# 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these"

## Transcript

1 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these

2 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

3 2. If f is an even function and f 1 exists, then f 1 (e) + f 1 (-e) = 1] 0 2] 1 3] -1 4] e

4 2. Solution :Given that f is an even function then f (-x) = f (x) Diff. w.r.t x f 1 (-x)(-1) = f 1 (x) Substitute x = e f 1 (-e)(-1) = f 1 (e) f 1 (e) + f 1 (-e) =0 Answer 1] 0

5 3.If f (x) = e x g (x), g(0) = 2, g 1 (0) =1, then f 1 (0) is equal to 1]1 2] 3 3] 2 4] 0

6 3.Solution :Given that f (x) = e x g (x), g(0) = 2, g 1 (0) =1, Since f (x) = e x g (x), Diff. w.r.t x f 1 (x) = e x g 1 (x) + g(x) e x Substitute, x = 0 f 1 (0) = e 0 g 1 (0) + g(0) e 0 = 1(1) + 2 (1) = = 3 Answer : 2] 3

7 4. The derivative of an even function is always 1] an odd function 2] an even function 3] does not exist 4] none of these

8 4. Solution : The derivative of an even function is always an odd function Answer : 1] odd function

9 5. Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to 1] ½ 2] 2 3] 2/3 4] -½

10 5. Solution : Given that Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to Since : fog = I (fog ) x = x f [g(x)] = x Diff.w.r.t x f 1 [ g (x)]. g 1 (x) = 1 Substitute : x = a f 1 [g(a)]. g 1 (a) = 1 f 1 (b). 2 = 1 f 1 (b) = 1/2 Answer 1] 1/ 2

11 6.If y = Tan -1 4x + Tan x 1 + 5x 2 3 2x then dy/dxis equal to 1] 1 2] x x 2 3] 1 4] x 2

12 6.Solution : y =Tan -1 4x + Tan x 1 + 5x 2 3 2x Since: Tan -1 x ±Tan -1 y = Tan x ±y 1 + xy Y = Tan -1 5x + x + Tan -1 2/3 +x 1 5x.x 1 (2/3)x Y = Tan -1 5x Tan -1 x + Tan -1 2/3 + Tan -1 x

13 Y = Tan -1 5x +Tan -1 2/3 diff.w.r.t x dy/dx= x 2 Answer 2] x 2

14 (sin x).. 7. If y = (sinx) (sin x) then dy/dx= 1] y 2 2] y 2 sin x sinx(1-logy) 1 logy 3] y 2 cot x 4] y 2 tanx 1 -logy 1 logy

15 7. Solution: Given that y = (sinx) (sin x).. (sin x) Y = [f(x)] y then dy = y 2 f 1 (x) dx f(x) (1 log y ) Y = ( sin x ) y dy = y 2 cosx y 2 cot x dx (1 log y ) sin x 1 log y Answer : 3] y cot x 1-logy

16 8. If x y = e x y, then dy / dx is equal to 1] y 2] x (1 + log x) 2 (1 + logx) 2 3] log x 4] none of these ( 1 + logx ) 2

17 8. Solution : Given that : x y = e x y y log x = (x y) log e e y log x + y = x y ( 1 + log x ) = x y = x 1 + log x Diff. y w.r.t x dy log x dx (1 + logx) 2 Answer : 3] log x (1 + logx) 2

18 9. If 3 sin (xy) + 4 cos( xy) = 5, then dy/ dx 1] -y / x 2] 3 sin (xy) + 4 cos(xy) 3 cos(xy) 4 sin ( xy) 3] 3cos (xy) + 4 sin (xy) 4 cos(xy) 3 sin (xy) 4] none of these

19 9. Solution: Given that 3 sin (xy) + 4 cos( xy) = 5, Take xy= k Diff. w.r.t x x dy+ y = 0 dx dy = -y dx x Answer : 1] y/x

20 10. If f (x)=cos -1 1 ( log x ) 2,then f 1 (e) is 1 + ( log x ) 2 1] 1 / e 2] 1 3] 2 / e 4] 2e

21 10. (x)=cos -1 1 ( log x ) ( log x ) 2 cos -1 1 f 2 ( x ) 2 Tan -1 [f(x)] 1 + f 2 (x) f (x) = 2 Tan -1 ( log x) Diff. w.r.t x f 1 ( x ) = ( logx) 2 x

22 f 1 ( x ) = ( logx) 2 x Substitute : x = e f 1 (e) ( log e e) 2 e 2e e Answer : 1] 1 e

23 11. If 2x 2 + 4xy + 3y 2 = 0, then d 2 y / dx 2 = 1] 0 2] ½ 3] 1 4] ¾ (2x+y) 2

24 11. Solution :Given that 2x 2 + 4xy + 3y 2 = 0, ax 2 + 2hxy + by 2 = 0 then d 2 y = 0 dx 2 Answer : 1] 0

25 12. ltf (x + y) = f(x). f(y) for all x and y. suppose f(5) = 2, f 1 (0) =3, then f 1 (5)= 1] 3 2] 2 3] 6 4]-1

26 12. Solution:Given that f (x + y) = f(x). f(y) f(5) = 2, f 1 (0) =3, then f 1 (5)= consider f ( x + 5 ) = f (x) f (5) Diff. w.r.t x f 1 ( x + 5) = f 1 ( x) f (5) Sub x = 0 f 1 ( ) = f 1 (0) f (5) f 1 (5) = 3 (2) = 6 Answer : 3] 6

27 13. The differential co-efficient of f(sinx) w.r.tx where f (x) = logxis 1] tan x 2] cotx 3] (cosx) 4] 1/x

28 13. Solution: The differential co-efficient of f (sinx) w.r.tx where f (x) = logxis Diff. f (sinx) w.r.t x f 1 ( sinx) cosx since f (x) = log x 1 cosx = cot x f 1 (x) = 1 sinx x Answer: 2] cotx

29 14. If y = 1 + x + x to dy/ dx = [ x < ] 1] x/y 2] x 2 / y 2 3] -y 2 4] y 2

30 14. Solution : Given that : y = 1 + x + x to [ x < ] which represents a geometric series S = a, where r < 1 r y = 1 1 -x Diff. y.w.r.t x dy/dy = -1 (-1) = 1 (1-x) 2 (1-x) 2 = y 2 Answer : 4] y 2

31 15.If f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) then f 1 (o) = 1] 0 2] 1 3] -1 4] 2

32 15. Solution: Given that : f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) log f (x) = log ( 1+x) + log (1+x 2 ) + log (1+x n ) Diff. w.r.t x f 1 (x) = 1 2x n x n-1 f(x) 1 + x 1 + x x n f 1 (0) = 1 2(0) n(0) f(0) f 1 (0) = 1 Answer : 2] 1

33 16. If y = Tan -1 log (e/x 2 ) + Tan 4 +2logx log (ex 2 ) 1-8 logx then d 2 y/dx 2 = 1] 2 1] 2 2] 1 3] 0 4] -1

34 16.y = Tan -1 log (e/x 2 ) +Tan logx log (ex 2 ) 1-8 logx y = Tan logx + Tan log x log x 1 4(2 logx) Y= Tan -1 1-Tan -1 (2logx ) + Tan Tan -1 (2logx ) diff. w.r.t x dy/dx= 0 d 2 y = 0 Answer : 3] 0 dx 2 Answer : 3] 0

35 17.If y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to terms then dy/dx = 1] sec 2 x 2] sec 2 x 2y-1 1-2y 3] Tanx 4] Tan x 2y-1 2y-1

36 17. y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to y = f(x) + f(x) + to dy f 1 (x) dx 2y 1 dy sec 2 x -1 Tan x dx 2y-1 2y-1 Answer : 3] Tan x 2y-1

37 18. Let f be a function defined for all x Є.R If f is differentiable and f (x 3 ) = x 5 ( x 0 ) then the value of f 1 ( 27) is 1]15 2] 45 3] 0 4] 10

38 18. Solution: Given that f (x 3 ) = x 5 ( x 0 ) Diff. w.r.t x f 1 (x 3 ) 3x 2 = 5x 4 f 1 ( 3 3 ) = f 1 (27 ) = 5 (3) = 15 Answer: 1] 15

39 19. If log sinx y = cosx then dy/ dx= 1] [ cosx cotx sinxlog sinx] 2] y [ cosxcotx+ sin x log sinx] 3] [cosx cotx sinxlog sinx] 4] y [cosxcotx sinxlog sinx]

40 19. Solution: log sinx y = cosx then = Y = (sinx) cosx y = [f (x)] g(x) dy= [ f(x)] g(x) g (x) f 1 (x) + g 1 (x) log f (x) dx f(x) dy= ( sinx) cosx cosx cosx -sinx log sin x dx sinx = y [cosx cotx sinxlog sinx] Answer: 4] y [cosx cotx sinxlog sinx]

41 20. If y = sinx. Sin2x. sin3x.. Sinnx then dy/dx= n 1] y k cot kx 2] y k cot kx k=1 k=1 n 3] y k TAnkx 4] y k Tan kx k=1 k=1 n n

42 20. Solution : If y = sinx. Sin2x sin3x.. Sinnx log y = log sinx+ log sin 2x +. + log sinnx y 1 cosx 2 cos2x 3 cos3x +..+ n cosnx y sinx sin2x sin3x sinnx Y 1 = y [ cotx+ 2cot 2x +. + k cot k x] n Y 1 = y k cot kx K=1 Answer : 1] n y k cot k x K=1

43 21. If y = 1+ logx+ (logx) 2 + ( logx) ! terms then d 2 y /dx 2.. to 1] 1 / x 1] 1 / x 2] 2 / x 3] 1 4] 0

44 21. Solution: y = 1+ logx+ (logx) 2 + ( logx)3 +.. to 2 3! e x = 1 + x + x 2 + x 3 +. to 2! 3! y = e log x y = x dy/dx = 1 d 2 y dx 2 = 0 Answer: 4] 0

45 22. If y = sec x + Tanx and o < x < π. then dy secx Tanx dx 1] sec x [ secx Tanx ] 1] sec x [ secx Tanx ] 2] Tan x [ secx + tanx ] 3] secx [secx + Tanx] 4] Tan x [ secx Tanx]

46 22. Solution : If y = sec x + Tanx and o < x < π. secx Tanx y = (sec x + Tanx) 2 sec 2 x Tan 2 x y = secx + Tan x dy = secx Tan x + sec 2 x dx = secx [Tan x + secx] Answer: 3] secx [ Tan x + secx]

47 23. If g is the inverse function of f and f 1 (x) = 1 then g 1 (x) is equal to 1 + x n, 1] 1+(g (x)) n 2] 1 g (x) 3] 1 + g (x) 4] 1 (g(x)) n

48 23. Solution : Given that: g is the inverse function of f and f` (x) = x n, and also f = g -1 (fog) = I ( identity function) (fog) x = x f ( g (x)] = x diff. w.r.t x f 1 [g(x)] g 1 (x) = 1 1 g 1 (x) = 1 1+ (g(x) n g (x) = 1+ [g(x) n Answer 1] 1 + [ g (x)] n

49 24. If f (x) is an odd differentiable function defined on (-, ) such that f 1 (3) = 2, then f 1 (-3) equals : 1] 0 1] 0 2] 1 3] 2 4] 4

50 24. Solution : Given that f (x) is an odd differentiable function : f (-x) = -f (x) Diff w.r.t x f 1 (-x) (-1) = - f 1 (x) f 1 (-x) = f 1 (x) since f 1 (3) = 2 f 1 (-3) = f 1 (3) f 1 (-3) = 2 Answer: 3] 2

51 25.A differentiable function f(x) is such that f (1) = 7 and f 1 (1) = 1/7. If f -1 exists and f -1 = g, then 1] g 1 (7) = 1/7 2] g 1 (7) = 7 3] g 1 (1) = 1/7 4] g 1 (1) = 8

52 25.Solution : Given that : f -1 = g, f(1) = 7, and f 1 (1) = 1/7 go f = I ( gof) x = x g [ f (x)] = x g 1 [(f(x)]. f 1 (x) =1 g 1 [f(1)]. f 1 (1) = 1 g 1 (7). 1/7 = 1 g 1 (7) = 7 Answer 2] g (7) = 7

53 If x = e Tan [y x x] then dy/dx= 1] 2x [1 + Tan x (log x )] + x sec 2 ( logx) 2] 2 x [ 1 + Tan ( log x) ] + sec 2 ( log x ) 3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx) 4] 2x [ 1 + tan ( logx) ] + sec 2 ( logx)

54 Solution : Given that x = e Tan [y x x ] Tan (logx) = y x 2 x 2 x 2 Tan (logx) = y x 2 Y = x 2 + x 2 Tan ( logx) dy/dx=2x + x 2 sec 2 (logx) + Tan ( logx) ( 2x) x Answer :3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx)

55 . 27. If x = a [θ-sinθ], y = a[1-cosθ].then dy/dx = 1] cotθ/2 2] Tan θ/2 3] ½ coesec 2 θ/2 4] -½ cosec 2 θ/2

56 . 27. Solution : Given that If x = a [θ-sinθ], y = a[1-cosθ]. dy/dx = a [1-cosθ] a sinθ = 2sin 2 θ/2 2 sin θ/2 cosθ/2 =Tan θ/2 Answer 2] Tan θ/2

57 . 28. If log y = m tan -1 x, then 1] (1 +x 2 ) y 2 + (2x + m ) y 1 = 0 2] (1 +x 2 ) y 2 + (2x - m ) y 1 = 0 3] (1 +x 2 ) y 2 - (2x + m ) y 1 = 0 4] (1 +x 2 ) y 2 - (2x - m ) y 1 = 0

58 . 28. Solution : Given that log y = m tan -1 x, y 1 = m y 1+x 2 (1+x 2 ) y 1 = my (1 + x 2 ) y 2 + y 1 2x = my 1 ( 1 + x 2 ) y xy 1 my 1 = 0 ( 1 + x 2 ) y 2 + ( 2 x m ) y 1 = 0 Answer : 2] ( 1 + x) y + ( 2x m) y = 0

59 . 29. If y2 2x 2 = y, then dy/dxat (1, -1 ) is 1] -4/3 2] 4/3 3] ¾ 4] -3/4

60 . 29. Solution: Given that y 2-2x 2 - y = 0 dy/dx = - (diff. w.r.t x keeping y as constant) = - (-4x) (diff. w.r.t y keeping x as constant) (2y-1) dy/dx = 4x 2y-1 dy 4(1) (4) -4 dx (1,-1) 2(-1) Answer : 1] -4/3

61 . 30. Derivative of f (logx) w.r.t x where f (x) = e x 1] e x 2] log x 3] 1/x 4] 1

62 . 30. Solution :diff f (logx) w.r.t x = f 1 ( log x ) 1 f (x) = e x x f 1 (x) = e x = x 1 f 1 ( logx) = e logx = 1 x =x Answer: 4] 1

63 . 31. If f (x) = sin [π / 2 [x]-x 5 ], 1 <x<2, where[x] denotes the greatest integer.less than or equal to x, then f 1 (5π/2) = 1] 5 (π /2) 4/5 2] -5 (π /2) 4/5 3] 0 4] none of these

64 . 31. Solution : Given that f (x) = sin [π/2 [x]-x 5 ], 1 < x < 2, [x]=1 f (x) = sin [π/2 (1) x 5 ], f 1 (x) = cos [π/2 x 5 ]. [-5x 4 ] f 1 (5π/2) = cos [π/2 5π/2 ) 5 ].(-5)(5π/2 ) 4 = - 5 (π/2) 4/5 Answer 2] - 5 (π/2) 4/5

65 . 32. If y = cos -1 2cosx -3sinx then dy = 1] 2 2] -2 3] -1 4] 1 13 dx

66 . 32. Solution : y = cos -1 2cosx -3sinx 13 y = cos -1 2 cosx - 3 sinx cosα = 2/ 13 sinα3/ 13 y = cos -1 [cosα cosx sinα sinx] y = cos -1 [cos(α + x)] y = α + x dy/dx = 1 Answer: 4] 1

67 . 33. If y = cos 2 3x/2 sin 2 3x/2, then d 2 y/dx 2 is 1] 9y 2] -3 1 y 2 3] 3 1 y 2 4] -9y

68 . 33. Solution : Given that y = cos 2 3x/2 sin 2 3x/2 y= cos 3x dy/dx = - 3 sin 3x d 2 y/dx 2 = -9 cos 3x = -9y Answer: 4]-9y

69 . 34. If y = log 5 ( log 5 x ) then dy/dx = 1] 1 x log 5 x 2] 1 x log 5 x.log 5 x 3] 1 x log 5 x.(log5) 2 4] none of these

70 . 34. Solution : Given that: y = log 5 ( log 5 x ) dy 1 dx (log5) (log 5 x) x (log5) 1 = x (log 5 x) (log5) 2 Answer:3] 1 x (log 5 x) (log5) 2

71 . 35. If f (x ) =1+nx+ n (n-1) x 2 + n ( n-1) (n-2) x x n then f (1) = 1] n ( n-1 ) 2 n-1 2] (n-1)2 n-1 3] n (n-1)2 n-2 4] n (n-1)2 n

72 . 35. Solution : Given that: f (x ) = 1 + nx+ n (n-1) x+ n ( n-1) (n-2) x x n f (x) = ( 1+x) n f 1 (x) = x ( 1 + x ) n-1 f 11 (x) = n ( n-1) ( 1+x) n-2 f 11 (1) = n ( n-1) ( 1+1) n-2 = n ( n-1) 2 n (by binomial theorem) Answer : 3]n ( n-1) 2 n-2

73 36. If y = sec -1 x+1 + sin -1 x - 1, then dy = 1] x - 1 x + 1 ` 2] x + 1 3] 0 4] 1 x - 1 x-1 x+1 dx

74 . 36. Solution : Given that: y = sec -1 x+1 + sin -1 x - 1 x -1 x +1 y = cos -1 x sin -1 x - 1 y = π / 2 dy/dx = 0 x +1 x +1 Answer :3] 0

75 . 37.If y = tan -1 1+sinx+ 1 sinx, 0 <x< π/2 Then dy/dx = 1] ½ 2] -½ 3] x/2 4] x/2 1+sinx 1 sinx

76 . 37. Solution : Given that: y = tan -1 1+sinx+ 1 sinx 1+sinx 1 sinx 0 <x< π/2 0 <x/2< π/4 y = tan -1 Cos x/2 > sin x/2 cosx/2 + sin x/2+ cos x/2-sinx/2 cosx/2 + sin x/2- cos x/2+sinx/2 y = tan -1 [cotx/2] y = π/2 x/2 dy/dx = - ½ Answer :2] - ½

77 y = sin -1 (3x 4x 3 ), then dy/dx at x = 1/3, is 1] ] 9 2 3] ] 9/8

78 Solution : Given that: y = sin -1 (3x 4x 3 ) y = 3 sin -1 x dy/dx = x dy/dx = /9 8 4 Answer :3] 9 2 4

79 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x+7. to n terms then y 1 (0) = 1] -1/n ] n 2 /(n 2 +1) 1] -1/n ] n 2 /(n 2 +1) 3] n 2 /n ] n / n+1

80 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x to n terms y = tan -1 (x+1)-x tan -1 (x+2) (x+1) 1+ (x+1)x 1+ ( x+2) ( x + 1) tan -1 (x+n)-(x+n-1) 1 + ( x + n) ( x + n-1) Y= tan -1 (x+1)-tan 1 x + tan -1 (x+2) tan -1 (x+1).+ tan -1 (x+n) tan -1 (x+n-1) Y=tan -1 (x+n) tan -1 x y 1 = 1/1+(x+n) 2 1/1+x 2 y 1 (0)=1/(1+n 2 )-1 Answer: 2] n 2 /(n 2 +1)

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### 298 Appendix A Selected Answers

A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.

Διαβάστε περισσότερα

### CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

### Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

### 2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

9çB\$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### Probability and Random Processes (Part II)

Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

### Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

### Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### 3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### 26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

### derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

### Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin

Διαβάστε περισσότερα

### (ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

### Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

### On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)

Διαβάστε περισσότερα

### Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

### Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

### g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

### ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

### 1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +

Διαβάστε περισσότερα

### Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

### List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere

Διαβάστε περισσότερα

### Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)

8 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 2 2.1 ΜΕΤΑΒΛΗΤΕΣ (ΜΕΡΟΣ Β) Στην προηγούµενη διάλεξη µάθαµε ότι µπορούµε να χρησιµοποιούµε τη ρητή ή την αυτονόητη δήλωση µεταβλητών

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

### DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher

Διαβάστε περισσότερα

### Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### is like multiplying by the conversion factor of. Dividing by 2π gives you the

Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### SOLUTIONS FOR HOMEWORK SET #10.3 FOR MATH 550

SOLUTIONS FOR HOMEWORK SET #10.3 FOR MATH 550 p159,#4: Verify the chain rule for, where hx,y fux,y,vx,y and fu,v u2 + v 2 u 2 v 2, ux,y e x y, vx,y e xy. Solution: First we will work out what the chain

Διαβάστε περισσότερα

### ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

### 1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Solution for take home exam: FYS3, Oct. 4, 3. Problem. Ĥ ɛ K K + ɛ K K + β K K + α K K For Ĥ Ĥ : ɛ ɛ, β α. The operator ˆT can be written

Διαβάστε περισσότερα

### CORDIC Background (4A)

CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

### 16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

### Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

Math 48 Homework Ewar Burkar Exercise. Prove the following Fourier Transforms where a > an c : a. f(x) f(ξ) b. f(x c) e πicξ f(ξ) c. eπixc f(x) f(ξ c). f(ax) f(ξ) a e. f (x) πiξ f(ξ) f. xf(x) f(ξ) πi ξ

Διαβάστε περισσότερα

### Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

### Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### = df. f (n) (x) = dn f dx n

Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

### Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

### A General Note on δ-quasi Monotone and Increasing Sequence

International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

### 2x 2 y. f(y) = f(x, y) = (xy, x + y)

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν

Διαβάστε περισσότερα

### ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

### 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα