ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ"

Transcript

1 ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυµάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούµε ή να µετατρέψουµε διάφορες περιεκτικότητες. β) Ασκήσεις αραίωσης - συµπύκνωσης διαλυµάτων. γ) Ασκήσεις όπου αναµιγνύονται διαλύµατα που περιέχουν την ίδια διαλυµένη ουσία. Είναι προφανές ότι στην περίπτωση αυτή επειδή η διαλυµένη ουσία είναι ίδια για τα αναµειγνυόµενα διαλύµατα δεν υπάρχει καµία αντίδραση. 1 η ΚΑΤΗΓΟΡΙΑ (Εύρεση ή µετατροπή περιεκτικότητας) Για την κατηγορία αυτή των ασκήσεων πρέπει να γνωρίζουµε πολύ καλά τις διάφορες εκφράσεις περιεκτικότητας. Για την κατηγορία αυτή των ασκήσεων δεν υπάρχει µια γενική µεθοδολογία για την επίλυση τους, απλώς έχοντας σαν στόχο το τι ζητά η άσκηση, συνήθως, µε κατάλληλους υπολογισµούς καταλήγουµε σε µια «απλή µέθοδο των τριών», απ' όπου βρίσκουµε το ζητούµενο. ΠΑΡΑ ΕΙΓΜΑ 1 Σε 160g νερού(h 2 O) προσθέτουµε 40g στερεό NaCl. Να υπολογιστεί η %w/w περιεκτικότητα του διαλύµατος. Η άσκηση αυτή είναι µια απλή άσκηση της 1 ης κατηγορίας. Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόµοιων χρησιµοποιούµε την ΑΠΛΗ ΜΕΘΟ Ο ΤΩΝ ΤΡΙΩΝ κατά την εφαρµογή της οποίας θα πρέπει να προσέχουµε ώστε σε κάθε στήλη από τις δύο στήλες που χρησιµοποιούµε να υπάρχει απόλυτη οµοιοµορφία και στις µονάδες αλλά και στις ουσίες, π.χ. να υπάρχουν g διαλύµατος επάνω αλλά και g διαλύµατος κάτω. Η µάζα του διαλύµατος είναι: mm διαλύτη(η2ο) +m δ/νης ουσίας(νacl) g διαλύµατος. Στα 200 g διαλύµατος έχουµε 40 g NaCl 100 g διαλύµατος χ; g NaCl 200χ χ2000 x20g NaCl Άρα, η περιεκτικότητα του διαλύµατος είναι 10%w/v σε NaCl.

2 ΠΑΡΑ ΕΙΓΜΑ 2 Υδατικό διάλυµα ουσίας Α έχει πυκνότητα d1,25g/ml και περιεκτικότητα 8%w/w. Να υπολογιστεί η % w/v περιεκτικότητα του διαλύµατος. Η άσκηση αυτή είναι µια επίσης άσκηση της 1 ης κατηγορίας, στην οποία θα πρέπει να µετατρέψουµε την %w/w περιεκτικότητα σε %w/v. Επειδή η ποσότητα του διαλύµατος δεν καθορίζεται, θεωρούµε ότι έχουµε 100g διαλύµατος. Σύµφωνα µε την εκφώνηση αφού η περιεκτικότητα του διαλύµατος είναι 8%w/w, σε 100g διαλύµατος θα περιέχονται 8g ουσίας Α. Για να υπολογίσουµε όµως την %w/v θα πρέπει να γνωρίζουµε τον όγκο του διαλύµατος. Οπότε θα πρέπει να µετατρέψουµε τα 100g διαλύµατος σε ml διαλύµατος. d m διαλύµατος V V m διαλύµατος Έτσι, µε εφαρµογή της απλής µεθόδου των τριών έχουµε: Στα d 100g V V 80mL 1,25g/ ml 80mL διαλύµατος περιέχονται 8 g ουσίας Α Στα 100mL διαλύµατος χ; g ουσίας Α 80χ800 χ10g ουσίας Α Άρα, η περιεκτικότητα του διαλύµατος είναι 10%w/v.

3 2 η ΚΑΤΗΓΟΡΙΑ Ασκήσεις Αραίωσης ή Πύκνωσης Για την επίλυση ασκήσεων αυτής της κατηγορίας βασιζόµαστε σε ένα απλό γεγονός: H ποσότητα της καθαρής διαλυµένης ουσίας, (εκφρασµένη σε g), παραµένει η ίδια πριν και µετά την αραίωση - συµπύκνωση. ΠΑΡΑ ΕΙΓΜΑ 3 Πόσα ml H 2 O πρέπει να προσθέσουµε σε 300 ml διαλύµατος HCl 20% w/v για να προκύψει διάλυµα 12% w/v; Η άσκηση αυτή ανήκει στην δεύτερη κατηγορία, είναι δηλ. µια άσκηση αραίωσης. Από τον αρχικό ορισµό της περιεκτικότητα κατ' όγκο έχουµε: Στα 100 ml διαλύµατος περιέχει 20 g καθαρό HCl 300 ml X; g 100χ χ6000 X 60 g καθαρό HCl Είναι προφανές ότι µετά την αραίωση, η ποσότητα αυτή, δηλ. τα 60 g, δεν θα αλλάξει, θα παραµείνει σταθερή, διότι προσθέτουµε µόνο νερό και καθόλου διαλυµένη ουσία. Είναι προφανές επίσης ότι εάν προσθέσω y ml νερού ο τελικός όγκος του διαλύµατος θα είναι (200 + y) ml. Από τον ορισµό της τελικής περιεκτικότητας κατά βάρος έχουµε Τα 100 ml τελικού διαλύµατος περιέχονται 12g καθαρό HCl (300 + y) ml 60g καθαρό HCl (300+y) y 12y2400 y 200 ml Συνεπώς πρέπει να προσθέσουµε 200 ml H 2 O ώστε το διάλυµα να αραιωθεί και η περιεκτικότητα του να γίνει 12% w/v. Παρατηρούµε ότι σε όλες τις πράξεις υπάρχει οµοιοµορφία των µονάδων, δηλ. υπάρχουν µόνο π. χ. ml και όχι αλλού L και αλλού ml.

4 Παρατηρούµε ότι για τις εκφράσεις της περιεκτικότητας % w/w και % w/v δεν έχει τελικά σηµασία ποια είναι η διαλυµένη ουσία. Βλέπουµε ότι προσθέτοντας νερό στο διάλυµα η περιεκτικότητα µικραίνει, συγκεκριµένα στην άσκηση από HCl 20% w/v γίνεται 12% w/v. Στην συµπύκνωση συµβαίνει το αντίθετο, δηλ. η περιεκτικότητα µεγαλώνει. 3 η ΚΑΤΗΓΟΡΙΑ Ασκήσεις Ανάµιξης ιαλυµάτων Για την επίλυση αυτού του τύπου των ασκήσεων δουλεύουµε µε τις παρακάτω αρχές: α) Υπολογίζουµε την ποσότητα της διαλυµένης ουσίας (εκφρασµένη σε g) που περιέχεται στα διαλύµατα πριν την ανάµιξή τους. β) Λύνουµε την άσκηση µε βάση το γεγονός ότι το άθροισµα των µαζών (εκφρασµένη σε g) της διαλυµένης ουσίας που βρίσκεται στα διαλύµατα πριν την ανάµιξη θα είναι το ίδιο µε τη µάζα της διαλυµένης ουσίας (εκφρασµένη σε g) που θα υπάρχει στο τελικό διάλυµα. γ) O όγκος ή η µάζα του τελικού διαλύµατος θα ισούται µε το άθροισµα των όγκων ή των µαζών των αρχικών διαλυµάτων που αναµείχθηκαν. δ) Η περιεκτικότητα του τελικού διαλύµατος πρέπει να είναι ανάµεσα στις αρχικές περιεκτικότητες και δεν µπορεί να είναι µεγαλύτερη από την µεγαλύτερη περιεκτικότητα και µικρότερη από την µικρότερη περιεκτικότητα. ΠΑΡΑ ΕΙΓΜΑ 4 Με ποια αναλογία όγκων πρέπει να αναµιχθούν διάλυµα NaOH 20% w/v και διάλυµα NaOH 10% w/v ώστε να προκύψει διάλυµα 12% w/v;

5 Έστω ότι θα πάρουµε x ml από το 1 ο διάλυµα, τότε θα έχουµε: Στα 100 ml διαλύµατος περιέχονται 20 g διαλυµένη ουσία ΝaΟΗ x ml α;g 20χ100α α0,2χ ml Έστω ότι θα πάρουµε y ml από το 2 ο διάλυµα, τότε θα έχουµε: Στα 100 ml διαλύµατος περιέχονται 10 g διαλυµένη ουσία NaOH y ml β; g 10y100β β0,1y ml Για το τελικό διάλυµα, το οποίο θα έχει όγκο (x + y) ml, έχουµε: Στα 100 ml διαλύµατος θα έχουµε 12 g διαλυµένη ουσία Στα ( x+y ) ml (0,2. x + 0,1. y) g διαλυµένη ουσία 100. ( 0,2. x + 0,1. y ) ( x + y ) χ+10y12x+12y χ y 8x2y 2 8 Άρα η αναλογία των όγκων είναι 1 προς 4, θα µπορούσαµε να πάρουµε π.χ. 100 ml από το 1 ο διάλυµα θα πρέπει να πάρουµε 400 ml από το 2 ο διάλυµα, ή 250 ml από το 1 ο διάλυµα θα πρέπει να πάρουµε 1000 ml από το 2 ο διάλυµα. Πρέπει να γνωρίζουµε ότι όταν η άσκηση µας ζητά αναλογία, µία εξίσωση είναι αρκετή για να την προσδιορίσουµε. Όπως οι προηγούµενες έτσι και αυτή η άσκηση µπορεί να λυθεί µε πολλούς τρόπους. Πρέπει να χρησιµοποιήσουµε µεγαλύτερη ποσότητα από το 2 ο διάλυµα γιατί η τελική περιεκτικότητα, δηλ. 12% w/v είναι πιο κοντά στην περιεκτικότητα του 2 ου διαλύµατος. x y 1 4 Λυκειακές Τάξεις Γυµνασίου Μεσοβουνίων

Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί)

Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί) ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυμάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούμε ή

Διαβάστε περισσότερα

ΤΡΟΠΟΙ ΕΚΦΡΑΣΗΣ ΤΗΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ

ΤΡΟΠΟΙ ΕΚΦΡΑΣΗΣ ΤΗΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΣΤΑ ΙΑΛΥΜΑΤΑ ιάλυµα ονοµάζουµε το οµογενές µίγµα δύο ή περισσοτέρων ουσιών. Στο Γυµνάσιο εξετάζουµε µόνο τα διαλύµατα εκείνα που αποτελούνται από δύο ουσίες. Η µία

Διαβάστε περισσότερα

ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ. ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n

ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ. ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n Ηλεκτρονιακή διαµόρφωση κατά στιβάδες Q 19 39 X 20 10 Ψ 6 6 R 8 Κ(2) L(4)

Διαβάστε περισσότερα

ΣΥΓΚΕΝΤΡΩΣΗ ΔΙΑΛΥΜΑΤΟΣ (Μolarity)

ΣΥΓΚΕΝΤΡΩΣΗ ΔΙΑΛΥΜΑΤΟΣ (Μolarity) ΣΥΓΚΕΝΤΡΩΣΗ ΔΙΑΛΥΜΑΤΟΣ (Μolarity) ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σημειώστε με Σωστό ή Λάθος. i) Η συγκέντρωση ενός διαλύματος είναι ίδια για ολόκληρο το διάλυμα ή για ένα μέρος αυτού. ii) Σε 50 ml διαλύματος

Διαβάστε περισσότερα

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ ΚΑΡΔΙΤΣΑ ΔΙΑΛΥΜΑΤΑ

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ ΚΑΡΔΙΤΣΑ ΔΙΑΛΥΜΑΤΑ 1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ ΚΑΡΔΙΤΣΑ ΔΙΑΛΥΜΑΤΑ ΗΛΙΑΣ ΝΟΛΗΣ-ΚΩΝΣΤΑΝΤΙΝΙΔΗΣ ΘΕΟΔΩΡΟΣ 2012 Διαλύματα Διάλυμα ονομάζεται κάθε ομογενές μείγμα δύο ή περισσοτέρων συστατικών. Κάθε

Διαβάστε περισσότερα

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας 1 Η θεωρία του μαθήματος με ερωτήσεις. 2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας Ερωτήσεις θεωρίας με απάντηση 3-1. Τι ονομάζεται περιεκτικότητα ενός διαλύματος; Είναι μία έκφραση που δείχνει

Διαβάστε περισσότερα

Συγκέντρωση διαλύματος

Συγκέντρωση διαλύματος Συγκέντρωση διαλύματος 22-1. SOS Ερώτηση: τι ονομάζουμε μοριακότητα κατ όγκο ή Molarity (Μολάριτι); Η μοριακότητα κατ' όγκο ή συγκέντρωση ή Molarity, εκφράζει τα mol διαλυμένης ουσίας που περιέχονται σε

Διαβάστε περισσότερα

χημεία Κατά βάρος (w/w %) επιμέλεια: Φόρης Μουρατίδης σελίδα 1 από 6 Βασίλης Συμεωνίδης, προσωπικός δικτυακός τόπος

χημεία Κατά βάρος (w/w %) επιμέλεια: Φόρης Μουρατίδης σελίδα 1 από 6  Βασίλης Συμεωνίδης, προσωπικός δικτυακός τόπος Φύλλο Εργασίας ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΙΑΛΥΜΑΤΩΝ - 1 Κατά βάρος (w/w %) 10gr καθαρής ουσίας 90gr διαλύτη 100 gr διαλύµατος 90 + 10 = 100 gr διαλύµατος περιέχουν 10 gr καθαρής ουσίας Έχουµε διάλυµα 10% w/w Η περιεκτικότητα

Διαβάστε περισσότερα

Λύνουµε περισσότερες ασκήσεις

Λύνουµε περισσότερες ασκήσεις Χηµεία Γ Λυκείου - Θετικής Κατεύθυνσης Βήµα 3 ο Λύνουµε περισσότερες ασκήσεις 61. Λύνουµε περισσότερες ασκήσεις 1. ιαθέτουµε 500 ml διαλύµατος ( ) NaOH µε ph = 13. α. Στο διάλυµα ( ) προσθέτουµε 1500 ml

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα δοµικά σωµατίδια της ύλης (άτοµο - µόριο - ιόν).

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα δοµικά σωµατίδια της ύλης (άτοµο - µόριο - ιόν). Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τι είναι η µάζα, το βάρος, ο όγκος και η πυκνότητα ενός σώµατος και τις µονάδες µέτρησής τους. Να γνωρίζει

Διαβάστε περισσότερα

Π. Γιαννακουδάκης Εργαστήριο Φυσικοχηµείας-Τµήµα Χηµείας-ΣΘΕ-ΑΠΘ Ασκήσεις στα ηλεκτρολυτικά διαλύµατα. α) HCl C = M β) CaCl 2 C = 5.

Π. Γιαννακουδάκης Εργαστήριο Φυσικοχηµείας-Τµήµα Χηµείας-ΣΘΕ-ΑΠΘ Ασκήσεις στα ηλεκτρολυτικά διαλύµατα. α) HCl C = M β) CaCl 2 C = 5. Ασκήσεις στα ηλεκτρολυτικά διαλύµατα Ιονική ισχύς. Να υπολογιστεί η ιονική ισχύς των διαλυµάτων των παρακάτω διαλυµάτων: α) HCl C = 5. 0-4 M β) CaCl C = 5. 0-4 M I = Cz γ) CdSO 4 C = 5. 0-4 M δ) NaCl C

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΧΗΜΙΚΕΣ ΑΝΤΙ ΡΑΣΕΙΣ (ΣΤΟΙΧΕΙΟΜΕΤΡΙΚΑ)

ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΧΗΜΙΚΕΣ ΑΝΤΙ ΡΑΣΕΙΣ (ΣΤΟΙΧΕΙΟΜΕΤΡΙΚΑ) ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΧΗΜΙΚΕΣ ΑΝΤΙ ΡΑΣΕΙΣ (ΣΤΟΙΧΕΙΟΜΕΤΡΙΚΑ) Κάθε χηµική εξίσωση εκτός από την ποιοτική µεταβολή δηλαδή την µετατροπή των αντιδρώντων σε προϊόντα παριστάνει και ποσοτική µεταβολή δηλαδή τις αναλογίες

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 4: ΠΑΡΑΣΚΕΥΗ ΙΑΛΥΜΑΤΟΣ ΟΡΙΣΜΕΝΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ - ΑΡΑΙΩΣΗ ΙΑΛΥΜΑΤΩΝ

Εργαστηριακή άσκηση 4: ΠΑΡΑΣΚΕΥΗ ΙΑΛΥΜΑΤΟΣ ΟΡΙΣΜΕΝΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ - ΑΡΑΙΩΣΗ ΙΑΛΥΜΑΤΩΝ ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ Εργαστηριακή άσκηση 4: ΠΑΡΑΣΚΕΥΗ ΙΑΛΥΜΑΤΟΣ ΟΡΙΣΜΕΝΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ - ΑΡΑΙΩΣΗ ΙΑΛΥΜΑΤΩΝ ΣΤΟΧΟΙ Στο τέλος του πειράµατος αυτού θα πρέπει να µπορείς : 1. Να εφαρµόζεις το ζυγό. 2. Να µετράς

Διαβάστε περισσότερα

Παρασκευή διαλυµάτων µε περιεκτικότητα % w/w Οδηγίες για τον καθηγητή

Παρασκευή διαλυµάτων µε περιεκτικότητα % w/w Οδηγίες για τον καθηγητή Οδηγίες για τον καθηγητή Τάξη Μάθηµα Γνωστικό αντικείµενο: ιδακτική ενότητα Απαιτούµενος χρόνος B Γυµνασίου - A Λυκείου Χηµεία Περιεκτικότητα διαλυµάτων w/w ιαλύµατα Από το νερό στο άτοµο Βασικές έννοιες

Διαβάστε περισσότερα

n=c*v=0.7*0.1=0.07mol =4,41g Άρα σε 100 ml διαλύματος υπάρχουν 4,41g ΗNO3 και συνεπώς η ζητούμενη περιεκτικότητα είναι: 4,41 % w/v.

n=c*v=0.7*0.1=0.07mol =4,41g Άρα σε 100 ml διαλύματος υπάρχουν 4,41g ΗNO3 και συνεπώς η ζητούμενη περιεκτικότητα είναι: 4,41 % w/v. Άσκηση 1 Σε νερό διαλύεται ορισμένη ποσότητα ΗNO 3. Το διάλυμα που παρασκευάστηκε έχει συγκέντρωση 0,7Μ (διάλυμα Δ1). 1) Να υπολογίσετε την περιεκτικότητα % w/v του διαλύματος Δ1 σε ΗNO 3. 2) Σε 50 ml

Διαβάστε περισσότερα

Λύνουµε περισσότερες ασκήσεις

Λύνουµε περισσότερες ασκήσεις 84 Λύνουµε περισσότερες ασκήσεις Βήµα 3 ο Λύνουµε περισσότερες ασκήσεις 1 Υδατικό διάλυµα ( ) ΗΝΟ 2 0,1 Μ έχει όγκο 500 ml και ο βαθµός ιοντισµού του οξέος σε αυτό είναι α 1 = 10 2 Λύση: α Να υπολογίσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΑΠΟ ΤΟ 3ο ΘΕΜΑ ΤΩΝ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1 ης ΚΑΙ 2 ης ΕΣΜΗΣ (ΙΟΥΝΙΟΣ 1998) (Ιοντισµός οξέος Επίδραση κοινού ιόντος Ρυθµιστικά διαλύµατα)

ΑΣΚΗΣΗ ΑΠΟ ΤΟ 3ο ΘΕΜΑ ΤΩΝ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1 ης ΚΑΙ 2 ης ΕΣΜΗΣ (ΙΟΥΝΙΟΣ 1998) (Ιοντισµός οξέος Επίδραση κοινού ιόντος Ρυθµιστικά διαλύµατα) ΑΣΚΗΣΗ ΑΠΟ ΤΟ 3ο ΘΕΜΑ ΤΩΝ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1 ης ΚΑΙ 2 ης ΕΣΜΗΣ (ΙΟΥΝΙΟΣ 1998) (Ιοντισµός οξέος Επίδραση κοινού ιόντος Ρυθµιστικά διαλύµατα) 1 mol NaOH αντιδρά πλήρως µε 1 L υδατικού διαλύµατος που περιέχει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ Α1. δ Α2. γ Α3. α Α4. δ Α5. β Α6. α) ιαλυτότητα ορίζεται η µέγιστη ποσότητα µιας ουσίας

Διαβάστε περισσότερα

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία...

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία... Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων Φύλλο εργασίας Τάξη Γ Λυκείου Ονοµατεπώνυµο Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Σύνθεση και προσδιορισµός

Διαβάστε περισσότερα

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους.

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. ΔΙΑΛΥΜΑΤΑ Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. Διαλύτης: η ουσία που βρίσκεται σε μεγαλύτερη αναλογία

Διαβάστε περισσότερα

Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα

Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα Διαλύματα - Περιεκτικότητες διαλυμάτων Γενικά για διαλύματα Μάθημα 6 6.1. SOS: Τι ονομάζεται διάλυμα, Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων καθαρών ουσιών. Παράδειγμα: Ο ατμοσφαιρικός αέρας

Διαβάστε περισσότερα

δ. g NaCl σε 00g διαλύµατος 7.Σε υδατικό διάλυµα ζάχαρης έχουµε α. 0 g ζάχαρης, L β. 0 g ζάχαρης, L γ. 0 g ζάχαρης, L δ. 0 g ζάχαρης, L 0 %/ (αν από τ

δ. g NaCl σε 00g διαλύµατος 7.Σε υδατικό διάλυµα ζάχαρης έχουµε α. 0 g ζάχαρης, L β. 0 g ζάχαρης, L γ. 0 g ζάχαρης, L δ. 0 g ζάχαρης, L 0 %/ (αν από τ Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α ηµήτρης Αθανασίου Φυσικός A.ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ Ερωτήσεις πολλαπλής επιλογής.tα διαλύµατα α.είναι ετερογενή µίγµατα β.είναι οµογενή µίγµατα που έχουν την ίδια σύσταση

Διαβάστε περισσότερα

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ).

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). Χηµεία Α Λυκείου Φωτεινή Ζαχαριάδου 1 από 12 ( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). α) Ένα µείγµα είναι πάντοτε

Διαβάστε περισσότερα

Ασκήσεις διαλυμάτων. Επαναληπτικές ασκήσεις Α' Λυκείου 1

Ασκήσεις διαλυμάτων. Επαναληπτικές ασκήσεις Α' Λυκείου 1 Επαναληπτικές ασκήσεις Α' Λυκείου 1 Ασκήσεις διαλυμάτων. 1. Διαλύουμε πλήρως 20 g σε 20 g H 2 O και προκύπτει διάλυμα Α. Να υπολογιστεί η % w/w περιεκτικότητα του διαλύματος. μάζα Δ/τος = 1 + 2 20 + 20

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες 1. Η τάση ατμών ενός υγρού εξαρτάται: i. Από την ποσότητα του υγρού ii. Τη θερμοκρασία iii. Τον όγκο του δοχείου iv. Την εξωτερική

Διαβάστε περισσότερα

ΤΟ MOL ΣΤΑ ΙΑΛΥΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΣ ΑΝΤΙ ΡΑΣΕΙΣ ΕΞΟΥ ΕΤΕΡΩΣΗΣ

ΤΟ MOL ΣΤΑ ΙΑΛΥΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΣ ΑΝΤΙ ΡΑΣΕΙΣ ΕΞΟΥ ΕΤΕΡΩΣΗΣ ΤΟ MOL ΣΤΑ ΙΑΛΥΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΣ ΑΝΤΙ ΡΑΣΕΙΣ ΕΞΟΥ ΕΤΕΡΩΣΗΣ Ελένη ανίλη, Χηµικός, Msc, PhD 2 Ας δώσει κάποιος τον ορισµός της ΣΥΓΚΕΝΤΡΩΣΗ (Μ) ενός διαλύµατος. ΜΟΡΙΑΚΟΤΗΤΑ Η ΣΥΓΚΕΝΤΡΩΣΗ (Μ) ενός διαλύµατος

Διαβάστε περισσότερα

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος.

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος. 1 ΚΕΦΑΛΑΙΟ 1 ο 1. ΙΑΛΥΜΑΤΑ (ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ) Όπως νφέρµε διάλυµ είνι έν οµογενές µίγµ που ποτελείτι πό δύο ή περισσότερες χηµικές ουσίες. Περιεκτικότητ διλύµτος είνι η ποσότητ της διλυµένης

Διαβάστε περισσότερα

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο ΔΙΑΛΥΜΑΤΑ ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΔΙΑΛΥΜΑΤΩΝ ΔΙΑΛΥΤΟΤΗΤΑ - ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Γενικά για τα διαλύματα Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων ουσιών, οι οποίες αποτελούν τα συστατικά του διαλύματος.

Διαβάστε περισσότερα

Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ

Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α4 να γράψετε στο τετράδιο σας το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης

Χηµεία Θετικής Κατεύθυνσης Χηµεία Θετικής Κατεύθυνσης Γ Λυκείου 3 ο Κεφάλαιο Σίγµα και πι δεσµοί - Υβριδισµός Οργανικές αντιδράσεις Διακρίσεις - Ταυτοποιήσεις kostasctheos@yahoo.gr 1 1 ο παράδειγµα Α. Ένα κορεσµένο µονοκαρβοξυλικό

Διαβάστε περισσότερα

ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ. Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια.

ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ. Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια. ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ Οι φυσικές καταστάσεις της ύλης είναι η στερεή, η υγρή και η αέρια. Οι μεταξύ τους μεταβολές εξαρτώνται από τη θερμοκρασία και την πίεση και είναι οι παρακάτω: ΣΗΜΕΙΟ ΤΗΞΗΣ ΚΑΙ ΣΗΜΕΙΟ

Διαβάστε περισσότερα

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ 2 Ογκομέτρηση προχοϊδα διάλυμα HCl ΕΔΩ ακριβώς μετράμε τον όγκο ( στην εφαπτομένη της καμπύλης

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

1. Να συμπληρώσετε τα κενά στις παρακάτω προτάσεις:

1. Να συμπληρώσετε τα κενά στις παρακάτω προτάσεις: 42 Κεφάλαιο 1ο 1. Να συμπληρώσετε τα κενά στις παρακάτω προτάσεις: α) Το... κάθε υδατικού διαλύματος οξέος παίρνει τιμές... από 7. β) Όσο πιο πολλά κατιόντα... περιέχονται σε ορισμένο όγκο διαλύματος του

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Οδηγίες για τον καθηγητή

Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Οδηγίες για τον καθηγητή Τάξη Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Απαιτούµενος χρόνος Γ Λυκείου Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. 2 διδακτικές ώρες Ειδικοί διδακτικοί

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΗΜΟΣΙΕΥΣΗΣ. ΞΑΝΘΟΥ 7 & 25ΗΣ ΜΑΡΤΙΟΥ ΑΙΓΑΛΕΩ ΤΗΛ:

ΑΣΚΗΣΗ ΗΜΟΣΙΕΥΣΗΣ. ΞΑΝΘΟΥ 7 & 25ΗΣ ΜΑΡΤΙΟΥ ΑΙΓΑΛΕΩ ΤΗΛ: ΑΣΚΗΣΗ ΗΜΟΣΙΕΥΣΗΣ 1. ίνονται οι εξής χηµικές ενώσεις: 1. CH 3 CO 2. Na 3. NH 3 4. HCl 5. NaF 6. HF 7. NH 4 CN 8. CH 3 CH=O 9. CH 3 CH= CHC CH 10. CH 3 CHCH 3 11.CH 3 CH 2 CH 2 A. ιαθέτουµε υδατικό διάλυµα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ

ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ Η συγκέντρωση συμβολίζεται γενικά με το σύμβολο C ή γράφοντας τον μοριακό τύπο της διαλυμένης ουσίας ανάμεσα σε αγκύλες, π.χ. [ΝΗ 3 ] ή [Η 2 SO 4 ]. Σε κάθε περίπτωση,

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΠΑΡΑΣΚΕΥΗ 6/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΡΑΣΚΕΥΗ 6/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΡΑΣΚΕΥΗ 6/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΑ ΘΕΤΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΣ ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. β Α5. β ΘΕΜΑ Β Β1. α. Λάθος, β. Λάθος, γ. Σωστό, δ. Σωστό, ε. Σωστό Β2. α. Οι σ (σίγµα) δεσµοί προκύπτουν

Διαβάστε περισσότερα

Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα.

Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα. 1. ΔΙΑΛΥΜΑ Διάλυμα καλείται κάθε ομογενές σύστημα, το οποίο αποτελείται από δύο ή περισσότερες χημικές ουσίες, και έχει την ίδια σύσταση σε όλη του τη μάζα. Ετερογενές σύστημα καλείται αυτό, το οποίο αποτελείται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1. έως Α5. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης

Διαβάστε περισσότερα

ΔΙΑΛΥΜΑΤΑ. Σγουρόπουλος Ιωάννης Συντονίστρια: Κ. Μήτκα Στέλλα

ΔΙΑΛΥΜΑΤΑ. Σγουρόπουλος Ιωάννης Συντονίστρια: Κ. Μήτκα Στέλλα ΔΙΑΛΥΜΑΤΑ II Σγουρόπουλος Ιωάννης Συντονίστρια: Κ. Μήτκα Στέλλα Εκατοστιαία διαλύματα Δ/μα % στερεάς ουσίας κατά βάρος ανά μονάδα βάρους W/W Δ/μα % στερεάς ουσίας κατά βάρος ανά μονάδα όγκου W/V Δ/μα %

Διαβάστε περισσότερα

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας 5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.

Διαβάστε περισσότερα

n V m M n = C V Με το γράµµα n συµβολίζουµε το πλήθος των mol µιας χηµικής ουσίας. Το m παριστάνει την µάζα της ουσίας σε g ενώ το M r

n V m M n = C V Με το γράµµα n συµβολίζουµε το πλήθος των mol µιας χηµικής ουσίας. Το m παριστάνει την µάζα της ουσίας σε g ενώ το M r Για να εκφράσουµε την ποσότητα µιας χηµικής ουσίας χρησιµοποιούµε τρία φυσικάµεγέθη: Τηνµάζα (), τονόγκο () καιτοπλήθοςτων ol (). ΣτηΧηµείατηνµάζατηνµετράµεσυνήθωςσεγραµµάρια (g) καιτονόγκο σε χιλιοστόλιτραήλίτρα

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Λογαριθµίζοντας την παραπάνω σχέση προκύπτει η εξίσωση Ηenderson - Hasselbalch, µε

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Λογαριθµίζοντας την παραπάνω σχέση προκύπτει η εξίσωση Ηenderson - Hasselbalch, µε Ρυθµιστικά διαλύµατα 205. 9 o Ρυθµιστικά διαλύµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ρυθµιστικά διαλύµατα: Ρυθµιστικά είναι τα διαλύµατα που διατηρούν το ph τους πρακτικά σταθερό, κατά την προσθήκη σε αυτά

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 23 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 23 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ Α1. β, Α2. α, Α. δ, Α4. β, Α5. α. Σ, β. Σ, γ. Λ, δ. Λ, ε. Σ ΘΕΜΑ Β Β1.α. β. Β2.α. 12 15 19 26 Mg : 1s 2s 2p 2+ 2 2 6 P : 1s 2s 2p s p

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA A ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Α1. Το ιόν 56 Fe +2 περιέχει:

Διαβάστε περισσότερα

Προσδιορισμός της διαλυτότητας στο νερό στερεών ουσιών - Φύλλο εργασίας

Προσδιορισμός της διαλυτότητας στο νερό στερεών ουσιών - Φύλλο εργασίας Προσδιορισμός της διαλυτότητας στο νερό στερεών ουσιών - Φύλλο εργασίας Γνωστικό αντικείμενο: Τάξη Διδακτική ενότητα Απαιτούμενος χρόνος Διαλυτότητα ουσιών σε υγρούς διαλύτες B Γυμνασίου Ενότητα 2: ΑΠΟ

Διαβάστε περισσότερα

Σύντομη περιγραφή του πειράματος

Σύντομη περιγραφή του πειράματος Σύντομη περιγραφή του πειράματος Παρασκευή διαλυμάτων ορισμένης περιεκτικότητας και συγκέντρωσης, καθώς επίσης και παρασκευή διαλυμάτων συγκεκριμένης συγκέντρωσης από διαλύματα μεγαλύτερης συγκέντρωσης

Διαβάστε περισσότερα

Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων.

Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων. Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων. A. Εύρεση συγκέντρωσης c. A. Δίνονται τα mol της διαλυμένης ουσίας και ο όγκος του διαλύματος: n C, C σε Μ, V σε λίτρα.

Διαβάστε περισσότερα

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_2530 ΗΛΙΟΠΟΥΛΟΥ ΜΑΡΙΑ

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_2530 ΗΛΙΟΠΟΥΛΟΥ ΜΑΡΙΑ ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_2530 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΗΛΙΟΠΟΥΛΟΥ ΜΑΡΙΑ ΕΚΦΩΝΗΣΕΙΣ 2.1 Δίνονται: υδρογόνο, 1H, άζωτο, 7N α) Να γράψετε την κατανοµή των ηλεκτρονίων σε στιβάδες

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2015 Ενδεικτικές απαντήσεις στο µάθηµα «ΧΗΜΕΙΑ»

Πανελλαδικές εξετάσεις 2015 Ενδεικτικές απαντήσεις στο µάθηµα «ΧΗΜΕΙΑ» Πανελλαδικές εξετάσεις 205 Ενδεικτικές απαντήσεις στο µάθηµα «ΧΗΜΕΙΑ» Θέµα Α Α. γ Α2. β Α. γ Α4. α Α5. β Θέµα Β Β. α. Λ β. Σ γ. Σ δ. Λ ε. Λ Αιτιολογήσεις: α) Το NaF διίσταται ως εξής: NaF Na + + F - Το

Διαβάστε περισσότερα

Δομικά σωματίδια - Καταστάσεις και ιδιότητες της ύλης

Δομικά σωματίδια - Καταστάσεις και ιδιότητες της ύλης Δομικά σωματίδια - Καταστάσεις και ιδιότητες της ύλης 1. Πόσα πρωτόνια, νετρόνια και ηλεκτρόνια περιέχει καθένα από τα επόμενα άτομα: 7 26 112 3 12 47 Li, Mg, Ag. 7 3Li : Ο ατομικός αριθμός (Ζ) είναι 3

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2003

ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2003 ΘΕΜΑ ο ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τις ερωτήσεις. και. και δίπλα στη κάθε µία το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.1. δ, Α.2. γ, Α.3. β, Α.4. γ, Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 15 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α.5. α. Λάθος, β. Σωστό, γ. Λάθος,

Διαβάστε περισσότερα

3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ : ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)

3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ : ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ) Χημεία Γ Λυκείου ΚΕΦΑΛΑΙΟ 3 Σταθερά ιοντισμού Κ a - K b Νόμος αραίωσης του Ostwald Επίδραση κοινού ιόντος Ιοντισμός ασθενούς οξέος - Σταθερά ιοντισμού Κ a ασθενούς οξέος: Σταθερά ιοντισμού Κ b ασθενούς

Διαβάστε περισσότερα

Μετά το τέλος της μελέτης του 4ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της μελέτης του 4ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της μελέτης του 4ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το πως ορίζονται η ατομική μονάδα μάζας, η σχετική ατομική μάζα (Αr) και η σχετική μοριακή μάζα (Μr). Να υπολογίζει

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

Προσδιορισµός βιταµίνης C σε χυµούς φρούτων και λαχανικών και µελέτη διάφορων παραγόντων που επιδρούν στη ποσότητα της

Προσδιορισµός βιταµίνης C σε χυµούς φρούτων και λαχανικών και µελέτη διάφορων παραγόντων που επιδρούν στη ποσότητα της ΕΚΦΕ Εύβοιας Προσδιορισµός βιταµίνης C σε χυµούς φρούτων και λαχανικών και µελέτη διάφορων παραγόντων που επιδρούν στη ποσότητα της Απαραίτητα όργανα Προχοϊδα Σιφώνι Κωνική φιάλη Απαραίτητα υλικά 10 ml

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ Η αντίσταση που δέχεται ένα σώµα όταν κινείται µέσα σ ένα ρευστό εξαρτάται απο το σχήµα του σώµατος. Παρατηρούµε οτι η µικρότερη αντίσταση εµφανίζεται στο ατρακτοειδές

Διαβάστε περισσότερα

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο 1. Αν διαλύσουµε σε νερό κάποια στερεά ουσία µε αµελητέα τάση ατµών, τότε η τάση ατµών του διαλύµατος που προκύπτει, σε σχέση µε την

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ, ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2004 2005 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2005 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ, ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2004 2005 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2005 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ, ΛΕΜΕΣΟΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2004 2005 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2005 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ Τάξη : Β Λυκείου Ηµεροµηνία : 8/06/2005 ιάρκεια : 2,5 ώρες Αριθµός σελίδων: 5 Χρήσιµα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ÏÅÖÅ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ÏÅÖÅ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 15 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ. Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ. Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 06 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α.. γ Α.. β Α.3. γ Α.4. γ Α.5. α ΑΠΑΝΤΗΣΕΙΣ Α.6.. Σ. Λ (Σύµφωνα

Διαβάστε περισσότερα

Ρυθµιστικά διαλύµατα - Οδηγίες για τον καθηγητή

Ρυθµιστικά διαλύµατα - Οδηγίες για τον καθηγητή - Τάξη Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Απαιτούµενος χρόνος Γ Λυκείου Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Ρυθµιστικά διαλύµατα 2 διδακτικές ώρες Ειδικοί διδακτικοί στόχοι Το λογισµικό

Διαβάστε περισσότερα

ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων

ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων ΕΡΓΑΣΙΕΣ ΜΕ ΔΙΑΛΥΜΑΤΑ Γραμμομοριακή συγκέντρωση διαλυμάτων Συγκέντρωση διαλύματος: ποσότητα διαλυμένης ουσίας σε καθορισμένη ποσότητα διαλύματος Αραιό διάλυμα: μικρή συγκέντρωση διαλυμένης ουσίας Πυκνό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ - ΠΑΡΑΔΕΙΓΜΑ

ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ - ΠΑΡΑΔΕΙΓΜΑ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ - ΠΑΡΑΔΕΙΓΜΑ ΘΕΜΑ 1ο Για τις παρακάτω ερωτήσεις Α1-Α3 να μεταφέρετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα μόνο το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

π.χ. σε ένα διάλυμα NaOH προσθέτουμε ορισμένη ποσότητα στερεού. ΝαΟΗ, χωρίς να μεταβληθεί ο όγκος του διαλύματος.

π.χ. σε ένα διάλυμα NaOH προσθέτουμε ορισμένη ποσότητα στερεού. ΝαΟΗ, χωρίς να μεταβληθεί ο όγκος του διαλύματος. XHMEIA Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΟΞΕΑ-ΒΑΣΕΙΣ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 13 Όταν αναμειγνύουμε διαλύματα μια πιο ολοκληρωμένη αντιμετώπιση του θέματος Στο σχέδιο μαθήματος 7 είδαμε μια πρώτη προσέγγιση

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2004

ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2004 ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1.1 και 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 4 : ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 4 : ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ Χηµεία Α Λυκείου Φωτεινή Ζαχαριάδου 1 από 30 ( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 4 : ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ); α) 1 mol οποιασδήποτε χηµικής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης. Α.1 Ηλεκτρολύτες ονομάζονται: α. όσες χημικές ενώσεις είναι ηλεκτρικά

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

+ HSO 4 είναι µετατοπισµένη προς την κατεύθυνση του ασθενέστερου οξέος ή της ασθενέστερης βάσης, δηλαδή προς τα αριστερά.

+ HSO 4 είναι µετατοπισµένη προς την κατεύθυνση του ασθενέστερου οξέος ή της ασθενέστερης βάσης, δηλαδή προς τα αριστερά. Β2. α. K a Οξύ Συζυγής βάση K b 10-2 - HSO 4 2- SO 4 10-12 10-5 CH 3 COOH CH 3 COO - 10-9 β. Η ισορροπία: 2- CH 3 COOH + SO 4 CH 3 COO - - + HSO 4 είναι µετατοπισµένη προς την κατεύθυνση του ασθενέστερου

Διαβάστε περισσότερα

Edited by Jimlignos. 0 ph οξέος < 7 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ

Edited by Jimlignos. 0 ph οξέος < 7 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΧΗΜΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε το σύνολο εκείνων των ιδιοτήτων που ονοµάζονται όξινος χαρακτήρας. Ποιες ενώσεις λέγονται οξέα κατά Arrhenius; Απάντηση: Το σύνολο τον κοινών ιδιοτήτων των

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÃÁËÁÎÉÁÓ. Ηµεροµηνία: Παρασκευή 20 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ÃÁËÁÎÉÁÓ. Ηµεροµηνία: Παρασκευή 20 Απριλίου 2012 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Παρασκευή 20 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1. Οι παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 08 02 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου ΘΕΜΑ Α A1. Όταν το ΚΒr διαλύεται στο νερό: α. ιοντίζεται β. δημιουργούνται ιόντα

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 005 ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 11-1 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 11 Ο µέγιστος αριθµός

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Α1. Το στοιχείο

Διαβάστε περισσότερα

10 o ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 231. είκτες - Ογκοµέτρηση

10 o ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 231. είκτες - Ογκοµέτρηση είκτες - Ογκοµέτρηση 231. 10 o είκτες - Ογκοµέτρηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ είκτες: Πρωτολυτικοί ή ηλεκτρολυτικοί δείκτες είναι ουσίες των οποίων το χρώµα αλλάζει ανάλογα µε το ph του διαλύµατος

Διαβάστε περισσότερα

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.4 να επιλέξετε τη σωστή απάντηση: 1.1 Δίνεται το χημικό στοιχείο 15 Χ. Για το στοιχείο αυτό ισχύει: α. όταν ενώνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Χημεία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Χημεία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Χημεία Α Λυκείου Στο παρών παρουσιάζουμε απαντήσεις σε επιλεγμένα Θέματα της Τράπεζας θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες σταδιακά θα

Διαβάστε περισσότερα

Διαλυτότητα. Μάθημα 7

Διαλυτότητα. Μάθημα 7 Διαλυτότητα 7.1. SOS: Τι ονομάζουμε διαλυτότητα μιας χημικής ουσίας σε ορισμένο διαλύτη; Διαλυτότητα είναι η μέγιστη ποσότητα της χημικής ουσίας που μπορεί να διαλυθεί σε ορισμένη ποσότητα του διαλύτη,

Διαβάστε περισσότερα

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων»

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων» Ανάπτυξη Εκπαιδευτικού Λογισµικού και Ολοκληρωµένων Εκπαιδευτικών Πακέτων για τα Ελληνικά σχολεία της Πρωτοβάθµιας και ευτεροβάθµιας Εκπαίδευσης & ιάθεση Προϊόντων Εκπαιδευτικού Λογισµικού στα Σχολεία

Διαβάστε περισσότερα

Τράπεζα Χημεία Α Λυκείου

Τράπεζα Χημεία Α Λυκείου Τράπεζα Χημεία Α Λυκείου 1 ο Κεφάλαιο Όλα τα θέματα του 1 ου Κεφαλαίου από τη Τράπεζα Θεμάτων 25 ερωτήσεις Σωστού Λάθους 30 ερωτήσεις ανάπτυξης Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός Ερωτήσεις

Διαβάστε περισσότερα

Πρακτικά και Θεωρητικά Θέµατα. Οργανικής Χηµείας

Πρακτικά και Θεωρητικά Θέµατα. Οργανικής Χηµείας ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΧΗΜΕΙΑΣ Πρακτικά και Θεωρητικά Θέµατα Γενικής Χηµείας Εργαστηριακές Ασκήσεις Βιολέττα Κωνσταντίνου Καθηγήτρια Οργανικής Χηµείας Ηλίας Κουλαδούρος

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ ΘΕΜΑ 1ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 009 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Από τα παρακάτω

Διαβάστε περισσότερα