Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος."

Transcript

1 1 ΚΕΦΑΛΑΙΟ 1 ο 1. ΙΑΛΥΜΑΤΑ (ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ) Όπως νφέρµε διάλυµ είνι έν οµογενές µίγµ που ποτελείτι πό δύο ή περισσότερες χηµικές ουσίες. Περιεκτικότητ διλύµτος είνι η ποσότητ της διλυµένης ουσίς που περιέχετι σε ορισµένη ποσότητ διλύµτος. Τ διλύµτ νάλογ µε την ποσότητ της διλυµένης ουσίς δικρίνοντι σε: Αριά διλύµτ: µικρή ποσότητ διλυµένης ουσίς σε σχέση µε τον διλύτη. Πυκνά διλύµτ: ότν η ποσότητ της διλυµένης ουσίς είνι σχετικά µεγάλη. Κορεσµέν διλύµτ: περιέχουν τη µεγλύτερη δυντή ποσότητ διλυµένης ουσίς σε ορισµένες συνθήκες θερµοκρσίς κι πίεσης. Ακόρεστ διλύµτ: περιέχουν µεγλύτερη ποσότητ διλυµένης ουσίς πό εκείνη που µπορεί ν διλυθεί (µέγιστη ποσότητ) σε ορισµένες συνθήκες θερµοκρσίς κι πίεσης. Υπέρκορ διλύµτ: περιέχουν µεγλύτερη ποσότητ διλυµένης ουσίς πό εκείνη που µπορεί ν διλυθεί (κορεσµέν διλύµτ) σε ορισµένες συνθήκες θερµοκρσίς κι πίεσης. Πρτήρηση: Οι όροι ριό κι πυκνό διάλυµ είνι σχετικοί κι δεν εκφράζουν µε κρίβει τη σύστση του διλύµτος. 1.1 ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΕΝΟΣ ΙΑΛΥΜΑΤΟΣ Περιεκτικότητ στ εκτό κτά βάρος (% W/W): εκφράζει τ γρµµάρι της διλυµένης ουσίς που περιέχοντι σε 100 g διλύµτος. % w / w διλυµ 100gδιλύµτος Περιεκτικότητ στ εκτό βάρος κτ όγκο (% W/): εκφράζει τ γρµµάρι της διλυµένης ουσίς που περιέχοντι σε 100 l διλύµτος. % w / v διλυµ 100lδιλύµτος Περιεκτικότητ στ εκτό κτ όγκο (% /): εκφράζει τ l της διλυµένης ουσίς (υγρής ή έρις) που περιέχοντι σε 100 l διλύµτος. % v / v διλυµ ί (l) 100lδιλύµτος Αυτός ο τρόπος έκφρσης χρησιµοποιείτι συνήθως σε έρι κι σε υγρά διλύµτ. Αν η διλυµένη ουσί ενός υγρού διλύµτος είνι η ιθνόλη ( CH3 CH 2OH ) τότε η % / περιεκτικότητ ονοµάζετι κι «λκοολικός βθµός ( ο )» e-ail :

2 2 %v / v λκοολο ύχου διλ ύµτος ή l ιθν όλης (l) λκοολο ύχου διλ ύµτος 1.2 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΟΠΟΙΕΣ ΙΝΕΤΑΙ Ή ΖΗΤΕΙΤΑΙ Η ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ ΚΑΙ ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΙΑΛΥΜΑΤΟΣ Ότν µς δίνετι η περιεκτικότητ ενός διλύµτος, τότε γνωρίζουµε την ποσότητ της διλυµένης ουσίς που περιέχετι σε ορισµένη ποσότητ διλύµτος. Εφρµόζοντς τ νάλογ ποσά υπολογίζουµε την ποσότητ της διλυµένης ουσίς που περιέχετι σε µι άλλη ποσότητ διλύµτος ή την ποσότητ του διλύµτος που περιέχει µι άλλη ποσότητ διλυµένης ουσίς. Γι την επίλυση σκήσεων στις οποίες δίνετι ή ζητείτι η περιεκτικότητ ενός διλύµτος νάλογ µε την έκφρση περιεκτικότητς πρέπει ν εφρµόζουµε τ πρκάτω: % W/W περιεκτικότητ υπολογίζετι πό: τη µάζ του διλύµτος ( ) κι τη µάζ της διλυµένης ουσίς ( ιλυµένης ουσίς) % w / w ιλυµ ένης % W/ περιεκτικότητ υπολογίζετι πό: τον όγκο του διλύµτος ( ) κι τη µάζ της διλυµένης ουσίς ( ιλυµένης ουσίς) % w / v ιλυµ ένης % / περιεκτικότητ υπολογίζετι πό: τον όγκο του διλύµτος ( ) κι τον όγκο της διλυµένης ουσίς ( ιλυµένης ουσίς) % v / v ιλυµ ένης Επίσης πρέπει ν γνωρίζουµε ότι: Η µάζ του διλύµτος ( ) είνι ίση µε το άθροισµ των µζών του διλύτη ( ιλύτη ) κι τη µάζ της διλυµένης ουσίς ( ιλυµένης ουσίς ) ιλύτη+ ιλυµνης έ e-ail :

3 3 Η πυκνότητ ενός διλύµτος είνι: ρ ή ρ Πρτηρήσεις 1. Σε µι άσκηση µπορεί ν µς δίνουν ή ν µς ζητούν την περιεκτικότητ ενός διλύµτος, χωρίς ν µς κθορίζουν ν η περιεκτικότητ είνι % w/w ή %v/v. Στις περιπτώσεις υτές ν µς δίνετι η µάζ του διλύµτος τότε η περιεκτικότητ θ είνι % w/w, ενώ ν µς δίνετι ο όγκος του διλύµτος τότε η περιεκτικότητ θ είνι %v/v. 2. Σε έν διάλυµ ν περιέχοντι περισσότερες πό µι διλυµένες ουσίες τότε γι ν βρούµε την περιεκτικότητ του διλύµτος θ υπολογίσουµε τη συνολική µάζ του διλύµτος σύµφων µε τον τύπο: ιλύτη+ ιλυµνης έ 3. Γνωρίζουµε ότι διάλυµ είνι το οµογενές µίγµ δύο ή περισσότερων συσττικών. Αν εποµένως σε έν διάλυµ περιέχοντι κι διάλυτες ουσίες, τότε υτές δεν ποτελούν συσττικά του διλύµτος κι το τελικό διάλυµ θ περιέχει το διλύτη κι τις διλυµένες ουσίες (οι προσµίξεις δεν ποτελούν συσττικό του τελικού διλύµτος). 4. Οι µονάδες που χρησιµοποιούντι συνήθως στις εκφράσεις περιεκτικότητς είνι γι τη µάζ το g,ενώ γι τον όγκο το l. Ότν όµως µς δίνετι µι ποσότητ διλύµτος σε Kg ή tn ή L ή 3, τότε στις εκφράσεις περιεκτικότητς θ χρησιµοποιούµε τις µονάδες υτές. 1.3 ΜΕΤΑΤΡΟΠΗ ΜΙΑΣ ΕΚΦΡΑΣΗΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΙΑΛΥΜΑΤΟΣ ΣΕ ΑΛΛΗ Από την % W/W περιεκτικότητ κι την πυκνότητ(ρ) ενός διλύµτος υπολογίζετι η % W/ περιεκτικότητ κι ντίστροφ. ρ %w/w %w/v 1.4 ΑΡΑΙΩΣΗ ΚΑΙ ΣΥΜΠΥΚΝΩΣΗ ΙΑΛΥΜΑΤΟΣ ΑΡΑΙΩΣΗ ΙΑΛΥΜΑΤΟΣ Η ρίωση ενός διλύµτος γίνετι µε την προσθήκη κθρού διλύτη ( H 2 O ). e-ail :

4 4 1 1, 1 1 % 2 2, 2 2 % + H, 2 O H 2O Αρχικό ιάλυµ Α Τελικό ιάλυµ Β 1, 2 : όγκοι διλυµάτων Α, Β ντίστοιχ. 1, 2 : ποσότητες διλυµένης ουσίς στ διλύµτ Α, Β ντίστοιχ. 1, 2 : ποσότητες διλυµάτων Α, Β ντίστοιχ. : περιεκτικότητες διλυµάτων Α, Β ντίστοιχ. 1%, 2% Κτά την ρίωση ενός διλύµτος ισχύουν τ εξής: H2O 2 1 H 2O 2 % < 1 + κι % ΣΥΜΠΥΚΝΩΣΗ ΙΑΛΥΜΑΤΟΣ Η συµπύκνωση ενός διλύµτος γίνετι µε δύο τρόπους. i) Με ποµάκρυνση κθρού διλύτη ( H 2 O ) πό το διάλυµ που γίνετι µε θέρµνση του διλύµτος. 1 1, 1 % 1 2, % - H2, O 2 H O Αρχικό ιάλυµ Α Τελικό ιάλυµ Β 1, 2 : όγκοι διλυµάτων Α, Β ντίστοιχ. 1, 2 : ποσότητες διλυµένης ουσίς στ διλύµτ Α, Β ντίστοιχ. e-ail :

5 5 1, 2 : ποσότητες διλυµάτων Α, Β ντίστοιχ. : περιεκτικότητες διλυµάτων Α, Β ντίστοιχ. 1%, 2% Κτά τη συµπύκνωση ενός διλύµτος ισχύουν τ εξής: H2O 2 1 H2O 2 % > 1 κι % ii) Με προσθήκη κθρής ποσότητς διλυµένης ουσίς (στερεό ή έριο) στο διάλυµ χωρίς ν µετβληθεί ο όγκος του διλύµτος. 1 1, 1 1 % 2 2, 2 2 % Αρχικό ιάλυµ Α Τελικό ιάλυµ Β 1, 2 : όγκοι διλυµάτων Α, Β ντίστοιχ. 1, 2 : ποσότητες διλυµένης ουσίς στ διλύµτ Α, Β ντίστοιχ. 1, 2 : ποσότητες διλυµάτων Α, Β ντίστοιχ. 1%, 2% : περιεκτικότητες διλυµάτων Α, Β ντίστοιχ. Κτά τη συµπύκνωση ενός διλύµτος ισχύουν τ εξής: Πρτηρήσεις 2 1+ πρόσθετης διλυµ ένης πρόσθετης διλυµ ένης κι > % 2% 1 1. Σε µερικές σκήσεις δεν νφέρετι ότι γίνετι ρίωση ή συµπύκνωση του ρχικού διλύµτος, µπορούµε όµως ν το κτλάβουµε πό τις περιεκτικότητες του ρχικού ( 1 % ) κι του τελικού διλύµτος ( 2 % ). Αν ισχύει : 2% < 1% τότε το ρχικό διάλυµ έχει ριωθεί. e-ail :

6 6 Αν ισχύει : 1% < 2% τότε το ρχικό διάλυµ έχει συµπυκνωθεί. 2. Σε σκήσεις ρίωσης ενός διλύµτος µς δίνετι η σχέση όγκου τελικού κι ρχικού διλύµτος. Η έκφρση «έν διάλυµ ριώνετι στο Ν-πλάσιο του όγκου του» σηµίνει ότι το τελικό διάλυµ θ έχει Ν φορές µεγλύτερο όγκο πό το ρχικό διάλυµ, δηλδή στο ρχικό διάλυµ πρέπει ν προσθέσουµε διλύτη όγκου Ν-1 φορές µεγλύτερο του ρχικού του. Ότν µς δίνετι ότι όγκος 1 ενός διλύµτος ριώνετι σε όγκο 2,υτό σηµίνει ότι το τελικό διάλυµ θ έχει όγκο 2, δηλδή στο ρχικό διάλυµ πρέπει ν προστεθεί διλύτης όγκου ΑΝΑΜΙΞΗ ΙΑΛΥΜΑΤΩΝ Ανάµιξη διλυµάτων που έχουν την ίδι διλυµένη ουσί. 1 1, 1 % 1 2 2, 2 2 % 3 3, 3 3 % Αρχικό ιάλυµ Α Αρχικό ιάλυµ Β Τελικό ιάλυµ Γ 1, 2, 3 : όγκοι διλυµάτων Α, Β, Γ ντίστοιχ.,, : ποσότητες διλυµένης ουσίς στ διλύµτ Α, Β, Γ ντίστοιχ , 2, 3: ποσότητες διλυµάτων Α, Β, Γ ντίστοιχ. 1%, 2%, 3% : περιεκτικότητες διλυµάτων Α, Β, Γ. Κτά την νάµιξη διλυµάτων ισχύουν τ εξής: % < 2 + κι ν % τότε µετά την νάµιξη έχουµε: < % < % 1% 3 2 ν όµως: 2 % < 1 % τότε µετά την νάµιξη έχουµε: < % < % 2% ΙΑΛΥΤΟΤΗΤΑ ΜΙΑΣ ΟΥΣΙΑΣ e-ail :

7 7 ιλυτότητ µις ουσίς σε έν διλύτη λέγετι η µεγλύτερη ποσότητ της ουσίς που µπορεί ν διλυθεί σε ορισµένη ποσότητ διλύτη ώστε ν προκύψει κορεσµένο διάλυµ, σε ορισµένες συνθήκες θερµοκρσίς κι πίεσης. Ευδιάλυτη είνι µι ουσί που έχει µεγάλη διλυτότητ σε έν διλύτη. π.χ. Na2SO4 σε H2O υσδιάλυτη είνι µι ουσί που έχει µικρή διλυτότητ σε έν διλύτη. π.χ. Ba 2SO4 σε H2O Η διλυτότητ µις ουσίς εξρτάτι πό: ) τη φύση του διλύτη Όσο περισσότερο σχετίζετι η χηµική δοµή της διλυµένης ουσίς µε τον διλύτη τόσο µεγλύτερη είνι η διλυτότητ της ουσίς. Ισχύει γενικά ότι «τ όµοι διλύουν όµοι» δηλδή νόργνες ουσίες διλύοντι ευκολότερ σε νόργνους διλύτες, ενώ οργνικές ουσίες ευκολότερ σε οργνικούς διλύτες. β) τη θερµοκρσί Στ στερεά: ύξηση της θερµοκρσίς υξάνει τη διλυτότητά τους ( Θ, ). Στ έρι: ύξηση της θερµοκρσίς, ελττώνει τη διλυτότητά τους ( Θ, ). γ) την πίεση Στ έρι: ύξηση της πίεσης υξάνει τη διλυτότητ των ερίων στ υγρά διλύµτ ( P, ). Στ στερεά ή υγρά: η µετβολή της πίεσης δεν επηρεάζει τη διλυτότητά τους. ΕΚΦΡΑΣΕΙΣ ΙΑΛΥΤΟΤΗΤΑΣ ΜΙΑΣ ΟΥΣΙΑΣ ιλυτότητ στ εκτό κτά βάρος: εκφράζει τ γρµµάρι της διλυµένης ουσίς που διλύοντι σε 100 g διλύτη. ιλυτότητ % w / w διλυµ 100gδιλύτη ιλυτότητ στ εκτό βάρος κτ όγκο: εκφράζει τ γρµµάρι της διλυµένης ουσίς που διλύοντι σε 100 l διλύτη. ιλυτότητ %w / v διλυµ 100lδιλύτη Συγγρφές : Ανδρούλ Γεωργίου e-ail :

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυµάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούµε ή να µετατρέψουµε διάφορες περιεκτικότητες.

Διαβάστε περισσότερα

Q T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου.

Q T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου. Ο 1 ος ΝΟΜΟΣ ΤΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ-1 σχετίζει τη µετβολή της θερµοκρσίς ενός ερίου µετηµετφορά ενέργεις µετξύ του ερίου κι του περιβάλλοντός του κι το πργόµενο/ποδιδόµενο έργο Q U W Q * *

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας

2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας 1 Η θεωρία του μαθήματος με ερωτήσεις. 2.3 Περιεκτικότητα διαλύματος Εκφράσεις περιεκτικότητας Ερωτήσεις θεωρίας με απάντηση 3-1. Τι ονομάζεται περιεκτικότητα ενός διαλύματος; Είναι μία έκφραση που δείχνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ. ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n

ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ. ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 Ο παρακάτω πίνακας δίνει µερικές πληροφορίες που αφορούν την δοµή τεσσάρων ατόµων Q, X, Ψ, R: Ζ Α p + n Ηλεκτρονιακή διαµόρφωση κατά στιβάδες Q 19 39 X 20 10 Ψ 6 6 R 8 Κ(2) L(4)

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ).

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). Χηµεία Α Λυκείου Φωτεινή Ζαχαριάδου 1 από 12 ( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). α) Ένα µείγµα είναι πάντοτε

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Πτυχιακή Μελέτη. «ιερεύνηση πρακτικών εφαρµογών µετάδοσης θερµότητας από ενεργειακή σκοπιά» Εισηγητής: Κτενιαδάκης Μιχ. Επιµέλεια: Στρατάκη Ανθούλα

Πτυχιακή Μελέτη. «ιερεύνηση πρακτικών εφαρµογών µετάδοσης θερµότητας από ενεργειακή σκοπιά» Εισηγητής: Κτενιαδάκης Μιχ. Επιµέλεια: Στρατάκη Ανθούλα P TS TS P Τεχνολογικό Εκπιδευτικό Ίδρυµ Κρήτης Πρόγρµµ Σπουδών Επιλογής ΕΝΕΡΓΕΙΑΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Πτυχική Μελέτη «ιερεύνηση πρκτικών εφρµογών µετάδοσης θερµότητς πό ενεργεική σκοπιά» Εισηγητής:

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005 ΚΛΑ ΟΣ ΠΕ 70 ΑΣΚΑΛΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείµενο» Κυρική 10-4-2005 Α.

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 15: Διαλύματα Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

Συγκέντρωση διαλύματος

Συγκέντρωση διαλύματος Συγκέντρωση διαλύματος 22-1. SOS Ερώτηση: τι ονομάζουμε μοριακότητα κατ όγκο ή Molarity (Μολάριτι); Η μοριακότητα κατ' όγκο ή συγκέντρωση ή Molarity, εκφράζει τα mol διαλυμένης ουσίας που περιέχονται σε

Διαβάστε περισσότερα

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ 1.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΘΕΩΡΙΑ 1. Ιδιότητες των πράξεων ( β ι γ δ) + γ β + δ ( β ι γ δ) γ βδ β + γ β + γ Αν γ 0, τότε : β 0 0 ή β 0 β γ βγ. Ιδιότητες των δυνάµεων λ +λ β ( β ( ) λ λ ) λ β λ

Διαβάστε περισσότερα

«Ανάλυση χρονολογικών σειρών»

«Ανάλυση χρονολογικών σειρών» Διτμημτικό Πρόγρμμ Μετπτυχικών Σπουδών των Τμημάτων Μθημτικών κι Μηχνικών Η/Υ & Πληροφορικής «Μθημτικά των Υπολογιστών κι των Αποφάσεων». (Κτεύθυνση: Σττιστική Θεωρί Αποφάσεων κι Εφρμογές). Διπλωμτική

Διαβάστε περισσότερα

Ασκήσεις διαλυμάτων. Επαναληπτικές ασκήσεις Α' Λυκείου 1

Ασκήσεις διαλυμάτων. Επαναληπτικές ασκήσεις Α' Λυκείου 1 Επαναληπτικές ασκήσεις Α' Λυκείου 1 Ασκήσεις διαλυμάτων. 1. Διαλύουμε πλήρως 20 g σε 20 g H 2 O και προκύπτει διάλυμα Α. Να υπολογιστεί η % w/w περιεκτικότητα του διαλύματος. μάζα Δ/τος = 1 + 2 20 + 20

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ 2015 ΠΝΤΣΕΙΣ ΘΕΜΤΩΝ ΙΟΛΟΓΙΣ ΚΤΕΥΘΥΝΣΣ 2015 ΘΕΜ 1. 2. γ 3. 4. δ 5. γ ΘΕΜ 1. 1., 2., 3., 4., 5., 6., 7., 8. νφορά στις σελίδες γίνετι µε τη σελιδοποίηση του πλιού ιλίου. 2. Σχολικό ιλίο σελ.36 «Κτά την ένρξη

Διαβάστε περισσότερα

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ

α Κατά τη μεταφορά με δεξαμενή φορτωμένη 15% του συνολικού όγκου. Λ γ Κατά την εκφόρτωση υπό πίεση. Λ ΚΕΦΑΑΙΟ 1: ΔΕΞΑΜΕΝΗ 30 Τ κπάκι των νθρωποθυρίδων μπορούν ν πρμένουν νοικτά: Κτά τη μετφορά με δεξμενή φορτωμένη 15% του συνολικού όκου. Κτά τις ερσίες κθρισμού της δεξμενής (gasfree). Κτά την εκφόρτωση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ. Τίτλος Διπλωματικής Εργασίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ. Τίτλος Διπλωματικής Εργασίας ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΔΙΟΙΚΗΣΗΣ Τίτλος Διπλωμτικής Εργσίς «Οικονομοτεχνική ξιολόγηση της ενεργεικής νβάθμισης συμβτικών κτιρίων, με την εφρμογή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,

Διαβάστε περισσότερα

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ

3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ 1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο ΔΙΑΛΥΜΑΤΑ ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΔΙΑΛΥΜΑΤΩΝ ΔΙΑΛΥΤΟΤΗΤΑ - ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Γενικά για τα διαλύματα Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων ουσιών, οι οποίες αποτελούν τα συστατικά του διαλύματος.

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ Γ. Αλεξίου, Α. Κλμπούνις, Ε. Αμντίδης, Δ. Μτράς Εργστήριο Τεχνολογίς Πλάσμτος, Τμήμ Χημικών Μηχνικών, Πνεπιστήμιο Πτρών ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που

Διαβάστε περισσότερα

Σύντομη περιγραφή του πειράματος

Σύντομη περιγραφή του πειράματος Σύντομη περιγραφή του πειράματος Παρασκευή διαλυμάτων ορισμένης περιεκτικότητας και συγκέντρωσης, καθώς επίσης και παρασκευή διαλυμάτων συγκεκριμένης συγκέντρωσης από διαλύματα μεγαλύτερης συγκέντρωσης

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη.

Είναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη. ΚΕΦΑΑΙΟ 1: ΝΟΜΟΘΕΤΙΚΟ ΠΑΙΙΟ - ΤΑΞΙΝΟΜΗΗ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ 1 Ποιος έχει την υποχρέωση ν πρδώσει στον οδηό τις ρπτές οδηίες σχετικές με τη μετφερόμενη επικίνδυνη ύλη; Ο πρλήπτης. Η τροχί. Ο ποστολές.

Διαβάστε περισσότερα

ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ ΣΕ ΑΝΤΙΟΞΕΙΔΩΤΙΚΑ ΚΑΙ ΝΙΤΡΙΚΑ ΛΑΧΑΝΙΚΩΝ ΑΠΟ ΣΥΜΒΑΤΙΚΗ ΚΑΙ ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ

ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ ΣΕ ΑΝΤΙΟΞΕΙΔΩΤΙΚΑ ΚΑΙ ΝΙΤΡΙΚΑ ΛΑΧΑΝΙΚΩΝ ΑΠΟ ΣΥΜΒΑΤΙΚΗ ΚΑΙ ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ ΕΠΙΣΤΗΜΗΣ ΟΠΩΡΟΚΗΠΕΥΤΙΚΩΝ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ ΣΕ ΑΝΤΙΟΞΕΙΔΩΤΙΚΑ ΚΑΙ ΝΙΤΡΙΚΑ ΛΑΧΑΝΙΚΩΝ ΑΠΟ ΣΥΜΒΑΤΙΚΗ ΚΑΙ ΒΙΟΛΟΓΙΚΗ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

ΙΙΚ ΟΣΣ Θ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ 2.1. Ba(OH)2(aq) + H2SO4(aq) BaSO4 + 2H2O. 2Al(s) + 6HCl(aq) 2AlCl3(aq) + 3H2

ΙΙΚ ΟΣΣ Θ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ 2.1. Ba(OH)2(aq) + H2SO4(aq) BaSO4 + 2H2O. 2Al(s) + 6HCl(aq) 2AlCl3(aq) + 3H2 1 Κ ΚΩ Ω ΙΙΚ ΚΟ ΟΣΣ Θ ΘΕ ΕΜ ΜΑ ΑΤΤΟ ΟΣΣ:: G GII A A C CH HIIM M 00 997733 ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ Θέµα ο.1 Ba(OH)(aq) HSO4(aq) BaSO4 HO Al(s) 3HCl(aq) AlCl3(aq) NaCO3(aq) HCl(aq) NaCl(aq) CO HO Η αντίδραση

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ

ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ ΕΚΦΡΑΣΕΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗΣ Η συγκέντρωση συμβολίζεται γενικά με το σύμβολο C ή γράφοντας τον μοριακό τύπο της διαλυμένης ουσίας ανάμεσα σε αγκύλες, π.χ. [ΝΗ 3 ] ή [Η 2 SO 4 ]. Σε κάθε περίπτωση,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Κυριακή 14 Απριλίου 01 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Τράπεζα Χημεία Α Λυκείου

Τράπεζα Χημεία Α Λυκείου Τράπεζα Χημεία Α Λυκείου 1 ο Κεφάλαιο Όλα τα θέματα του 1 ου Κεφαλαίου από τη Τράπεζα Θεμάτων 25 ερωτήσεις Σωστού Λάθους 30 ερωτήσεις ανάπτυξης Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός Ερωτήσεις

Διαβάστε περισσότερα

Γιώργος Χ. Παπαδημητρίου. 8 Ιουλίου 2011

Γιώργος Χ. Παπαδημητρίου. 8 Ιουλίου 2011 Λογισμός των Μετβολών Γιώργος Χ. Ππδημητρίου 8 Ιουλίου 2011 Οι προύσες σελίδες είνι μί χλρή εισγωγή στον λογισμό των μετβολών κι στις κυριότερες χρήσεις τους. Σκοπός τους είνι φ' ενός ν κλύψουν ρκετές

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ Α1. δ Α2. γ Α3. α Α4. δ Α5. β Α6. α) ιαλυτότητα ορίζεται η µέγιστη ποσότητα µιας ουσίας

Διαβάστε περισσότερα

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους.

Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. ΔΙΑΛΥΜΑΤΑ Ομογενή μίγματα χημικών ουσιών τα οποία έχουν την ίδια χημική σύσταση και τις ίδιες ιδιότητες (χημικές και φυσικές) σε οποιοδήποτε σημείο τους. Διαλύτης: η ουσία που βρίσκεται σε μεγαλύτερη αναλογία

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος Πρόχειρες σημειώσεις Βσισμένες στο ιλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Μέρος Α: Κυκλώμτ συνεχούς ρεύμτος Κ. Μουτζούρης Τμήμ Ηλεκτρονικής, ΤΕΙ Αθήνς Θερινό εξάμηνο 009

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142.

ΑΝΑΡΤΗΤΕΑ ΑΠΟΣΠΑΣΜΑ. Από το πρακτικό της αριθμ.15-11 ης Συνεδρίασης της Οικονομικής Επιτροπής Δήμου Λεβαδέων Αριθμός απόφασης : 142. ΑΝΑΡΤΗΤΕΑ Λιβδειά 24 04-2015 Αριθ Πρωτ: 10259 ΑΠΟΣΠΑΣΜΑ Από το πρκτικό της ριθμ15-11 ης Συνεδρίσης της Οικονομικής Επιτροπής Δήμου Λεβδέων Αριθμός πόφσης : 142 Περίληψη Εκθεση ποτελεσμάτων εκτέλεσης προϋπολογισμού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων»

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων» Ανάπτυξη Εκπαιδευτικού Λογισµικού και Ολοκληρωµένων Εκπαιδευτικών Πακέτων για τα Ελληνικά σχολεία της Πρωτοβάθµιας και ευτεροβάθµιας Εκπαίδευσης & ιάθεση Προϊόντων Εκπαιδευτικού Λογισµικού στα Σχολεία

Διαβάστε περισσότερα

Σύγχρονες επεμβατικές και μη επεμβατικές τεχνικές laser και άλλων πηγών ενέργειας για την αποκατάσταση ουλών και της φυσικής γήρανσης του δέρματος

Σύγχρονες επεμβατικές και μη επεμβατικές τεχνικές laser και άλλων πηγών ενέργειας για την αποκατάσταση ουλών και της φυσικής γήρανσης του δέρματος 224 ΟΜΙΛΙΑ ΕΛΛΗΝΙΚΗ ΔΕΡΜΑΤΟΧΕΙΡΟΥΡΓΙΚΗ Τόμος 6, (4):224-234, 2009 Ελληνική Ετιρεί Δερμτοχειρουργικής 43 η Ετήσι Συνάντηση της Ελληνικής Ετιρείς Δερμτοχειρουργικής Laser κι άλλες πηγές ενέργεις στη Δερμτολογί

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

Για τους διαγωνιζόµενους Αγαπητοί µαθητές και µαθήτριες, κατ αρχήν σας συγχαίρουµε για την εξαιρετική επίδοσή σας στην α φάση του 17 ου Πανελλήνιου Μαθητικού ιαγωνισµού Χηµείας, βάσει των αποτελεσµάτων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Μ. Τετάρτη 16 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α.1 Ποια από τις παρακάτω τετράδες κβαντικών αριθµών αντιστοιχεί

Διαβάστε περισσότερα

«ΣΥΝΤΗΡΗΣΗ ΧΛΟΟΤΑΠΗΤΑ ΔΗΜΟΤΙΚΟΥ ΓΥΜΝΑΣΤΗΡΙΟΥ & ΧΩΡΩΝ ΠΡΑΣΙΝΟΥ ΑΘΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΧΡΙΣΤΟΥΠΟΛΗΣ»

«ΣΥΝΤΗΡΗΣΗ ΧΛΟΟΤΑΠΗΤΑ ΔΗΜΟΤΙΚΟΥ ΓΥΜΝΑΣΤΗΡΙΟΥ & ΧΩΡΩΝ ΠΡΑΣΙΝΟΥ ΑΘΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΧΡΙΣΤΟΥΠΟΛΗΣ» Αριθμ.Μελέτης: 17 /2015 ΜΕΛΕΤΗ «ΔΗΜΟΤΙΚΟΥ ΓΥΜΝΑΣΤΗΡΙΟΥ & ΧΩΡΩΝ ΠΡΑΣΙΝΟΥ ΑΘΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΧΡΙΣΤΟΥΠΟΛΗΣ» ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: 17.880,00 ΣΥΝΟΛΙΚΗ ΔΑΠΑΝΗ: 21.992,40 ΠΕΡΙΕΧΟΜΕΝΑ: 1. Τεχνική Έκθεση 2. Προϋπολογισμός

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Πνεπιστήμιο Πτρών Σχολή Ανθρωπιστικών κι Κοινωνικών Επιστημών Πιδγωγικό Τμήμ Δημοτικής Εκπίδευσης Πρόγρμμ Μετπτυχικών Σπουδών Mετπτυχική Εργσί Πεποιθήσεις κι κίνητρ. Μι ερευνητική προσέγγιση σε πολιτισμικά

Διαβάστε περισσότερα

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.

Α5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς

Διαβάστε περισσότερα

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7 ΧΟΗ ΕΠΑΓΓΕΜΑΤΙΚΗ ΚΑΤΑΡΤΙΗ ΜΕΤΑΦΟΡΕΩΝ ΕΚOMEE (ΑDR) ΘΕΑΙΑ & ΚΕΝΤΡΙΚΗ ΕΑΔΟ ΓΡΑΦΕΙΑ & ΑΙΘΟΥΕ ΔΙΔΑΚΑΙΑ: ΚΟΥΤΑΡΕΙΑ 12 ΜΕΙΑOΝΟ (ΑΠΕΝΑΝΤΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΠΕΙΡΑΙΩ) Τ.Κ.: 38333 ΒΟΟ ΤΗ.: 24210 34944 / 6977 280182

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΔΕΞΑΜΕΝΗ

ΚΕΦΑΛΑΙΟ 1: ΔΕΞΑΜΕΝΗ ΚΕΦΑΑΙΟ 1: ΔΕΞΑΜΕΝΗ 1 Ποιες επικίνδυνες ύλες κτά ADR δεν επιτρέπετι ν μετφερθούν με υτί; Όλες οι ύλες διότι οι δεξμενές είνι μελύτερης μηχνικής ντοχής πό τις συσκευσίες. Όλες οι ύλες εκτός πό υτές των

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΚ ΙΙ ΘΕΩΡΙΑ ΚΑΘ. Σ. ΑΝΤΩΝΙΟΥ. ΑΝΔΡΕΑΣ ΘΕΟΔΩΡΑΚΑΚΟΣ andreas@fluid-research.com http://www.fluid-research.com/tei_2.

ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΚ ΙΙ ΘΕΩΡΙΑ ΚΑΘ. Σ. ΑΝΤΩΝΙΟΥ. ΑΝΔΡΕΑΣ ΘΕΟΔΩΡΑΚΑΚΟΣ andreas@fluid-research.com http://www.fluid-research.com/tei_2. ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΚ ΙΙ ΘΕΩΡΙΑ ΚΑΘ. Σ. ΑΝΤΩΝΙΟΥ ΑΝΔΡΕΑΣ ΘΕΟΔΩΡΑΚΑΚΟΣ andreas@fluid-researh.om http://www.fluid-researh.om/tei_.htm ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΕΤΟΥΣ 008-009 ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ ΖΥΓΟΣΤΑΘΜΙΣΗ ΠΕΡΙΣΤΡΕΦΟΜΕΝΩΝ

Διαβάστε περισσότερα

Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων.

Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων. Εύρεση mol και συγκέντρωση από αριθμητικά δεδομένα Επανάληψη προηγούμενων τάξεων. A. Εύρεση συγκέντρωσης c. A. Δίνονται τα mol της διαλυμένης ουσίας και ο όγκος του διαλύματος: n C, C σε Μ, V σε λίτρα.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΑΠΟΣΤΕΙΡΩΣΗΣ

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΑΠΟΣΤΕΙΡΩΣΗΣ ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ / Ονομ σί Υλικού 1. Λιπντι κό spray εργλεί ων ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ Περιγρφή - Προδιγρφή CPV Α.Π. 1. Λιπντικό spray χειρουργικών εργλείων. N είνι σε μορφή γάλκτος με ντλί χωρίς προωθητικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ»

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ» ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mρτίου Aρ. πρ. 66 ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ. Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Ι. Μπουνάκης Σχολικός Σύµουλος Μθηµτικών Τχ. /νση

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική)

ΙΣΤΟΡΙΕΣ ΦΩΤΟΣ (Ερωτήσεις δικαιολόγησης στη Γεωµετρική Οπτική) ΙΣΤΡΙΕΣ ΦΩΤΣ (Ερωτήσεις δικιολόγησης στη εωµετρική πτική). Η πργκωνισµένη νάκλση στο προσκήνιο Τις περισσότερες ορές που ντιµετωπίζουµε έν έµ το οποίο σχετίζετι µε έν πρίσµ δινούς υλικού, έχουµε συνηίσει

Διαβάστε περισσότερα

1 η Εργαστηριακή άσκηση. Παρασκευή Αραίωση. διαλύματος. Δρ. Άρης Γιαννακάς - Ε.ΔΙ.Π.

1 η Εργαστηριακή άσκηση. Παρασκευή Αραίωση. διαλύματος. Δρ. Άρης Γιαννακάς - Ε.ΔΙ.Π. 1 η Εργαστηριακή άσκηση Παρασκευή Αραίωση διαλύματος 1 Θεωρητικό Μέρος Εισαγωγικές έννοιες Όπως είναι γνωστό η ύλη διαχωρίζεται σε δύο βασικές κατηγορίες: Τις καθαρές ουσίες (στοιχεία, χημικές ενώσεις)

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ

ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΔΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυμάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούμε ή

Διαβάστε περισσότερα

Οδηγßεò Μελετþν Οδικþν Εργων (ΟΜΟΕ) Τεýχοò 6 Κατακόρυφη Σήµανση Αυτοκινητοδρόµων (ΟΜΟΕ-ΚΣΑ)

Οδηγßεò Μελετþν Οδικþν Εργων (ΟΜΟΕ) Τεýχοò 6 Κατακόρυφη Σήµανση Αυτοκινητοδρόµων (ΟΜΟΕ-ΚΣΑ) Υ.ΠΕ.ΧΩ..Ε. ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΗΜΟΣΙΩΝ ΕΡΓΩΝ Οδηγßεò Μελετþν Οδικþν Εργων (ΟΜΟΕ) Τεýχοò 6 Κτκόρυφη Σήµνση Αυτοκινητοδρόµων (ΟΜΟΕ-ΚΣΑ) Μέρος Μέρος 7: 7: Κτσκευστικά Κτσκευστικά Σχέδι Σχέδι Γρφικών Γρφικών

Διαβάστε περισσότερα

1.5 Ταξινόμηση της ύλης

1.5 Ταξινόμηση της ύλης 1.5 Ταξινόμηση της ύλης Θεωρία 5.1. Πως ταξινομείται η ύλη; Η ύλη ταξινομείται σε καθαρές ή καθορισμένες ουσίες και μίγματα. Τα μίγματα ταξινομούνται σε ομογενή και ετερογενή. Οι καθορισμένες ουσίες ταξινομούνται

Διαβάστε περισσότερα