خاستگاه های نظر یه میدان کوانتومی

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "خاستگاه های نظر یه میدان کوانتومی"

Transcript

1 خاستگاه های نظر یه میدان کوانتومی وحیدکریمی پور- دانشکده فیزیک - دانشگاه صنعتی شریف ۲۷ مهر ۱۳۹۴ ۱ مقدمه در این درس می خواهیم خاستگاه های متفاوت نظریه میدان کوانتومی را معرفی کنیم. از ا نجا که این درس مقدمه ای بر نظریه میدان برای گروه وسیعی از دانشجویان با علایق پژوهشی متفاوت است معرفی این خاستگاه ها اهمیت دارد. ۲ الکتر ودینامیک کوانتومی از عمر نظریه میدان کوانتومی بیش از ۸۰ سال می گذرد. به یک معنا می توان تولد ا ن را تنها کمی دیر تر از مکانیک کوانتومی انگاشت. از همان ابتدا معلوم بود که فوتون که نقش کلیدی در گشودن پنجره های دنیای کوانتومی را به روی ما داشته است خود در چارچوب مکانیک کوانتومی شرودینگر قابل توصیف نیست ا یا فوتون یک ذره است اگر چنین است فضای هیلبرت ا ن چیست ا یا می توان فضای هیلبرت ا ن را با بردارهای مکانی ا ن یعنی ویژه بردارهای مکان { x } توصیف کرد ربط دقیق ا ن به میدان الکترومغناطیس و معادلات ماکسول چیست اگر فوتون یک ذره است ا یامی توان برهم کنش یک اتم با نور را به صورت برهم کنش دو ذره در نظر گرفت و یک هامیلتونی برای این سیستم دو ذره ای نوشت که جذب یا گسیل فوتون را توسط ۱

2 اتم توصیف کند معادلات ماکسول در کجای این تصویر ذره ای قرار دارد تازه اگر فوتون را یک ذره درست مثل الکترون در نظر بگیریم چگونه باید یک معادله کوانتومی (مثل معادله شرودینگر) برای حرکت این ذره نوشت این ها و سوالاتی از این نوع باعث اولین تلاش ها برای تدوین یک نظر یه کوانتومی برای میدان الکتر ومغناطیسی شدند. میدان کوانتومی الکتر ومغناطیسی یا همان الکترودینامیک کوانتومی ۱ موفق ترین نمونه از یک میدان کوانتومی است یعنی میدانی (در اینجا الکترومغناطیس) که کوانتیده شده است. در چارچوب این نظریه اکنون می توانیم نه تنها به سوالات بالا جواب بدهیم بلکه هم چنین می توانیم بسیاری از کمیت های مربوط به برهم کنش الکترون و نور را با دقت بسیار زیاد یعنی با دقتی بیش از ۱۳ رقم اعشار محاسبه کنیم. نقطه ا غاز برای کوانتیده کردن چنین میدانی مثل هر میدان کلاسیک دیگر توجه به روابط کروشه پوا سون بین مختصات میدانی و مزدوج های ا نهاست: یعنی {ϕ i (x),, π j(y) } = δ i,j δ(x y). (۱) در رهیافتی که کوانتش کانونیک ۲ خوانده می شود فرا یند کوانتش از تبدیل این رابطه کلاسیک به یک رابطه بین عملگرهای متناظر با این میدان ها ا غاز می شود: یعنی [ ˆϕ i (x),, ˆπ j(y) ] = iħδ i,j δ(x y). (۲) در این رابطه (x) ϕˆ i و (y) πˆ j میدان های کوانتومی هستند یعنی به هر نقطه از فضا مثل x یک عملگر نسبت داده شده است و مجموعه همه این عملگرها در همه نقاط فضا پیوستاری از عملگرهاست که یک میدان کوانتومی خوانده می شوند. درست مثل مکانیک کوانتومی در این جا هم می توان از دو دیدگاه به کوانتش نگاه کرد. یک دیدگاه یعنی تصویر شرودینگر که در ا ن عملگرها هیچگونه بستگی زمانی ندارند و همه بستگی زمانی در حالت هاست و دیدگاه دیگر یعنی دیدگاه هایزنبرگ که در ا ن حالت ها ثابت هستند و همه بستگی زمانی در عملگرهاست. در اولین مطالعه ای که از میدان های کوانتومی انجام می دهیم ما تصویر شرودینگر را به کار می بریم بنابراین میدان ˆϕ(x) فقط به مختصات فضا یعنی x بستگی دارد. به یک نکته مهم دیگر نیز باید دقت کنید که معمولا در اولین برخورد دانشجویان با نظریه میدان موجب اشتباه ا نان می شود. این نکته این است که در این جا x دیگر یک عملگر نیست بلکه یک پارامتر معمولی است که نقاط مختلف فضا را از هم متمایز می کند. ا نچه که عملگر است ϕˆ است که در نقطه x تعریف شده یا نشسته است و به همین جهت با ˆϕ(x) نشان داده می شود. ممکن است که Quantum Electrodynamics ۱ Canonical Quantization ۲ ۲

3 خواننده در بسیاری از کتاب ها و مقالات ببیند که میدان به صورت (t ˆϕ(x, نوشته شده است. دلیل اش این است که این میدان ها در تصویر هایزنبرگ نوشته شده اند. در ا ینده به این تصویر نیز می پردازیم. پس از اصل موضوع کوانتش (۲) گام بعدی یافتن یا ساختن فضای هیلبرتی است که این روابط در ا نجا نمایش داده شوند. بعد از برداشتن این گام مشاهده می کنیم که در فضای هیلبرتی که ساخته ایم حالت هایی وجود دارند که خصوصیات ا نها مثل ذره است ذارتی با خصوصیات معین مثل جرم بار اسپین و نظایر ا ن. این ها هستند که کوانتوم های میدان خوانده می شوند و در هر مورد اسم خاصی دارند و در کوانتش میدان الکترومغناطیس فوتون د ر کوانتش نوسانات یک غشا یا شبکه جامد فونون ۳ و در کوانتش یک میدان اسپینی مگنون ۴ خوانده می شوند. دراین ساختار جدید که در ا ن میدان الکترومغناطیسی کوانتیده شده هر نوع برهم کنش اتم و تشعشع یا فوتون ها توصیف مناسبی به صورت شماتیک زیر پیدا می کند: Atom F ield(= P hotons) Atom F ield (= P hotons ) (۳) که در ا ن تحول توسط هامیلتونی میدان و اتم ایجاد شده است. در اینجا اتم به صورت یک ذره کوانتومی تصویر شده که با یک میدان یا به عبارت دیگر با کوانتوم های ا ن میدان برهم کنش می کند. اما در ا ینده خواهیم دید که الکترون ها نیز کوانتم های یک میدان دیگرند. در چنین دیدگاهی می بایست از برهم کنش میدان ها با یکدیگر یا برهم کنش کوانتوم های ا نها با هم سخن گفت. این موضوعی است که در درس های ا ینده به ا ن خواهیم پرداخت. ۳ چرا اصولا می بایست میدان ها را کوانتیزه کرد ا یا توصیف درست تابش و ساختن یک نظریه که به طور سازگار تصویر ذره ای تابش را با الکترومغناطیس پیوند می دهد تنها انگیزش پرداختن به نظریه میدان کوانتومی است اگر چنین است چرا باید به گرانش کوانتومی پرداخت که تا کنون شاهد تجربی Phonon ۳ Magnon ۴ ۳

4 ای نه برای امواج گرانشی اش یافته شده و نه بر ماهیت ذره گونه ا ن اصولا چرا باید هر میدانی را کوانتیزه کرد چه اشکال منطقی و ریاضی در ساختار فیزیک وجود خواهد داشت اگر از کوانتومی کردن میدان ها خواه میدان الکترومغناطیسی خواه میدان گرانشی صرف نظر کنیم ا یا کوانتومی کردن میدان ها یک ضرورت است یا فقط یک نیاز زیباشناختی ناشی از میل ما به وحدت بخشیدن به ذرات و میدان ها پاسخ همه این سوال ها این است که واقعا همزیستی میدان کلاسیک و ذرات کوانتومی از نظر منطقی دارای اشکال است. دلیل اش هم این است که ذرات چشمه میدان هستند و هرگاه که ذرات رفتار کوانتومی داشته باشند به ناگزیر میدان های ناشی از این ذرات نیز رفتار کوانتومی خواهند داشت. به طور دقیق تر ذره بارداری را در نظر بگیرید که در مکان x قرار دارد و سرعت v دارد. می دانیم که میدان الکتریکی و مغناطیسی ای که این ذره در نقطه ای از فضا مثل x تولید می کند هم به مکان ذره باردار و هم به سرعت ا ن بستگی دارد. بنابراین اگر مکان و سرعت این ذره بنا بر مکانیک کوانتومی همزمان و با هر دقتی وجود نداشته باشند به این معناست که میدان های الکتریکی و مغناطیسی ناشی از این ذره نیز همزمان نمی توانند با هر دقتی وجود داشته باشند. این عدم دقت خود را در مقیاس های بزرگ یعنی مقیاس های زندگی روزمره و حتی مقیاس های میکرونی و کمی کوچکتر از ا ن نشان نمی دهد ولی در مقیاس های اتمی این عدم قطعیت کاملا مشخص است. معنای این حرف این است که در مقیاس های اتمی تنها می توانیم از احتمال این که میدان الکترومغناطیسی مقادیر معین اختیار کند سخن بگوییم. همین موضوع در مورد میدان گرانش نیز صادق است چرا که بنابر گرانش اینشتین میدان گرانش یعنی متریکی که در یک نقطه از فضا ایجاد می شود به تانسور انرژی و تکانه در نقاط فضا بستگی دارد و هرگاه که این تانسور انرژی تکانه به طور دقیق معین نباشد به معنای این است که میدان گرانش یعنی متریک فضا زمان نیز به طور دقیق معین نخواهد بود بلکه کمیتی خواهد بود که داي ما افت و خیز می کند و تغییر می کند به همین دلیل است که برخی در گفتگو از گرانش کوانتومی از کف فضا زمان ۵ سخنی می گویند. به این ترتیب می بینیم که در یک ساختار منسجم و سازگار از فیزیک نه تنها ذرات بلکه میدان ها نیز باید کوانتیزه شوند. در شکل نهایی خواهیم دید که ذرات حتی الکترون ها و کوارک ها و نظایر ا ن چیزی نیستند جز کوانتوم های میدان های مخصوص به خود به همان شکل که فوتون کوانتای میدان الکترومغناطیسی است. به این ترتیب برهم کنش ذرات چیزی نیست جز برهم کنش میدان های کوانتومی. Space-Time Foam ۵ ۴

5 ۴ مکانیک کوانتومی نسبیتی یکی دیگر از خاستگاه های نظریه میدان کوانتومی مکانیک کوانتومی نسبیتی است. به شکل فعلی مکانیک کوانتومی با نسبیت خاص ناسازگار است. نخست بدلیل ا نکه معادله شرودینگر به وضوح با تبدیلات لورنتز ناسازگار است چرا که زمان و مکان به دو گونه متفاوت در ا ن وارد شده اند و مهم تر از ا ن اینکه می دانیم در سرعت های زیاد انرژی می تواند به ذره تبدیل شود و بر عکس. بنابراین تعداد ذرات در اثر این واکنش ها می تواند تغییر کند. به هر صورت که مکانیک کوانتومی شرودینگر را دستکاری کنیم امکان افزایش یا کاهش تعداد ذرات در ا ن وجود ندارد چرا که همواره همه اتفاقات در یک فضای هیلبرت ثابت که جا دهنده تعداد معینی از ذرات است می افتد. بنابراین اگر بخواهیم مکانیک کوانتومی را با نسبیت خاص سازگار کنیم می بایست یک صورت بندی جدید اراي ه دهیم که نه تنها با تبدیلات لورنتز سازگار باشد بلکه فضای هیلبرت ا ن گنجایش تعداد دلخواهی از ذرات را داشته باشد. چنانکه خواهیم دید این چارچوب به طور طبیعی به نظریه میدان کوانتومی می رسد. ۵ فیزیک ماده چگال و میدان های کوانتومی غیر نسبیتی ممکن است فکر کنیم که تنها خاستگاه نظریه میدان کوانتومی مکانیک کوانتومی نسبیتی است چرا که در حد غیر نسبیتی ما با تعداد ثابتی از ذرات سر و کار داریم و چارچوب مکانیک کوانتومی استاندارد برای توصیف پدیده ها کافی است. اما این تصور اشتباه است چرا که در حد غیر نسبیتی نیز ما با پدیده های تولید و نابودی ذرات سر و کار داریم. نوسانات شبکه یونی در یک جامد به بهترین وجه توسط حالت های تحریکی این شبکه موسوم به فونون ها توصیف می شود. پراکندگی الکترون ها از این شبکه نیز بهترین توصیف خود را در برهم کنش الکترون ها و فونون ها می یابند. فونون ها می توانند خلق یا نابود شوند. همین طور جابجایی الکترون ها از زیر سطح فرمی به سطوح بالاتر به پیدا شدن یک حفره در لایه های پایین می انجامد. وقتی که در یک فلز یک الکترون انرژی گرفته و از باند ظرفیت به باند هدایت می رود در جای خالی اش یک حفره ۶ تولید می شود. حفره را می توان ذره ای در نظر گرفت که دارای همان خصوصیات الکترونی است با این تفاوت که بار مثب دارد. بنابراین واکنشی که صورت می گیرد درست مثل تولید یک زوج ذره است. وقتی هم که یک الکترون از باند هدایت به باند ظرفیت سقوط می hole ۶ ۵

6 کند درست مثل این است که نابودی زوج رخ داده است. بنابراین حتی در سطح غیر نسبیتی نیز ذوج های ذره و پاد ذره تولید و نابود می شوند و تعداد ا نها ثابت باقی نمی ماند. بنابر این از لحاظ تکنیکی برای توصیف سیستم های بس ذره ای حتی غیر نسبیتی نیز می بایست از روش های نظریه میدان استفاده کنیم. این رهیافت به نظریه میدان به طور طبیعی کاری به سازگاری با نسبیت و تبدیلات نسبیتی ندارد به همین دلیل نظریه میدان غیر نسبتی ۷ نامیده می شود و بیشتر از همه جا در فیزیک ماده چگال کاربرد دارد. علاوه بر این ها حتی وقتی که با تعداد ثابتی از ذرات یکسان سر و کار داریم بازهم روش های نظریه میدان کارا یی فوق العاده خود را نشان می دهند. دلیل اش این است که اگر بخواهیم رفتار کوانتومی یک سیستم از ذرات یکسان فرمیون یا بوزون را توصیف کنیم می بایست تابع موج این ذرات را یا کاملا پادمتقارن یا کاملا متقارن کنیم. به عنوان مثال تابع موج N تا الکترون به شکل زیر است: Ψ ± := 1 ( 1) sgnσ ψ(x σ1, x σ2, x σn ) (۴) N! σ که در ا ن σ نشان دهنده همه جایگشت ها و sgn(σ) نشان دهنده درجه یک جایگشت است. واضح است که محاسبه خواص این سیستم با در نظر گرفتن چنین تابع موجی که دارای!N جمله است بسیار دشوار است. دقت کنید که در شرایط واقعی N عددی از مرتبه عدد ا ووگادرو ست. به همین جهت برای توصیف ذرات یکسان می بایست از روش کاملا جدیدی استفاده کرد. این روش که روش کوانتش دوم ۸ نامیده می شود (بدون اینکه واقعا دوبار کوانتش هیچ معنای خاصی داشته باشد) منجر به صورت بندی ای برای مطالعه سیستم های ذرات یکسان می شود که چیزی نیست جز نظریه میدان کوانتومی غیر نسبیتی. حتی وقتی که با ذرات کوانتومی جایگزیده سر و کار داریم مثلا وقتی که می خواهیم یک شبکه از اتم های فرومغناطیسی را مطالعه کنیم بازهم به نظریه میدان کوانتومی نیازمند می شویم. دلیل اش این است که وقتی چنین سیستمی مثلا یک شبکه اسپینی را از خیلی نزدیک مشاهده کنیم ا ن را به صورت یک شبکه گسسته از اتم ها می بینیم که در هرکدام از انها یک عملگر Non-Relativistic Quantum Field Theory ۷ Second Quantization ۸ ۶

7 کوانتومی اسپین قرار گرفته و با همسایگانش برهم کنش می کند. هامیلتونی چنین سیستمی چیزی شبیه به عبارت زیر است: H = J n Ŝ n Ŝ n+1 (۵) که در ا ن Ŝn عملگر اسپینی در نقطه n ام است. فاصله هر دو نقطه از این شبکه نیز برابر با a است که در نمونه های واقعی از مواد در حدود ۲ تا ۳ ا نگستروم است. اما هرگاه مقیاس مشاهده ما که ا ن را با l نشان می دهیم خیلی بزرگتر از طول شبکه باشد مثلا l << 10 20a باشد ا نگاه عملا نمی توانیم نقطه های شبکه را ببینیم و تنها می توانیم کمیت های متوسطی را ببینیم که حاصل جمع عملگرهای اسپینی در چندین نقطه است. در این مقیاس مشاهده دیگر نمی توانیم موقعیت تک تک اتم ها و اسپین ا نها را معین کنیم بلکه می توانیم بگوییم که در هر نقطه x یک عملگر Ŝ(x) تعریف شده که در واقع متوسط اسپین های درون یک ناحیه است. به این ترتیب ما با یک میدان کوانتومی روبرو می شویم که در یک بعد تعریف شده است. ۶ نظریه میدان ا ماری و پدیده های بحرانی اصلی ترین کمیت در مکانیک ا ماری تابع پارش است که به صورت زیر تعریف می شود: Z = C e βh(c) dc (۶) که در ا ن C نشان دهنده هیي ت های یک سیستم و H(C) نشان دهنده انرژی سیستم است وقتی که در هیي ت C قرار دارد. هم چنین dc نشان دهنده یک اندازه مناسب برای انتگرال روی هیي ت هاست. یک هیي ت می تواند نشان دهنده موقعیت و سرعت مجموعه ای از ذرات باشد مثل یک گاز که در این صورت C مجموعه ای از کمیت های گسسته است. اما برای بعضی اوقات C نشان دهنده وضعیت یک پیوستار مثلا وضعیت یک تار یا غشای کشسان است. به طور مشخص تر فرض کنید که یک تار کشسان بین دو نقطه 0 و L بسته شده و ارتفاع تار کشسان در نقطه x با ϕ(x) نشان داده شود. انرژی تار کشسان می تواند به صورت یک تابعی از ϕ داده شود مثلا H[ϕ] = L 0 dxh(ϕ(x), ϕ ). (۷) x ۷

8 برای چنین سیستمی تابع پارش برابر است با: Z = Dϕe β L ϕ dxh(ϕ(x), 0 x ) (۸) هم چنین C می تواند وضعیت قرار گرفتن یک پلیمر یا یک ماکرومولکول در فضای سه بعدی باشد و H(C) نشان دهنده این باشد که ا ن ماکرومولکول با توجه به میزان خمش و پیچشی که دارد چه مقدار انرژی دارد. در مثالی دیگر C می تواند وضعیت یک غشای دوبعدی کشسان باشد. همه اینها نمونه هایی از وضعیت هایی است که با مکانیک ا ماری سیستم های پیوسته سر و کار داریم. سوال اینجاست که این کمیت های کلاسیکی چه ربطی به نظریه میدان کوانتومی دارند. پاسخ این سوال را در درس های ا ینده با کمی تفصیل خواهیم دید ولی به طور خلاصه این ارتباط ناشی از صورت بندی انتگرال مسیر برای مکانیک کوانتومی است. در واقع می دانیم که در صورت بندی انتگرال مسیر برای مکانیک کوانتومی دامنه گذار برای رفتن از یک نقطه به نقطه دیگر به صورت زیر بیان می شود: q, t q, t = Dqe i ħ t t L(q, dq dτ )dτ. (۹) به عبارت دیگر دامنه عبور بالا به صورت یک انتگرال روی تمام مسیرهای قابل تصور نوشته می شود. چنانچه در ا ینده خواهیم دید می توان طرف راست را به یک نوع تابع پارش برای یک سیستم مکانیک ا ماری تبدیل کرد. این تناظر به نظریه میدان کوانتومی نیز تعمیم پیدا می کند. به عبارت دیگر بسیاری از روش ها و مفاهیم نظریه میدان ا ماری با نظریه میدان کوانتومی مشترک هستند و دلیل ا نهم وجود فرمالیزم انتگرال مسیر در مکانیک کوانتومی و نظریه میدان کوانتومی است. به این ترتیب بحث مقدماتی ما در باره خاستگاه های نظریه میدان کوانتومی به پایان می رسد. ا نچه که ا موخته ایم این است که در چند دهه ی گذشته معلوم شده مفاهیم و روش های نظریه میدان کوانتومی در حوزه هایی خیلی فراخ تر و متنوع تر از خاستگاه سنتی ا ن که الکترودینامیک کوانتومی بوده است به کار رفته است. و به همین دلیل است که ا شنایی با نظریه میدان کوانتومی برای بسیاری از دانشجویان فیزیک نظری تقریبا مستقل از این که در چه رشته ای به پژوهش خواهند پرداخت اهمیت دارد. به همین دلیل است که این درس به این شکل تدوین شده و اراي ه می شود. ۸

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد: تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

جلسه ی ۴: تحلیل مجانبی الگوریتم ها

جلسه ی ۴: تحلیل مجانبی الگوریتم ها دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه ی ۵: حل روابط بازگشتی

جلسه ی ۵: حل روابط بازگشتی دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { } هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی

Διαβάστε περισσότερα

سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات

سايت ويژه رياضيات   درسنامه ها و جزوه هاي دروس رياضيات سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

آشنایی با پدیده ماره (moiré)

آشنایی با پدیده ماره (moiré) فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل

Διαβάστε περισσότερα

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

تشکیل ساختار و ساختارهای بز رگ مقیاس کیهانی

تشکیل ساختار و ساختارهای بز رگ مقیاس کیهانی تشکیل ساختار و ساختارهای بز رگ مقیاس کیهانی شانت باغرام ا خرین به روزرسانی: ۳ ا بان ۱۳۹۳ ۱ مقدمه امروز کیهان شناسی به دلیل وجود داده های رصدی که از تلسکوپ های زمینی و فضایی و در طول موج های متفاوت الکترومغناطیس

Διαβάστε περισσότερα

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

ثابت. Clausius - Clapeyran 1

ثابت. Clausius - Clapeyran 1 جدول 15 فشار بخار چند مایع خالص در دمای 25 C فشار بخار در دمایC (atm) 25 نام مایع 0/7 دیاتیل اتر 0/3 برم 0/08 اتانول 0/03 آب دمای جوش یک مایع برابر است با دمایی که فشار بخار تعادلی آن مایع با فشار اتمسفر

Διαβάστε περισσότερα

اصول انتخاب موتور با مفاهیم بسیار ساده شروع و با نکات کاربردی به پایان می رسد که این خود به درک و همراهی خواننده کمک بسیاری می کند.

اصول انتخاب موتور با مفاهیم بسیار ساده شروع و با نکات کاربردی به پایان می رسد که این خود به درک و همراهی خواننده کمک بسیاری می کند. اصول انتخاب موتور اصول انتخاب موتور انتخاب یک موتور به در نظر گرفتن موارد بسیار زیادی از استانداردها عوامل محیطی و مشخصه های بار راندمان موتور و... وابسته است در این مقاله کوتاه به تاثیر و چرایی توان و

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

تحلیل الگوریتم پیدا کردن ماکزیمم

تحلیل الگوریتم پیدا کردن ماکزیمم تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي

Διαβάστε περισσότερα

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است. محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته

Διαβάστε περισσότερα

آموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات -

آموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات - آموزش SPSS مقدماتی و پیشرفته تهیه و تنظیم: فرزانه صانعی مدیریت آمار و فناوری اطالعات - مهرماه 96 بخش سوم: مراحل تحلیل آماری تحلیل داده ها به روش پارامتری بررسی نرمال بودن توزیع داده ها قضیه حد مرکزی جدول

Διαβάστε περισσότερα

تمرین اول درس کامپایلر

تمرین اول درس کامپایلر 1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد

Διαβάστε περισσότερα

جلسه ی ۱۱: درخت دودویی هرم

جلسه ی ۱۱: درخت دودویی هرم دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد. ) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

) max. 06 / ) )3 600 )2 60 )1 c 20 )2 25 )3 30 )4. K hf W است.

) max. 06 / ) )3 600 )2 60 )1 c 20 )2 25 )3 30 )4. K hf W است. 0 اتمی فیزیک با آشنایی هفتم: فصل فوتوالکتریک پدیدهی - فوتون دوم: بخش فوتوالکتریک پدیدهی الکتروسکوپ یک کالهک به )فرابنفش( بلند بسیار موج طول و باال بس امد با نور هرگاه که ش د متوجه هرتز نوزدهم قرن اواخر

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

Spacecraft thermal control handbook. Space mission analysis and design. Cubesat, Thermal control system

Spacecraft thermal control handbook. Space mission analysis and design. Cubesat, Thermal control system سیستم زیر حرارتی ماهواره سرفصل های مهم 1- منابع مطالعاتی 2- مقدمه ای بر انتقال حرارت و مکانیزم های آن 3- موازنه انرژی 4 -سیستم های کنترل دما در فضا 5- مدل سازی عددی حرارتی ماهواره 6- تست های مورد نیاز

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت جزوه تکنیک پالس فصل چهارم: مولتی ویبراتورهای ترانزیستوری فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

راهنمای کاربری موتور بنزینی )سیکل اتو(

راهنمای کاربری موتور بنزینی )سیکل اتو( راهنمای کاربری موتور بنزینی )سیکل اتو( هدف آزمایش : شناخت و بررسی عملکرد موتور بنزینی تئوری آزمایش: موتورهای احتراق داخلی امروزه به طور وسیع برای ایجاد قدرت بکار می روند. ژنراتورهای کوچک پمپ های مخلوط

Διαβάστε περισσότερα

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و

Διαβάστε περισσότερα

Delaunay Triangulations محیا بهلولی پاییز 93

Delaunay Triangulations محیا بهلولی پاییز 93 محیا بهلولی پاییز 93 1 Introduction در فصل های قبلی نقشه های زمین را به طور ضمنی بدون برجستگی در نظر گرفتیم. واقعیت این گونه نیست. 2 Introduction :Terrain یک سطح دوبعدی در فضای سه بعدی با یک ویژگی خاص

Διαβάστε περισσότερα

شاخصهای پراکندگی دامنهی تغییرات:

شاخصهای پراکندگی دامنهی تغییرات: شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

سینماتیک مستقیم و وارون

سینماتیک مستقیم و وارون 3 سینماتیک مستقیم و وارون بهنام میری پور فرد استادیار گروه مهندسی رباتیک دانشگاه صنعتی همدان همدان ایران bmf@hut.ac.ir B. Miripour Fard Hamedan University of Technology 1 در سینماتیک حرکت بررسی کند می

Διαβάστε περισσότερα

آنچه که هر فیزیکدان باید درباره ي تي وري ریسمان بداند

آنچه که هر فیزیکدان باید درباره ي تي وري ریسمان بداند آنچه که هر فیزیکدان باید درباره ي تي وري ریسمان بداند نویسنده : ادوارد ویتن ترجمه: مریم امیري ناشر الکترونیکی: سایت علمی بیگ بنگ (http://bigbangpage.com) تاریخ انتشار: آذر 1394» استفاده از مطالب با ذکر

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

مشخصه های نابجایی ها چگالی نابجایی: مجموع طول نابجاییها در واحد حجم و یا تعداد نابجایی هایی که یک واحد از سطح مقطع دلخواه را قطع می کنند.

مشخصه های نابجایی ها چگالی نابجایی: مجموع طول نابجاییها در واحد حجم و یا تعداد نابجایی هایی که یک واحد از سطح مقطع دلخواه را قطع می کنند. مشخصه های نابجایی ها نابجاییها و مشخصات آنها تاثیرات مهمی بر روی خواص مکانیکی فلزات دارند. مهمترین این مشخصات میدان کرنشی است که در اطراف نابجایی ها وجود دارد. این میدان کرنش بر تحرک سایر نابجایی ها و

Διαβάστε περισσότερα

مکانيک جامدات ارائه و تحليل روش مناسب جهت افزایش استحکام اتصاالت چسبي در حالت حجم چسب یکسان

مکانيک جامدات ارائه و تحليل روش مناسب جهت افزایش استحکام اتصاالت چسبي در حالت حجم چسب یکسان پائیز 2931/ سال ششم/ شماره ویژه دوم فصلنامه علمي پژوهشي مهندسي مکانيک جامدات فصلنامه علمي پژوهشي مهندسي مکانيک جامدات www.jsme.ir ارائه و تحليل روش مناسب جهت افزایش استحکام اتصاالت چسبي در حالت حجم چسب

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96 الکتریسیته ساکن سال تحصیلى 95-96 مقدمه: همانطور که می دانیم بارهای الکتریکی بر هم نیرو وارد می کنند. بارهای الکتریکی هم نام یکدیگر را می رانند و بارهای الکتریکی نا هم نام یکدیگر را می ربایند. بار نقطه

Διαβάστε περισσότερα

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر تئوری رفتار مصرف کننده : می گیریم برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر فرض اول: مصرف کننده یک مصرف کننده منطقی است یعنی دارای رفتار عقالیی می باشد به عبارت دیگر از مصرف کاالها

Διαβάστε περισσότερα

بسم هللا الرحمن الرحیم

بسم هللا الرحمن الرحیم بسم هللا الرحمن الرحیم نام سر گروه : نام اعضای گروه : شماره گروه : تاریخ انجام آزمایش : تاریخ تحویل آزمایش : هدف آزمایش : بررسی جریان و ولتاژ در مدارهای RLC و مطالعه پدیده تشدید وسایل آزمایش : منبع تغذیه

Διαβάστε περισσότερα

شیمی عمومی دانشگاه فردوسی مشهد

شیمی عمومی دانشگاه فردوسی مشهد شیمی عمومی 1 ترموشیمی )گرماشیمی ) 2 انرژی گرمایی انرژی که مربوط به حرکت ذرات بوده و تابع دما می باشد 3 دما معیااری ام میاانایر انارژی ذراتای ذرات و معیاری ام سردی و گرمی اذسام می باشد. 4 گرما انرژی گرمای

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

ارزیابی بهره وری متقاطع DEA بر پایه بهبود پارتو

ارزیابی بهره وری متقاطع DEA بر پایه بهبود پارتو چکیده ارزیابی بهره وری متقاطع DEA بر پایه بهبود پارتو جی.وو جونفی.چو جیاس ن سان کینگ یوآن ژو ارزیابی بهره وری متقاطع به عنوان یک ابزار گسترده برای تحلیل پوششی داده ها (DEA) دارای کاربرد گسترده ای در ارزیابی

Διαβάστε περισσότερα

چکیده مقدمه کلید واژه ها:

چکیده مقدمه کلید واژه ها: چکیده طی دهه های گذشته سازمان های بسیاری در اقسا نقاط جهان سیستم برنامه ریزی منابع سازمانی ERP را اتخاذ کرده اند. در باره ی منافع حسابداری اتخاذ سیستم های سازمانی تحقیقات کمی در مقیاس جهانی انجام شده است.

Διαβάστε περισσότερα

فصل سوم : عناصر سوئیچ

فصل سوم : عناصر سوئیچ فصل سوم : عناصر سوئیچ رله الکترومکانیکی: یک آهنربای الکتریکی است که اگر به آن ولتاژ بدهیم مدار را قطع و وصل می کند. الف: دیود بعنوان سوئیچ دیود واقعی: V D I D = I S (1 e η V T ) دیود ایده آل: در درس از

Διαβάστε περισσότερα

ندرک درگ ندرک درگ شور

ندرک درگ ندرک درگ شور ٥ عددهای تقریبی درس او ل: تقریب زدن گردکردن در کالس چهارم شما با تقریب زدن آشنا شده اید. عددهای زیر را با تقریب دهگان به نزدیک ترین عدد مانند نمونه تقریب بزنید. عدد جواب را در خانه مربوطه بنویسید. 780

Διαβάστε περισσότερα

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد دردینامیک علت حرکت یا سکون جسم تحت تاثیر نیروهای وارد بر آن بررسی میشود. تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد مانند اصطکاک یا

Διαβάστε περισσότερα

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی

Διαβάστε περισσότερα

واحد های اندازه گیری میزان پرتو: اکسپوژر: میزان یونیزاسیون تولید شده توسط پرتوX یا گاما در واحد جرم. exposure= Q

واحد های اندازه گیری میزان پرتو: اکسپوژر: میزان یونیزاسیون تولید شده توسط پرتوX یا گاما در واحد جرم. exposure= Q واحد های اندازه گیری میزان پرتو: اکسپوژر: exposure= Q M میزان یونیزاسیون تولید شده توسط پرتوX یا گاما در واحد جرم واحد آن در سیستم SI کولن بر کیلوگرم )C/Kg( در سیستم cgs رونتگن) R ( یک رونتگن مقدار پرتوX

Διαβάστε περισσότερα