2 ( logx) 2] 2 x [ 1 + Tan ( log x) ] + sec 2 ( log x ) 3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx) 4] 2x [ 1 + tan ( logx) ] + sec 2 ( logx)

54 Solution : Given that x = e Tan [y x x ] Tan (logx) = y x 2 x 2 x 2 Tan (logx) = y x 2 Y = x 2 + x 2 Tan ( logx) dy/dx=2x + x 2 sec 2 (logx) + Tan ( logx) ( 2x) x Answer :3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx)

55 . 27. If x = a [θ-sinθ], y = a[1-cosθ].then dy/dx = 1] cotθ/2 2] Tan θ/2 3] ½ coesec 2 θ/2 4] -½ cosec 2 θ/2

56 . 27. Solution : Given that If x = a [θ-sinθ], y = a[1-cosθ]. dy/dx = a [1-cosθ] a sinθ = 2sin 2 θ/2 2 sin θ/2 cosθ/2 =Tan θ/2 Answer 2] Tan θ/2

57 . 28. If log y = m tan -1 x, then 1] (1 +x 2 ) y 2 + (2x + m ) y 1 = 0 2] (1 +x 2 ) y 2 + (2x - m ) y 1 = 0 3] (1 +x 2 ) y 2 - (2x + m ) y 1 = 0 4] (1 +x 2 ) y 2 - (2x - m ) y 1 = 0

58 . 28. Solution : Given that log y = m tan -1 x, y 1 = m y 1+x 2 (1+x 2 ) y 1 = my (1 + x 2 ) y 2 + y 1 2x = my 1 ( 1 + x 2 ) y xy 1 my 1 = 0 ( 1 + x 2 ) y 2 + ( 2 x m ) y 1 = 0 Answer : 2] ( 1 + x) y + ( 2x m) y = 0

59 . 29. If y2 2x 2 = y, then dy/dxat (1, -1 ) is 1] -4/3 2] 4/3 3] ¾ 4] -3/4

60 . 29. Solution: Given that y 2-2x 2 - y = 0 dy/dx = - (diff. w.r.t x keeping y as constant) = - (-4x) (diff. w.r.t y keeping x as constant) (2y-1) dy/dx = 4x 2y-1 dy 4(1) (4) -4 dx (1,-1) 2(-1) Answer : 1] -4/3

61 . 30. Derivative of f (logx) w.r.t x where f (x) = e x 1] e x 2] log x 3] 1/x 4] 1

62 . 30. Solution :diff f (logx) w.r.t x = f 1 ( log x ) 1 f (x) = e x x f 1 (x) = e x = x 1 f 1 ( logx) = e logx = 1 x =x Answer: 4] 1

63 . 31. If f (x) = sin [π / 2 [x]-x 5 ], 1 <x<2, where[x] denotes the greatest integer.less than or equal to x, then f 1 (5π/2) = 1] 5 (π /2) 4/5 2] -5 (π /2) 4/5 3] 0 4] none of these

64 . 31. Solution : Given that f (x) = sin [π/2 [x]-x 5 ], 1 < x < 2, [x]=1 f (x) = sin [π/2 (1) x 5 ], f 1 (x) = cos [π/2 x 5 ]. [-5x 4 ] f 1 (5π/2) = cos [π/2 5π/2 ) 5 ].(-5)(5π/2 ) 4 = - 5 (π/2) 4/5 Answer 2] - 5 (π/2) 4/5

65 . 32. If y = cos -1 2cosx -3sinx then dy = 1] 2 2] -2 3] -1 4] 1 13 dx

66 . 32. Solution : y = cos -1 2cosx -3sinx 13 y = cos -1 2 cosx - 3 sinx cosα = 2/ 13 sinα3/ 13 y = cos -1 [cosα cosx sinα sinx] y = cos -1 [cos(α + x)] y = α + x dy/dx = 1 Answer: 4] 1

67 . 33. If y = cos 2 3x/2 sin 2 3x/2, then d 2 y/dx 2 is 1] 9y 2] -3 1 y 2 3] 3 1 y 2 4] -9y

68 . 33. Solution : Given that y = cos 2 3x/2 sin 2 3x/2 y= cos 3x dy/dx = - 3 sin 3x d 2 y/dx 2 = -9 cos 3x = -9y Answer: 4]-9y

69 . 34. If y = log 5 ( log 5 x ) then dy/dx = 1] 1 x log 5 x 2] 1 x log 5 x.log 5 x 3] 1 x log 5 x.(log5) 2 4] none of these

70 . 34. Solution : Given that: y = log 5 ( log 5 x ) dy 1 dx (log5) (log 5 x) x (log5) 1 = x (log 5 x) (log5) 2 Answer:3] 1 x (log 5 x) (log5) 2

71 . 35. If f (x ) =1+nx+ n (n-1) x 2 + n ( n-1) (n-2) x x n then f (1) = 1] n ( n-1 ) 2 n-1 2] (n-1)2 n-1 3] n (n-1)2 n-2 4] n (n-1)2 n

72 . 35. Solution : Given that: f (x ) = 1 + nx+ n (n-1) x+ n ( n-1) (n-2) x x n f (x) = ( 1+x) n f 1 (x) = x ( 1 + x ) n-1 f 11 (x) = n ( n-1) ( 1+x) n-2 f 11 (1) = n ( n-1) ( 1+1) n-2 = n ( n-1) 2 n (by binomial theorem) Answer : 3]n ( n-1) 2 n-2

73 36. If y = sec -1 x+1 + sin -1 x - 1, then dy = 1] x - 1 x + 1 ` 2] x + 1 3] 0 4] 1 x - 1 x-1 x+1 dx

74 . 36. Solution : Given that: y = sec -1 x+1 + sin -1 x - 1 x -1 x +1 y = cos -1 x sin -1 x - 1 y = π / 2 dy/dx = 0 x +1 x +1 Answer :3] 0

75 . 37.If y = tan -1 1+sinx+ 1 sinx, 0 <x< π/2 Then dy/dx = 1] ½ 2] -½ 3] x/2 4] x/2 1+sinx 1 sinx

76 . 37. Solution : Given that: y = tan -1 1+sinx+ 1 sinx 1+sinx 1 sinx 0 <x< π/2 0 <x/2< π/4 y = tan -1 Cos x/2 > sin x/2 cosx/2 + sin x/2+ cos x/2-sinx/2 cosx/2 + sin x/2- cos x/2+sinx/2 y = tan -1 [cotx/2] y = π/2 x/2 dy/dx = - ½ Answer :2] - ½

77 y = sin -1 (3x 4x 3 ), then dy/dx at x = 1/3, is 1] ] 9 2 3] ] 9/8

78 Solution : Given that: y = sin -1 (3x 4x 3 ) y = 3 sin -1 x dy/dx = x dy/dx = /9 8 4 Answer :3] 9 2 4

79 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x+7. to n terms then y 1 (0) = 1] -1/n ] n 2 /(n 2 +1) 1] -1/n ] n 2 /(n 2 +1) 3] n 2 /n ] n / n+1

80 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x to n terms y = tan -1 (x+1)-x tan -1 (x+2) (x+1) 1+ (x+1)x 1+ ( x+2) ( x + 1) tan -1 (x+n)-(x+n-1) 1 + ( x + n) ( x + n-1) Y= tan -1 (x+1)-tan 1 x + tan -1 (x+2) tan -1 (x+1).+ tan -1 (x+n) tan -1 (x+n-1) Y=tan -1 (x+n) tan -1 x y 1 = 1/1+(x+n) 2 1/1+x 2 y 1 (0)=1/(1+n 2 )-1 Answer: 2] n 2 /(n 2 +1)

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

298 Appendix A Selected Answers

298 Appendix A Selected Answers A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx. 3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e

Διαβάστε περισσότερα

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w. 6.6 Matrices Solved Examples JEE Main/Boards Example : If x y x + z x + y z + 4w 5 5 5, find x, y, z, w. Sol. We know that in equal matrices the corresponding elements are equal. Therefore, by equating

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα