Chapter 2 Procedure for Designing Fractional-Order Filters

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chapter 2 Procedure for Designing Fractional-Order Filters"

Transcript

1 Chapter Procedure for Designing Fractional-Order Filters. Introduction Fractional-order differentiation and integration topologies offer attractive features in various interdisciplinary applications. A typical application is the substitution of conventional integer order parts of a system with the fractional-order parts, respectively, where the existence of derivation/integration has a decisive position, and offers important benefits. Also, they are able to be used in order to realize one of the most important circuits in fractional-order theory, which is the fractal device. On the other hand, fractional-order filters, offer more precise control of the attenuation gradient, which is an efficient feature in biomedical engineering. Fractional-order filters, differentiators, and integrators, will be presented in a systematic way that describes the most important features of these structures; realizing such circuits through the utilization of a general form enabling the capability of realizing different kind of circuits by the same topology, which is very important from the flexibility point of view. All the above will be performed through the utilization of the second-order CFE, which is an efficient tool, in terms of accuracy and circuit complexity, and has been described in Chap. in detail. As a consequence, the main benefit of this procedure is that having available the design equations, which are expressed through integer-order functions, the capability of realizing these types of functions utilizing different ways of circuit design could be achieved. The Author(s) 07 G. Tsirimokou et al., Design of CMOS Analog Integrated Fractional-Order Circuits, SpringerBriefs in Electrical and Computer Engineering, DOI 0.007/ _ 3

2 4 Procedure for Designing Fractional-Order Filters. Fractional-Order Generalized Filters (Order ) Integrators and differentiators are very useful building blocks for performing signal conditioning in biomedical applications. Also, they are employed for realizing oscillators, impedance emulators, and in control systems. Fractional-order digital implementations of such circuits have been already published in the literature [ 5]. The utilization of the second-order expressions of CFE is an appropriate tool for realizing fractional-order differentiators and integrators in order to approximate the variable (τs) ug the formula given in (.). In case that ¼, this transfer function represents a differentiator, while for ¼ an integrator. In the range (0 < < ), this element may generally be considered to represent a fractionalorder differentiator, while in the range ( < < 0), a fractional-order integrator. ðτs Þ ¼ 0ðτsÞ þ ðτsþþ ðτsþ ð:þ þ ðτsþþ 0.. Fractional-Order Differentiator The transfer function, as well as the magnitude response of an integer-order differentiator is given by the formula H(s) ¼ τs, and H() ¼ /, respectively. The unity gain frequency is ¼ /τ, where τ is the corresponding time-constant. In addition the phase response is constant and equal to π/. Thus, the transfer function of a fractional-order differentiator will be given by (.) as Hs ðþ¼ðτsþ ð:þ where (0 < < ) is the order of the differentiator. The magnitude response is given as H() ¼ (/ ), from which is obvious that the unity gain frequency has the same expression as in the case of its integer-order counterpart. Also, in this case the phase response is constant but equal to / predicting the total reliance of phase from the fractional-order [6]. Comparing the above expressions of magnitude responses of fractional and integer-order differentiator, it is obvious that at the same frequency the fractionalorder differentiator realizes a gain smaller than that achieved by its integer-order counterpart. As a result, with the substitution of (.) into (.), the transfer function of fractional-order differentiator is expressed as shown in (.3), where i (i ¼ 0,, ) is given by (.6) or (.0). Their values depend on the type of the approximation that has been utilized. H diff ðþ¼ s o s þ τ s þ τ τ s þ s þ o τ ð:3þ

3 . Fractional-Order Generalized Filters (Order ) 5.. Fractional-Order Integrator The transfer function of a fractional-order lossless integrator could be written as shown in (.4), while the magnitude response is given as H() ¼ ( /), where ¼ /τ is the unity gain frequency of the integrator. Its phase response will be a constant equal to /. Hs ðþ¼ ðτsþ ð:4þ The corresponding expressions of its integer-order counterpart with the same unit gain frequency will be H() ¼ / and π/, respectively. By ug the same order of approximation as in the case of fractional-order differentiator, the transfer function in (.4) could be approximated as it is demonstrated in (.5), where i (i ¼ 0,,) is given by (.6) or (.0). H int ðþ¼ s 0 s þ 0 τ s þ τ τ s þ 0 τ s þ 0 ð:5þ Taking into account that the transfer function in (.3) and (.5) have an integerorder form, they could be easily performed either by the typical functional block diagram (FBD) of the follow-the-leader-feedback (FLF) topology depicted in Fig..a, or the inverse-follow-the-leader, multi-feedback (IFLF) topology given in Fig..b, where the notation (xg i ) implies a scaled replica of the corresponding output. The transfer function is that in (.6). Comparing (.3) and (.5) with (.6) Fig.. FBD for realizing fractional-order differentiator/integrator of order ug (a) FLF current-mode topology, (b) IFLF voltage-mode topology

4 6 Procedure for Designing Fractional-Order Filters Table. Design expressions of time-constants τ i for approximating fractional-order differentiator, lossless integrator with unity gain frequency ( ¼ /τ) Transfer function τ τ H(s) ¼ (τs) τ τ 0 Hs ðþ¼ 0 ðτsþ τ τ Table. Design expressions of gain factors G i for approximating fractionalorder differentiator, lossless integrator with unity gain frequency ( ¼ /τ) Transfer function G G G 0 H(s) ¼ (τs) 0 Hs ðþ¼ ðτsþ the derived expressions of time-constants τ i and gain factors G i (i ¼ 0,,) are as summarized in Tables., and., respectively. Hs ðþ¼ G s þ G τ s þ G 0 τ τ s þ τ s þ τ τ ð:6þ.3 Fractional-Order Generalized Filters (Order ) Fractional-order filters of order where (0 < < ) will be presented and some of the most critical frequencies have been derived in order to be fully characterized. From the stability point of view, this system is stable if and only if > 0 and <, while it will oscillate if and only if > 0 and ¼ ; otherwise it is unstable. The derived frequency responses of filters of order exhibit a stopband attenuation proportionate to the fractional-order, which offers a more precise control of the attenuation gradient compared to the attenuation offered in the case of integer-order filters of order n, which is 6n db/oct [6 9]. Thus, low-pass, high-pass, band-pass, and all-pass filters of order will be presented. Also, ug a general topology, all the aforementioned type of filters could be realized, ug the same core. The most important critical frequencies that will be studied are the following: p is the frequency at which the magnitude response has a maximum or a minimum and is obtained by solving the equation d d jhj ð Þj ¼ p ¼ 0 p h is the half-power frequency at which jhj ð Þj ¼h ¼ jhj ð Þj ¼p = ffiffi rp is the right-phase frequency at which the phase H( j) ¼π/ It should be mentioned that rp exists only if >.

5 .3 Fractional-Order Generalized Filters (Order ) 7.3. Fractional-Order Low-Pass Filter (FLPF) The transfer function of a FLPF is that in (.7), where κ is the low-frequency gain and /τ the pole frequency. The magnitude and phase response are given by (.8). The critical frequencies are summarized in Table.3, where the magnitude and phase values are also given. Ug (.8), the expressions for the h and the corresponding phase are these in (.9). Hs ðþ¼κ s þ ¼ κ o ðτsþ þ κ jhj ð Þj ¼ r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ þ 0 HðjÞ ¼ κ tan B A þ ð:7þ ð:8aþ ð:8bþ In addition, the peak and right-phase frequency are found as p ¼ [ (/ )] /, and rp ¼ /[ (/)] /. The stopband attenuation gradient of the fractional-order low-pass filter order is equal to 6 db/oct. rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h ¼ þ = ð:9aþ 0 HðjÞ ¼h ¼ κ tan B qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A ð:9bþ þ þ.3. Fractional-Order High-Pass Filter (FHPF) The transfer function of a FHPF with high-frequency gain κ and pole frequency /τ is that in (.0). The magnitude response and phase response are given by (.), while all the critical frequencies are summarized in Table.4. Table.3 Magnitude and phase values at important frequencies for the FLPF jh( j)j jh( j)j!0 κ κ κ 4 κ /4! 0 κ /! h κ p ffiffi κ tan ð pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Þ ð Þþ ð Þ þ

6 8 Procedure for Designing Fractional-Order Filters Table.4 Magnitude and phase values at important frequencies for the FHPF jh( j)j jh( j)j!0 0 κ þ / κ κ þ /4 4! κ κ 0 h κ p ffiffiffi κ þ tan B qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi A þ Hs ðþ¼κ s s þ ¼ κ ðτs o ðτsþ þ κ jhj ð Þj ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ þ 0 HðjÞ ¼ κ þ = tan B A þ Þ ð:0þ ð:aþ ð:bþ The corresponding expressions for the h and phase at this frequency are given by (.). In addition, the peak, and right-phase frequency are found as p ¼ / [ (/)] /, and rp ¼ [ (/)] /. From these expressions it is seen that both p and rp exist only if >. Also, the stopband attenuation gradient of the fractional-order high-pass filter of order is equal to þ6 db/oct. rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h ¼ þ þ = ð:aþ 0 HðjÞ ¼h ¼ κ þ tan B ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q A ð:bþ þ.3.3 Fractional-Order Band-Pass Filter (FBPF) The transfer function of a FBPF with peak-frequency gain κ and pole frequency /τ is that in (.3), where the magnitude and phase is as shown in (.4a) and (.4b), respectively. In order to obtain a FBPF response, the condition > should be fulfilled. All the critical frequencies are summarized in Table.5.

7 .3 Fractional-Order Generalized Filters (Order ) 9 Table.5 Magnitude and phase values at important frequencies for the FBPF H( j) H( j)!0 0 κ þπ/ p ¼ κ þ [( )π]/4 4! o κ þ [( )π]/ Hs ðþ¼κ s s þ ¼ κ ðτs o ðτsþ þ κ jhj ð Þj ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ þ 0 HðjÞ ¼ κ þ π= tan B A þ Þ ð:3þ ð:4aþ ð:4bþ The peak frequency ( p ), calculated from the condition d d jhj ð Þj ¼ p ¼ 0, is given by (.5). In the case that ¼, then p ¼. Obviously, for ¼, the transfer function in (.3) is modified and corresponds to the already known FHPF. 8 h qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i9 < ð Þþ þ 4ð Þtan = p ¼ : ð Þ ; = ð:5þ All the critical frequencies are summarized in Table.5, where the magnitude and phase values are also given. It should be mentioned that the stopband attenuation gradient at the upper frequencies is 6( ) db/oct, while for the lower frequencies is þ6 db/oct, offering the capability of realizing a low-q band pass filter with different slopes of the stopband attenuations. In case that ¼, the slope is then equal to 6 db/oct, and þ6 db/oct, respectively..3.4 Fractional-Order All-Pass Filter (FAPF) A FAPF with gain κ and pole frequency /τ is described through the transfer function given by (.6) Hs ðþ¼κ s s þ ¼ κ ðτsþ o ðτsþ þ ð:6þ

8 0 Procedure for Designing Fractional-Order Filters Table.6 Magnitude and phase values at important frequencies for the FAPF H( j) H( j)!0 0 κ þ π p ¼ κ þ π/ κ tan 4 h κ κ Its frequency behavior is described by (.7) vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ jhj ð Þj ¼ κu t þ þ ð:7aþ It can be easily seen here that p ¼ rp ¼, as well as that at this frequency a minima occurs if < and a maxima occurs if > while the magnitude remains flat when ¼ (i.e., classical integer-order all-pass filter). All the critical frequencies are summarized in Table.6 where the magnitude and phase values are also given. HðjÞ¼ κ 0 0 tan C A tan B A þ ð:7bþ.3.5 Design Equations for Generalized Filters of Order Taking into account that the transfer functions of all the aforementioned fractionalorder filters are expressed through the variables (τs) and/or (τs), and the fact that they are not realizable, they should be approximated by appropriate expressions. Ug the second-order expressions of the CFE given by (.) and substituting into (.7), (.0), (.3), and (.6), the derived transfer functions are given in (.8). The coefficient i corresponds to the approximation of variable (τs), while b i to the variable (τs). Comparing the transfer functions of the FLPF and FHPF, the numerator in H HP (s) is easily derived through the substitution: 0 $ in the numerator of H LP (s). Inspecting the transfer functions of FLPF, FHPF, and FAPF it is concluded that all of them have the same form. Consequently, they could be realized by the same topology just by changing the coefficient values. A suitable solution for this purpose has been already given in Fig.., where the realized transfer function is that given in (.6).

9 .3 Fractional-Order Generalized Filters (Order ) H LP H HP κ ðþ¼ s s þ τ s þ 0 τ ð:8aþ 0 þ s þ τ s þ τ 0 þ κ ðþ¼ s 0s þ τ s þ τ 0 þ s þ τ s þ τ 0 þ ð:8bþ H BP H AP ðþ¼κ s 0 0 þ 0 þ s τ s þ 0 þ τ s þ τ κ ðþ¼ s s þ τ s þ 0 τ b 0s þ b τ s þ b τ 0 þ s þ τ s þ b τ s þ b τ s þ b 0 b τ b ð:8cþ ð:8dþ Comparing the coefficients of (.6) with those of FLPF, FHPF, and FAPF in (.8), it is derived that the design equations about the time-constants of fractionalorder low-pass, high-pass, and all-pass filters of order are those in (.9). The corresponding design equations for the scaling factors G i (i ¼ 0,, ) are summarized in Table.7. τ ¼ 0 þ τ ð:9aþ τ ¼ þ 0 τ ð:9bþ With regards to the FBPF realization, a possible solution is the FBD in Fig.., where H (s) and H (s) are mentioned filter blocks as that in Fig.., which realize the transfer function in (.6). The expressions for time-constants τ ij, where (i ¼, ) is the number of time-constants of each state, and ( j ¼, ) is the number of state, are given by (.0). The time-constants of the first stageτ i have the same values as in (.9). The corresponding design equation for the scaling factors G ij (i ¼ 0,, and j ¼, ) of both stages are also summarized in Table.7. Table.7 Values of scaling factors G ij for realizing FLPF, FHPF, FAPF, and FBPF of order in Figs., and. Filter G G G 0 FLPF κ κ 0 κ þ 0 þ 0 FHPF 0 κ κ κ þ 0 0 þ FAPF FBPF ( j ¼ ) κ 0 0 κ 0 þ 0 þ 0 κ 0 κ κ þ 0 þ 0 ( j ¼ ) b 0 b b b 0

10 Procedure for Designing Fractional-Order Filters Fig.. FBD for realizing FBPF of order ug (a) current mode topology, (b) voltage mode topology τ ¼ 0 þ τ, τ ¼ b b τ τ ¼ þ 0 τ, τ ¼ b b 0 τ ð:0aþ ð:0bþ.4 Fractional-Order Generalized Filters (Order þ ) Although, fractional-order filters constitute a small portion of fractional-order calculus, they have gained a growing research interest offering important features especially on behavior of the attenuation gradient. The stopband attenuation of integer order filters has been limited to increments based on the order n, but ug the fractional Laplacian operator attenuations between these integer steps can be achieved creating fractional step filter of order (n þ ), where is the fractional step between integer orders n and n þ and is therefore limited to (0 < < ). The derived frequency responses of filters of order þ exhibit a stopband attenuation equal to 6( þ ) db/oct, which offer a more precise control of the attenuation gradient compared to the attenuation offered in the case of integer-order filters of order n, which is 6n db/oct [6 9]. In this section, low-pass, high-pass, bandpass, and band-stop filters of order þ are presented, and some of the most critical frequencies ( p, h ) are also given in order to be fully characterized. Finally, ug the CFE method, the derived design equations results into a general topology, from which all the aforementioned type of filters could be realized..4. Fractional-Order Low-Pass Filter (FLPF) According to the analysis provided in [8], the direct realization of a fractional filter of the order n þ is stable in the case that n þ <. Therefore, only fractional filters of the order þ offer realizations without stability problem. The transfer function of a þ -order fractional low-pass filter is given by

11 .4 Fractional-Order Generalized Filters (Order þ ) 3 Hs ðþ¼ κ s þ þ κ ð:þ where the low-frequency gain is equal to κ /κ, and the 3 db frequency is given by (.) 3dB ¼ κ þ þ Þπ þ Þπ " r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! # þ ð:þ The obtained frequency responses suffer from the presence of an undesired peaking equal to κ /κ [(( þ )π/)] at the frequency p ¼ [ κ ( þ )π/] (þ). In order to overcome this problem, the modified transfer function given by (.3), which intends to approximate the all-pole Butterworth response, is introduced, where an extra term equal to κ 3 s has been added in the denominator of the transfer function in (.). The transfer function of a FLPF with low-frequency gain κ /κ and pole frequency ¼ /τ is that in (.3) κ Hs ðþ¼ ðτsþ þ ðτsþ ð:3þ þ κ The factors κ i (i ¼,, 3) are calculated by appropriate expressions, in order to minimize the error in the frequency response [9]. Such expressions are recalled in (.4). κ ¼ κ ¼ 0:937 þ 0:76 κ 3 ¼ :068 þ 0:6 þ 0:334 ð:4þ The magnitude response and phase response are given by (.5) as jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ þ þ κ u t o κ κ 3 þ κ 0 þ HðjÞ ¼ κ tan þ κ3 B þ A þ κ3 þ κ The peak frequency ( p ) is calculated solving the following equation: þ þ ð Þ p κ ð þ Þ p þκ p 3 þ κ κ 3 ¼ 0 which is derived from (.5) under the condition d d jhj ð Þj ¼ p ¼ 0. κ ð:5aþ ð:5bþ ð:6þ

12 4 Procedure for Designing Fractional-Order Filters The half-power ( 3 db) frequency ( h ), defined as the frequency where there is a drop of the passband gain, is calculated solving the following equation: þ ð Þ þ h κ h þ κ κ h 3 κ ¼ 0 h ð:7þ Also, the stopband attenuation gradient of the þ fractional-order low-pass filter is equal to 6( þ ) db/oct..4. Fractional-Order High-Pass Filter (FHPF) The transfer function of a FHPF is given by (.8) κ s þa Hs ðþ¼ ðτsþ þa ðτsþ a ð:8þ þ κ The magnitude response and phase response are given by (.9). jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ þ þ κ u t o κ κ 3 þ κ HðjÞ¼ κ þ ð þ Þπ 0 þ tan B þ A þ κ κ þ ð:9aþ ð:9bþ The peak frequency ( p ) is calculated solving the equation given in (.30), which is derived from (.9) under the condition d d jhj ð Þj ¼ p ¼ 0. Þ þ p κ 3 ð þ Þκ κ p 3 κ ð þ p ð þ Þκ ¼ 0 ð:30þ The half-power ( 3 db) frequency ( h ), defined as the frequency where there is a drop of the passband gain, is calculated solving the equation given in (.3).

13 .4 Fractional-Order Generalized Filters (Order þ ) 5 Also, the stopband attenuation gradient of the fractional-order high-pass filter order þ is equal to þ6( þ ) db/oct. þ ð Þ þ h þ κ h κ 3 κ κ h 3 κ ¼ 0 h ð:3þ.4.3 Fractional-Order Band-Pass Filter (FBPF) The transfer function of a FBPF is given by (.3) κ 3 ðτsþ a Hs ðþ¼κ ðτsþ þa ðτsþ a ð:3þ þ κ Ug (.3), the magnitude and phase response are given as κ κ 3 jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ þ þ κ o u o t κ κ 3 þ κ HðjÞ ¼ κ κ 3 þ 0 þ tan B þ A þ κ ð:33aþ ð:33bþ The peak frequency ( p ) is calculated solving the equation given in (.34), which is derived from (.33a) under the condition d d jhj ð Þj ¼ p ¼ 0. þ ð p κ κ 3 Þ ð p Þκ p þ κ ¼ 0 ð:34þ The half-power ( 3 db) freaquencies ( h, h ) are defined as the frequencies where there is a drop of the passband gain. The quality factor of the filter (Q) is calculated solving the following equation: p Q ¼ h h ð:35þ where h and h are the upper and lower half-power frequencies, respectively.

14 6 Procedure for Designing Fractional-Order Filters Also, the stopband attenuation gradient at the upper frequencies is 6 db/oct, while for the lower frequencies is þ6 db/oct, offering the capability of realizing a FBPF with the stopband attenuation being varied at the lower frequencies..4.4 Fractional-Order Band-Stop Filter (FBSF) A FBSF has the transfer function given by (.36) ðτsþ þ þ κ Hs ðþ¼κ ðτsþ þ ðτsþ ð:36þ þ κ The magnitude response and phase response are given by (.37), while the peak frequency ( p ) is calculated from (.37) under the condition d d jhj ð Þj ¼ p ¼ 0. The half-power ( 3 db) frequencies ( h ) are calculated from the condition that at these frequencies there is a drop of the passband gain. vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ þ κ þ κ jhj ð Þj ¼ κ þ ð Þ þ þ κ þ κ u 3 o t κ κ 3 o þ κ 0 þ HðjÞ ¼ k þ tan B þ A þ k 0 þ tan þ k B 3 þ A þ k 3 þ k The quality factor of the filter is calculated according to the formula: ð:37aþ ð:37bþ p Q ¼ h h ð:38þ where h and h are the upper and lower half-power frequencies, respectively..4.5 Design Equations for Generalized Filters of Order þ The realization of the fractional-order filters of order þ has been achieved in a similar way as in the previous section, where the approximation of variable (τs)

15 .4 Fractional-Order Generalized Filters (Order þ ) 7 Fig..3 FBD for realizing FLPF, FHPF, FBPF, and FBSF of order þ ug (a) current mode topology, (b) voltage mode topology has been performed through the utilization of the second-order expressions of the CFE given by (.) and substitution into (.3), (.8), (.3), and (.36). As a result, the derived transfer functions are that in (.39). Inspecting the transfer functions of FLPF, FHPF, FBPF, and FBSF, it is concluded that all of them have the same form. Consequently they could be realized by the same topology just by changing the coefficient values. A suitable solution for this purpose is depicted in Fig..3, where a typical (FBD) of a (FLF) topology and an (IFLF) topology are given in Fig..3a and Fig..3b, respectively. The realized transfer function is that given in (.40). Hþ LP ðþ¼κ s τ s þ τ s þ 0 τ 3 0 s 3 þ 3 þ κ 0 0 τ s þ 6 þ κ 0 τ s þ κ þ κ τ 3 Hþ HP ðþ¼κ s 0 s 3 þ s þ s 0 s 3 þ 3 þ κ 0 0 τ s þ 6 þ κ 0 τ s þ κ þ κ τ 3 Hþ BP ðþ¼κ s κ 3 0 τ s þ τ s þ τ 3 0 s 3 þ 3 þ κ 0 0 τ s þ þ κ 0 τ s þ κ 0 0 τ 3 ð:39aþ ð:39bþ ð:39cþ

16 8 Procedure for Designing Fractional-Order Filters Table.8 Values of scaling factors G i (i ¼ 0,...,3) for realizing fractional low-pass, high-pass, band-pass, and band-stop filter in Fig..3 of order þ Filter G 3 G G G 0 FLPF 0 κ κ κ 0 κ 0 þ þ ðκ Þ κ 0 FHPF κ κ κ 0 κ 0 þ þ ðκ Þ FBPF 0 κ κ 3 0 κ κ 3 κ κ 3 κ 0 þ þ ðκ Þ κ 0 FBSF κ κ ð þ κ Þ κ ð þ κ Þ κ κ 0 κ 0 þ þ ðκ Þ κ 3 þ κ 0 Hþ BS ðþ¼κ s 0s 3 þ ð þ κ Þ τ s þ ð þ κ Þ τ s þ ðκ 0 Þ τ s 3 þ þ κ 0 0 τ s þ 6 þ κ 0 τ s þ κ 4 3 þ κ 0 0 τ 3 Hs ðþ¼ G 3s 3 þ G τ s þ G τ τ s þ G 0 s 3 þ τ s þ τ τ s þ τ τ τ 3 τ τ τ ð:39dþ ð:40þ Comparing the coefficients of (.40) with these of FLPF, FHPF, and FBSF it is derived that the design equations about the time-constants τ i (i ¼,, 3) of all the filters are given in (.4). 0 τ ¼ τ ð:4aþ κ 0 þ τ ¼ κ 0 þ κ þ τ ð:4bþ τ 3 ¼ κ þ κ 0 τ ð:4cþ The corresponding design equations for the scaling factors G i (i ¼ 0,...,3) are summarized in Table.8..5 Fractional-Order Generalized Filters (Order þ ) The utilization of two different orders and, where þ < and, > 0 provides one more degree of freedom, which is able to vary, in order to realize fractional order filters of order þ. Such kind of filters exhibit a stopband attenuation which is proportionate to the fractional-order,. In this section,

17 .5 Fractional-Order Generalized Filters (Order þ ) 9 FLPF, FHPF, FBPF, and FBSF of order þ are presented, and some of the most critical frequencies have been derived in order to be fully characterized. The most important critical frequencies that will be presented are the following: p is the frequency at which the magnitude response has a maximum or a minimum and is obtained by solving the equation d d jhj ð Þj ¼ p ¼ 0 h is the half-power frequency at which the power drops to half the passband p power, i.e., jhj ð Þj ¼h ¼ jhj ð Þj ¼p = ffiffiffi Also, ug a general topology, all the aforementioned type of filters could be realized and this is very important from the flexibility point of view..5. Fractional-Order Low-Pass Filter (FLPF) The transfer function of the FLPF of order þ is given by Eq. (.4) κ Hs ðþ¼ ðτsþ þ ðτsþ ð:4þ þ κ The magnitude response and phase response are given by (.43). The half-power ( 3 db) frequency ( h ), defined as the frequency where there is a drop of the passband gain, is calculated solving the equation given by (.44), which is derived taking into account that the maximum gain of the filter is κ /κ. Also, the stopband attenuation gradient of the fractional-order low-pass filter of order þ is equal to 6( þ ) db/oct. jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðþþ þ þ κ3 þ κ u þ ð þ Þπ t þκ π þ κ κ 3 κ ð:43aþ HðjÞ ¼ κ 0 þ ð þ Þπ tan π B þ ð þ Þπ π A þ κ ðþþ þ h þ κ3 h þ þ κ h ð þ Þπ þ κ h 3 þ κ κ h π 3 κ ¼ 0 ð:43bþ ð:44þ

18 30 Procedure for Designing Fractional-Order Filters.5. Fractional-Order High-Pass Filter (FHPF) The transfer function of a HLPF with maximum gain equal to κ /κ is that in (.45) Hs ðþ¼ κ ðτsþ þ ðτsþ þ ðτsþ ð:45þ þ κ The magnitude response and phase response are given by (.46) as jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðþþ þ þ κ3 þ κ þ u þ ð þ Þπ t þκ π þ κ κ 3 Hðj κ þ ð:46aþ Þ ¼ κ þ ð þ Þπ 0 þ ð þ Þπ tan π B þ ð þ Þπ π A þ κ ð:46bþ The half-power ( 3 db) frequency ( h ), defined as the frequency where there is a drop of the passband gain, is calculated solving the equation given in (.47). Also, the stopband attenuation gradient of the fractional-order high-pass filter of order þ is equal to 6( þ ) db/oct. ðþþ þ h κ3 h þ κ h ð þ Þπ ð:47þ κ h 3 κ κ h π 3 κ ¼ Fractional-Order Band-Pass Filter (FBPF) The transfer function of a FBPF is κ 3 ðτsþ Hs ðþ¼κ ðτsþ þ ðτsþ ð:48þ þ κ

19 .5 Fractional-Order Generalized Filters (Order þ ) 3 Ug (.48), the magnitude and phase response is expressed through the following equations: κ κ 3 jhj ð Þj ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðþþ þ þ κ3 þ κ þ u þ ð þ Þπ t þκ π þ κ κ 3 ð:49aþ HðjÞ ¼ κ κ 3 þ π 0 þ ð þ Þπ tan π o B þ ð þ Þπ π A þ κ ð:49bþ The peak frequency ( p ) is calculated solving the equation given in (.49), which is derived from (.48) with the condition: d d jhj ð Þj ¼ p ¼ 0. ðþþ þ p þ p κ3 þ þ ð Þκ p ð þ Þπ k k p π 3 k ¼ 0 The quality factor of the filter is calculated according to the formula: ð:50þ p Q ¼ h h ð:5þ where h and h are the upper and lower half-power frequencies, respectively. Also, the stopband attenuation gradient at the upper frequencies is 6 db/oct, while for the lower frequencies is þ6 db/oct, offering the capability of realizing a FBPF with the stopband attenuation being varied in both frequency regions..5.4 Fractional-Order Band-Stop Filter (FBSF) A FBSF has the transfer function given by (.5). ðτsþ aþ þ κ Hs ðþ¼κ ðτsþ aþ ðτsþ ð:5þ þ κ

20 3 Procedure for Designing Fractional-Order Filters vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðaþþ aþ h i þ κ ðþþπ þ κ jhj ð Þj ¼ κ ðþþ þ þ κ3 þ ð:53aþ κ u þ ð þ Þπ t þκ π þ κ κ 3 0 þ ð þ Þπ HðjÞ ¼ κ tan B þ ð þ Þπ A þ κ 0 þ ð þ Þπ π tan B þ ð þ Þπ π A þ κ ð:53bþ The magnitude response and phase response are given by (.53), while the peak frequency ( p ) is calculated from (.53) under the condition d d jhj ð Þj ¼ p ¼ 0. The half-power ( 3 db) frequencies ( h ) are calculated ug the fact that at these frequencies there is a drop of the passband gain which is equal to κ. The quality factor of the filter is calculated from (.5)..5.5 Design Equations for Generalized Filters of Order þ Utilizing the second-order expression of the CFE given by (.) and substituting into (.4), (.45), (.48), and (.5) the derived transfer function for FLPF, FHPF, FBPF, and FBSF is the following: H þ ðþ¼ s κ D 4 N 4 s 4 þ N 3 τ s3 þ N τ s þ N τ s þ N 3 0 h τ 4 i ð:54þ s 4 þ D 3 D 4 τ s3 þ D D 4 τ s þ D D 4 τ s þ D 3 0 D 4 τ 4 where the coefficients of the denominator D i and nominator N i (i ¼,...,4) have been defined in (.55), and Table.9, respectively. D 0 b 0 b þ κ 0 b 0 D b þ b b 0 b þ κ b 0 þ κ 0 b D 0 b þ 0 b þ b 0 b b 0 b 0 þκ b 0 þ κ b þ κ 0 b D 3 0 b þ b 0 b b 0 þ κ b þ κ b D 4 0 b 0 b 0 þ κ b ð:55þ

21 .5 Fractional-Order Generalized Filters (Order þ ) 33 Table.9 Values of the coefficients of the nominator N i (i ¼,...,4) in (.54) for realizing FLPF, FHPF, FBPF, and FBSF of order þ Filter N 4 N 3 N N N 0 FLPF b b þ b b0 þ b þ 0b b0 þ 0b 0b0 FHPF 0 b 0 b 0 þ 0 b 0 b þ b þ b 0 b þ b b FBPF κ 3 b 0 κ 3 ( b þ b 0 ) κ 3 ( b þ b þ 0 b 0 ) κ 3 ( b þ 0 b ) κ 3 0 b FBSF b 0 þ κ b 0 0b þ b0 0b þ b b þ b b þ κ 0 b 0 þκb þ κb þb0 þ κb0 þκb0 þ κ0b þκb þ κ0b

22 34 Procedure for Designing Fractional-Order Filters Fig..4 FBD for realizing fractional FLPF, FHPF, FBPF, and FBSF of order þ ug (a) current mode topology, (b) voltage mode topology Comparing the transfer functions of the FLPF and FHPF, it is easily derived that the numerator in H HP (s) is derived through the substitution 0 $ and b 0 $b in the numerator of H LP (s). In a similar way, the numerator in H BP (s) is derived through the substitution b 0 $b in the numerator of H LP (s) multiplied by the factor κ 3. Inspecting the transfer function given in (.54), it is easily concluded that all of them were expressed by the same form, and consequently they could be realized by the same topology just by changing the coefficient values. A suitable solution for this purpose is depicted in Fig..4, where a typical FBD of a FLF topology and an IFLF topology are given in Fig..4a and Fig..4b, respectively. The realized transfer function is that given in (.56). Comparing the coefficients of (.54) with those in (.56), it is derived that the design equations about the time-constants τ j ( j ¼,...,4) of all the filters and the corresponding design equation for the scaling factor G i (i ¼ 0,...,4) are given in (.57) and (.58), respectively. Hs ðþ¼ G 4s 4 þ G 3 τ s 3 þ G τ τ s þ G τ τ τ 3 s þ G 0 s 4 þ τ s 3 þ τ τ s þ τ τ τ 3 s þ τ τ τ 3 τ 4 τ j ¼ D 5 j D 4 j τ τ τ τ 3 τ 4 ð:56þ ð:57þ G i ¼ κ N i D i ð:58þ where the values of the coefficients N i are those given in Table.9, and depend on the desired filter function.

23 .6 Fractional-Order Filters of Order n þ 35.6 Fractional-Order Filters of Order n þ The procedure for realizing a high-order fractional filter of order n þ will be studied, where n is the integer-order of the filter and corresponds to values n, and is the order of the fractional part of the filter where (0 < < ). Such kind of filters exhibits stopband attenuation equal to 6(n þ ) db/oct. The attenuation offered in the case of integer-order filters of order n, which is 6n db/oct. Thus, low-pass, high-pass, band-pass, and band-stop filters of order n þ are presented, and two different design procedures are followed in order to realize these kinds of filters. According to [8, 9], the realization of a fractional-order filter of order n þ with Butterworth characteristics could be performed through the utilization of the polynomial ratio given by (.59) H nþ ðþ¼ s H þðþ s B n ðþ s ð:59þ where H þ (s) is the transfer function given by (.3), (.8), (.3), (.36) for realizing a FLPF, FHPF, FBPF, and FBSF, respectively, and B n (s) is the corresponding Butterworth polynomial of order n-. Some of these polynomials are the following: B ðþ¼s s þ p B ðþ¼s s þ ffiffiffi s þ B 3 ðþ¼ s ðs þ Þðs þ s þ Þ B 4 ðþ¼ s ðs þ 0:7654s þ Þðs þ :8478s þ Þ B 5 ðþ¼ s ðs þ Þðs þ 0:68s þ Þðs þ :68s þ Þ ð:60þ The gain response of the (n þ ) filter is that given in (.6) jh nþ ðþj ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ ðn Þ þ þ ð:6þ Performing a routine algebraic procedure it is derived from (.6) that ðnþþ h þ h n ð Þ þ þ ð Þ h ¼ 0 ð:6þ

24 36 Procedure for Designing Fractional-Order Filters.6. Design Equations for Generalized Filters of Order n þ Utilizing the second-order expression of the CFE given by (.) and ug the expressions in (.39), then from (.59) it is obtained that the general forms of the transfer functions will be the following: Hnþ LP ðþ¼κ s 0 Hnþ HP ðþ¼κ s Hnþ BP ðþ¼κ s κ 3 0 Hnþ BS ðþ¼κ s 0 0 τ s þ n τ s þ nþ 0 τ nþ s nþ þ nþ τ snþ þþ τ s þ nþ 0 τ nþ ð:63aþ 0 τ s 3 þ τ s þ n τ s nþ 0 s nþ þ nþ τ snþ þþ τ s þ nþ 0 τ nþ ð:63bþ 0 τ s þ n τ s þ nþ τ nþ ð:63cþ s nþ þ nþ τ snþ þþ τ s þ nþ 0 τ nþ τn s3 þ ð þ κ Þ τ ns þ ð þ κ Þ τ nþs þ κ 0 s nþ þ nþ τ snþ þþ τ nþs þ 0 τ nþ τ nþ ð:63dþ where κ (κ ¼ 0,,...,n þ ) is a function of i, which is a result of multiplication of the denominator of H þ (s) in (.39) and the coefficients of B n (s). Inspecting the transfer functions of FLPF, FHPF, FBPF, and FBSF, it is concluded that all of them have the same form. Consequently they could be realized by the same topology just by changing the coefficient values. A suitable solution for this purpose is depicted in Fig..5, where a typical FBD of a FLF topology and an IFLF topology are given in Fig..5a and Fig..5b, respectively. Fig..5 FBD for realizing FLPF, FHPF, FBPF, and FBSF of order n þ ug B n- (s) Butterworth polynomials (a) current mode topology, (b) voltage mode topology

25 .6 Fractional-Order Filters of Order n þ 37 Table.0 Values of scaling factors G i for realizing FLPF, FHPF, FBPF, and FBSF in Fig..5 of order n þ Filter G 3 G G G 0 FLPF 0 κ 0 κ 0 κ 0 FHPF κ κ κ FBPF 0 κ κ 3 κ κ 3 κ κ FBSF κ κ ð þ κ Þ κ ð þ κ Þ κ κ The realized transfer function is that given in (.64). Comparing the coefficients of (.64) with these of FLPF, FHPF, and FBSF it is derived that, under the assumption that nþ ¼, the design equations about the time-constants τ j ( j ¼,,..., n þ ) of all the filters are given in (.65). The corresponding design equations for the scaling factors G i (i ¼ 0,...,3) are summarized in Table.0. H nþ ðþ¼ s G 3 τ τ n s 3 þ G τ τ n s þ G τ τ nþ s þ G 0 τ τ nþ s nþ þ τ s nþ þ τ τ s n þþ τ τ τ nþ τ j ¼ nþ3 j nþ j τ ð:64þ ð:65þ In case time-constants are to be expressed as a function of the desired half-power frequency ( h ), then the above equation could be modified as τ j ¼ nþ3 j h ð:66þ nþ j Taking into account the fact that all the aforementioned procedure is somewhat complicated due to the algebraic calculation of the coefficients κ especially in case of high-order filters. Thus, an alternative solution for realizing high-order fractional filters is through the cascade connection of þ and n order filters, which is expressed in the following equation as H nþ ðþ¼h s þ ðþh s n ðþ s ð:67þ where H n (s) ¼ / B n (s) is the transfer function of the n order Butterworth filter, the derivation of which is a trivial procedure. A suitable topology for this purpose is depicted in Fig..6, from which is obvious that having available the topology of an þ order filter and an integerorder filter of an n order filter, it is readily obtained that one additional step is required for realizing an n þ order fractional filter.

26 38 Procedure for Designing Fractional-Order Filters Fig..6 FBD for realizing FLPF, FHPF, FBPF, and FBSF of order n þ ug (n-) Butterworth filter (a) current-mode topology, (b) voltage-mode topology The gain response of the filter is that given in (.68), where and are the 3 db frequencies of the þ and n order filters, respectively. jh nþ ðþj ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ ð Þ ðn Þ þ þ Performing a routine algebraic procedure it is derived from (.68) that h Þ ðþþ h Þ ðn Þ þ h Þ ðn Þ þ h Þ ðþþ ¼ 0 ð:68þ ð:69þ Taking into account that and are selected to be the same and equal to, then (.69) is simplified to (.6)..7 Summary Fractional-order differentiation/integrator blocks and fractional order generalized filters have been realized in this section, through the utilization of the CFE, which enables the opportunity of realizing all the aforementioned topologies through integer-order counterparts which is a trivial procedure. Each category has been performed by ug a general form, offering the capability of implementing various types of transfer functions without modifying their core, which is very important from the design flexibility point of view. Having available all this procedure, then it is easy to realize every kind of the aforementioned fractional-order circuits ug the suitable or desirable way of implementing the integer-order counterparts (i.e., integrators), which thereafter depends on the designer choice. They could be realized either ug a current mode procedure ug for example current-mirrors, or a voltage mode ug OTAs. Some of these implementations will be described and realized in detail in the next sessions.

27 References 39 References. Abdelliche, F., Charef, A.: R-peak detection Ug a complex fractional wavelet. In: Proceedings of the IEEE International Conference on Electrical and Electronics Engineering (ELECO), pp (009). Abdelliche, F., Charef, A., Talbi, M., Benmalek, M.: A fractional wave-let for QRS detection. IEEE Inf. Commun. Technol. (), (006) 3. Ferdi, Y., Hebeuval, J., Charef, A., Boucheham, B.: R wave detection ug fractional digital differentiation. ITBMRBM. 4(5 6), (003) 4. Goutas, A., Ferdi, Y., Herbeuval, J.P., Boudraa, M., Boucheham, B.: Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. Int. Arab. J. Inf. Technol. 6(), 7 3 (005) 5. Benmalek, M., Charef, A.: Digital fractional order operators for R-wave detection in electrocardiogram signal. IET Signal Process. 3(5), (009) 6. Radwan, A., Soliman, A., Elwakil, A.: First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 7(), (008) 7. Tsirimokou, G., Psychalinos, C.: Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circ. Sig. Process. 8 (), (04) 8. Maundy, B., Elwakil, A., Freeborn, T.: On the practical realization of higher-order filters with fractional stepping. Signal Process. 9(3), (0) 9. Freeborn, T., Maundy, B., Elwakil, A.: Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4(6), (00) 0. Ortigueira, M.: An introduction to the fractional continuous-time linear systems: the st century systems. IEEE Circuits Syst. Mag. 8(3), 9 6 (008). Elwakil, A.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 0(4), (00). Biswas, K., Sen, S., Dutta, P.: Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II Express Briefs. 53(9), (006) 3. Krishna, B., Reddy, K.: Active and passive realization of fractance device of order ½. Act. Passive Electron. Compon. 008, Article ID 3694 (008) 4. Radwan, A., Elwakil, A., Soliman, A.: On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 8(), (009) 5. Freeborn, T., Maundy, B., Elwakil, A.: Towards the realization of fractional step filters. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp (00) 6. Mondal, D., Biswas, K.: Performance study of fractional order integra-tor ug glecomponent fractional order element. IET Circuits Devices Syst. 5(4), (0) 7. Radwan, A., Salama, K.: Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 3 (6), (0) 8. Ahmadi, P., Maundy, B., Elwakil, A., Belostotski, L.: High-quality fac-tor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circuits Devices Syst. 6(3), (0) 9. Ali, A., Radwan, A., Soliman, A.: Fractional order Butterworth filter: active and passive realizations. IEEE J. Emerging Sel. Top. Circuits Syst. 3(3), (03)

28

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Contents Introduction to Filter Concepts All-Pole Approximations

Contents Introduction to Filter Concepts All-Pole Approximations Contents 1 Introduction to Filter Concepts... 1 1.1 Gain and Attenuation Functions..... 1 1.2 Ideal Transmission... 4 1.2.1 Ideal Filters... 5 1.3 Real Electronic Filters... 6 1.3.1 Realizable Lowpass

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΑΝΑΛΟΓΙΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΦΙΛΤΡΩΝ ΧΑΜΗΛΗΣ ΤΑΣΗΣ ΤΡΟΦΟΔΟΣΙΑΣ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΥΠΕΡΒΟΛΙΚΟΥ ΗΜΙΤΟΝΟΥ

ΣΧΕΔΙΑΣΗ ΑΝΑΛΟΓΙΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΦΙΛΤΡΩΝ ΧΑΜΗΛΗΣ ΤΑΣΗΣ ΤΡΟΦΟΔΟΣΙΑΣ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΥΠΕΡΒΟΛΙΚΟΥ ΗΜΙΤΟΝΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΗ ΑΝΑΛΟΓΙΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΦΙΛΤΡΩΝ ΧΑΜΗΛΗΣ ΤΑΣΗΣ ΤΡΟΦΟΔΟΣΙΑΣ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΥΠΕΡΒΟΛΙΚΟΥ

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

Balanced Slope Demodulator EEC 112. v o2

Balanced Slope Demodulator EEC 112. v o2 Balanced Slope Demodulator EEC 11 The circuit below isabalanced FM slope demodulator. ω 01 i i (t) C 1 L 1 1 Ideal +v o (t) 0 C 0 v o1 v o + + C 0 Ideal 0 ω 0 L C i i (t) It is the same as the circuit

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΗΡΑΚΛΕΙΟ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ ΗΡΑΚΛΕΙΟ 2013 ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010

Διαβάστε περισσότερα