Poglavje 5. Poglavje 5. Poglavje 5. c = 1! SPOMNIMO SE!!! Regulacijski sistemi. Regulacijski sistemi
|
|
- Ἀγαυή Μακρής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Reglacjsk ssem lka 5. : Vekorja saorskega n roorskega oka v prosor Faklea za elekroehnko Reglacjsk ssem POMNIMO E!!! lka. 5: Kompleksn vekor saorskega oka γ jγ ( e ) j0 j ( ) c ( ) e ( ) e ( ) c! Faklea za elekroehnko Reglacjsk ssem lka 5. : Prkaz rezlane oka v dvoosnem koordnanem ssem Faklea za elekroehnko
2 Faklea za elekroehnko 4 Reglacjsk ssem Reglacjsk ssem ( ) ( ) ( ) ( ) ( ) γ γ 0 j j j e e e ( ) ( ) a ( ) ( ) ( ) ( ) b ( ) ( ) a ( ) ( ) ( ) a b c /! Faklea za elekroehnko 5 Reglacjsk ssem Reglacjsk ssem P ( ) ( ) ( )( ) ( ) ( ) b b a a P P ( ) ( ) { } ( )( ) { } ( ) b b a a P P C/ C Torej: non power-nvaran!) Faklea za elekroehnko 6 Reglacjsk ssem Reglacjsk ssem ( ) ( ) a ( ) ( ) ( ) ( ) ( ) ( ) b { } ( )( ) { } b b a a P P Rešev zagae: power-nvaran Csqr(/)
3 Reglacjsk ssem lka 5. : Načn denranja lksov v enoazn nadomesn shem Faklea za elekroehnko 7 Reglacjsk ssem lka 5. 4: Razmere med okoma v K Faklea za elekroehnko 8 Reglacjsk ssem lka 5. 5: Ekvvalenno vezje EM Faklea za elekroehnko 9
4 Reglacjsk ssem lka 5. 6: Ovoj v homogenem magnenem polj Faklea za elekroehnko 0 Reglacjsk ssem lka 5. 7: Blokovna shema EM Faklea za elekroehnko Reglacjsk ssem značlnos moorja reglacjske karakerske AINHRONKI MOTOR s KK mehanska n elekrčna robsnos enosavna ehnologja velke serje nzka cena šrok obseg moč - nelnearnos - slpne zgbe - nelnearna enačba navora - odvsnos navora (d) od roorskh okov -nedosopne vse roorske velčne - zmenčne velčne ENOMERNI MOTOR - problem n omejve zarad komaorja zelo enosavna reglacjska srkra Tabela : Prmerjava AM n EM Faklea za elekroehnko 4
5 Reglacjsk ssem lka 5. 8: Lege vekorjev okov v asnhronskem sroj Faklea za elekroehnko Reglacjsk ssem lka 5. 9: Vekor saorskega oka v koordnaah saorja (K) n polja (KP) Faklea za elekroehnko 4 Reglacjsk ssem lka 5. 0: Blokovna shema asnhronskega moorja v koordnaah roorskega polja z vsljenm okom Faklea za elekroehnko 5 5
6 Reglacjsk ssem lka 5. : Blokovna shema asnhronskega moorja v koordnaah roorskega polja z vsljeno napeosjo Faklea za elekroehnko 6 Reglacjsk ssem lka 5. : Blokovna shema modcranega napeosnega modela Faklea za elekroehnko 7 Reglacjsk ssem lka 5. : Prehodn pojav okov v KP ob prkljčv AM na ogo omrežje Faklea za elekroehnko 8 6
7 Reglacjsk ssem lka 5. 4: M s rajnm magne Faklea za elekroehnko 9 Reglacjsk ssem lka 5. 5: Kazalčn dagram snhronskega moorja ( d 0) Faklea za elekroehnko 0 Reglacjsk ssem lka 5. 6: Blokovna shema M v KP s konsannm roorskm vzbjanjem Faklea za elekroehnko 7
8 Reglacjsk ssem lka 5. 7: aconarna nadomesna elekrčna shema M s rajnm magne Faklea za elekroehnko Reglacjsk ssem lka 5. 8: Kazalčn dagram M v saconarnem sanj pr d < 0 Faklea za elekroehnko Reglacjsk ssem lka 5. 9: Blokovna shema M z enosmernm roorskm okokrogom Faklea za elekroehnko 4 8
9 Poglavje 6 Reglacjsk ssem lka 6. : Blokovn dagram zveznega modela AM v K z enačbam sanja Faklea za elekroehnko 5 Poglavje 6 Reglacjsk ssem lka 6. : Blokovn dagram ponazorve AM v KP z enačbam sanj Faklea za elekroehnko 6 Poglavje 6 Reglacjsk ssem lka 6. : Dskrezacja zvezne nkcje Faklea za elekroehnko 7 9
10 Poglavje 6 Reglacjsk ssem lka 6. 4:Blokovna shema dskrenega modela sanj AM v K Faklea za elekroehnko 8 Poglavje 6 Reglacjsk ssem lka 6. 5: Blokovna shema dskrenega modela generranja oka v K Faklea za elekroehnko 9 Poglavje 6 Reglacjsk ssem lka 6. 6: Blokovna shema generranja oka v KP Faklea za elekroehnko 0 0
11 Poglavje 6 Reglacjsk ssem lka 6. 7: Blokovna shema okovno-hrosnega modela zajemanja vekorja magnelnega oka (lksa) roorja v KP Faklea za elekroehnko Poglavje 6 Reglacjsk ssem lka 6. 8: Zvezn model sanja za M v KP Faklea za elekroehnko Poglavje 6 Reglacjsk ssem lka 6. 9: Blokovna shema generranja oka v dskrenem model M v KP Faklea za elekroehnko
12 Poglavje 6 Reglacjsk ssem lka 6. 0: Blokovna shema posplošenega dskrenega modela zmenčnega sroja Faklea za elekroehnko 4
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραTOPNOST, HITROST RAZTAPLJANJA
OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna
Διαβάστε περισσότεραBipolarni transistor se sestoji iz treh polprevodniških slojev različne prevodnosti. Glede na njihovo zaporedje ločimo NPN in PNP tranzistorje.
polarn ranzsor polarn ranssor se sesoj z reh polprevodnškh slojev razlčne prevodnos. Glede na njhovo zaporedje ločmo NPN n PNP ranzsorje. Slka: Zgradba n smbol NPN n PNP ranzsorja NPN ranzsor je orej sesavljen
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραReverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Διαβάστε περισσότεραARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραC 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Διαβάστε περισσότεραElektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότεραEkonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Διαβάστε περισσότεραTEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Διαβάστε περισσότεραΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΑΙΔΩΝ ΑΘΗΝΩΝ «ΑΓΙΑ ΣΟΦΙΑ»
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΑΘΗΝΑ 26-4-2015 ΔΙΟΙΚΗΣΗ 1 ης ΥΠΕ ΑΤΤΙΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΑΙΔΩΝ ΑΘΗΝΩΝ «ΑΓΙΑ ΣΟΦΙΑ» Ταχ. Δ/νση : Θηβών & Παπαδιαμαντοπούλου, Γουδί Τ.Κ.
Διαβάστε περισσότεραΣΕΝΑΡΙΟ - ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑ ΣΤ ΔΗΜΟΤΙΚΟΥ
ΣΕΝΑΡΙΟ - ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «Φυσικές καταστροφές και οι συνέπειες τους στη ζωή μας, στην Ελλάδα & στην Ευρώπη, με χρήση Τ.Π.Ε.» Επιβλέπων Καθηγητής : Δρ. Νικόλαος Κουντούρης Επιμορφούμενος
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότεραOdvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Διαβάστε περισσότερα5 TIRISTORSKA STIKALA IN NASTAVLJALNIKI
Močnostna elektronka 5. Trstorska stkala n nastavljalnk 5 TIISTOSKA STIKALA IN NASTAVLJALNIKI Za vklapljanje n zklapljanje elektrškh tokokrogov lahko namesto mehanskh porabmo td polprevodnška (elektronska)
Διαβάστε περισσότεραZaščitna stikala na diferenčni tok EFI
Tehnični podaki Zaščina sikala na diferenčni ok EFI Prednosi zaščinih sikal na diferenčni ok EFI Pogojna krakosična zmogljivos: 10 ka Peča kakovosi za preverjeno zanesljivos AC - sinusni diferenčni ok
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραLastnosti in zakonitosti osnovnih električnih tokokrogov v energetski elektroniki
asnosi in zakoniosi osnovnih elekričnih okokrogov v energeski elekroniki Zbirka nalog v em poglavju je namenjena osveživi osnovnih pojmov ko so: - izračun srednje vrednosi napeosi in okov, - izračun efekivne
Διαβάστε περισσότεραEnergija magnetnega polja, prvič
ENERGIJA POLJA_1(13).doc 1/11.6.6 Energija magnenega polja, prvič Izhajamo iz moči na uljavi, ki je enaka produku oka in napeosi na uljavi p = ul il. To so sedaj časovno spreminjajoče veličine, lahko bi
Διαβάστε περισσότεραUNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Διαβάστε περισσότερα2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος Ά τετράμηνο. Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 = 2
2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος 2012-2013 Ά τετράμηνο Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Α. Να αποδειξετε ότι αν M ( xm, y M) το μεσο του ευθυγραμμου τμηματος
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Διαβάστε περισσότεραELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA
H-SERIES MOTOR DATA MOTOR MODEL H-3007 H-3016 H-4030-P H-4030-M H-4040 H-4050 H-4075 H-6100 H-6200 H-6300 MECHANICAL DATA (1) Rated Torque, Cont (Stall) 0.8 2.3 3.4 3.4 5.0 6.8 10.2 11.3 22.6 36.7 lb-in
Διαβάστε περισσότεραCenovnik spiro kanala i opreme - FON Inžinjering D.O.O.
Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100
Διαβάστε περισσότεραIZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
Διαβάστε περισσότεραΗΛΕΚΤΡΙΚΗ ΣΚΟΥΠΑ MODEL: R-112 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - 1 -
ΗΛΕΚΤΡΙΚΗ ΣΚΟΥΠΑ MODEL: R-112 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - 1 - ΣΗΜΑΝΤΙΚΕΣ ΕΝΔΕΙΞΕΙΣ ΑΣΦΑΛΕΙΑΣ: Όταν χρησιμοποιείτε την ηλεκτρική συσκευή, πρέπει πάντα να ακολουθείται τις βασικές προφυλάξεις καθώς και να τηρείτε τις
Διαβάστε περισσότερα1. ΤΟΙΧΟΥ INVERTER LIBERO
Z 09 EMNSW 150 E 09 EM.UA3 Z 12 EM.NSH 151 E 12 EM.UA3 E 18 EM. NSM E 152 18 EM. UL2 IN OUT Εσωτερικό/Εξωτερικό Amber Καλώδιο H M L H 9.000-12.300 12.000-15.600 18.000-20.600 1. ΤΟΙΧΟΥ INVERTER LIBERO
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραSférický pohyb. Aplikovaná mechanika, 6. přednáška. Při sférickém pohybu si jeden bod tělesa zachovává svou polohu.
Sfécý pohb Aploná mechn, 6. přednáš Př sfécém pohbu s eden bod ěles choáá sou polohu. Teno bod se nýá sřed sfécého pohbu nebo é cenum sfécého pohbu. ons sřed sfécého pohbu o o 3 ám sfécý pohb se 3 supn
Διαβάστε περισσότεραKrižna elastičnost: relativna sprememba povpraševane količine dobrine X, do katere pride zaradi relativne spremembe
2. POGLAVJE φ Elastičnost povpraševanja: E x, Px = % Q x / % P x % Q x > % sprememba Q % P x > % sprememba P Ex, Px = ( Q x / Q x ) / ( P x /P x ) = (P x / Q x ) * ( Q x / P x ) Linearna funkcija povpraševanja:
Διαβάστε περισσότεραdiferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Διαβάστε περισσότερα1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a
. ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (
Διαβάστε περισσότεραMETODOLOGIJA ZA IZRAČUN ENERGIJSKIH LASTNOSTI STAVBE
PRILOGA 5 METODOLOGIJA ZA IZRAČUN ENERGIJSKIH LASTNOSTI STAVBE 1. Uvod Meodoloja za zračun enerjskh lasnos savbe podaja načn zračuna: a) lene porebne oploe za orevanja savbe n lenea porebnea hladu za hlajenje
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραΑντιμετώπιση HDFN από αντι-κu. Ε. Λυδάκη, Αιματολόγος επιμ. Α Υπηρεσίας Αιμοδοσίας ΠΝΗ
a1 Αντιμετώπιση HDFN από αντι-κu. Ε. Λυδάκη, Αιματολόγος επιμ. Α Υπηρεσίας Αιμοδοσίας ΠΝΗ Διαφάνεια 1 a1 ο aimo; 26/9/2011 Αντιγονικό σύστημα Kell Είναι πιθανά το 2 0 πιο ανοσογόνο σύστημα μετά το Rh (HDN,
Διαβάστε περισσότεραPreprint of the paper:
Preprint of the paper: "Computer Analysis of Earthing Systems in Horizontally or Vertically Layered Soils" I. Colominas, J. Gómez-Calviño, F. Navarrina, M. Casteleiro (2001) Electric Power Systems Research,
Διαβάστε περισσότεραMagneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
Διαβάστε περισσότεραGEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM
VM1614 2 VM1614 18 VM1614 125 VM1614 1 GEEPLUS VM1614 P 1 is the continuous (1% ED) excitation power at mounted to a massive heatsink at 2 C P 1 5 W Total Mass 15 g T max 13 C Coil Mass 3 g R 2 2.8.2 mh.7
Διαβάστε περισσότερα1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ 1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ. . Άρα, το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο.
ΚΕΦΑΛΑΙΟ Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ Γι ν μη μετινηθεί το σώμ χρειάζετι ν εφρμοστεί δύνμη B F F F F F5 Σ F F F 5 F F Β i Έχουμε διδοχιά: γ δ δ γ BA Άρ το τετράπευρο ΑΒΓΔ
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραDirektni pretvorniki
Prevorniki brez galvanske ločive med odom in odom: direkni enosmerni prevorniki za eno in večkvadranno obraovanje lasno vodeni usmerniki in razsmerniki Prednosi: majhna eža, volumen dobro razmerje med
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Διαβάστε περισσότερα3. Έρευνα αγοράς & συμπεριφορά αγοραστή. Αποφάσεις μάρκετινγκ. Ανάγκη πληροφοριών. Έρευνα αγοράς. 1ο αντικείμενο της έρευνας = αγοραστής / καταναλωτής
3. Έρευνα αγοράς & συμπεριφορά αγοραστή Αποφάσεις μάρκετινγκ Ανάγκη πληροφοριών Έρευνα αγοράς 1ο αντικείμενο της έρευνας = αγοραστής / καταναλωτής Ποιοτική ανάλυση ποσοτική ανάλυση Επιστήμες που ερευνούν
Διαβάστε περισσότεραREFERENCE. Surge Absorber Unit. Contactor AS R 50Hz AC220V. Separate Mounting Unit. Mechanical Interlock Unit
REFERENCE Contactors Surge Absorber Unit GM C 22 R 50Hz AC220V AS 1 GM Magnetic Contactors C AC coil D DC coil W Enclosed starter Rated current (AC3 440V) 9 40 100 300 12 50 125 400 18 65 150 600 22 75
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότερα!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Διαβάστε περισσότεραVýpočet. grafický návrh
Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραTable15 Table of Motors Used and Corresponding Intermediate Flanges. Rated output Flange size KR15 KR20 KR26 KR30H KR33 KR45H KR46 KR55 KR65
Intermediate Flange Motor Used and Applicable Intermediate Flanges for Model KR Several types of intermediate fl anges for mounting motors are available for model KR. Specify an intermediate flange that
Διαβάστε περισσότεραEnergija magnetnega polja
Energija magnenega polja. Energija magnenega polja Vsebina: moč in energija, energija sisema uljav, nadomesna indukivnos, energija v nelinearnih magnenih srukurah, gosoa energije, izračun indukivnosi iz
Διαβάστε περισσότεραI. Zadatci višestrukoga izbora
Fizika I. Zadaci višesrukoga izbora U sljedećim zadacima od više ponuđenih odgovora samo je jedan očan. Točne odgovore morae označii znakom X na lisu za odgovore kemijskom olovkom. Svaki odgovor donosi
Διαβάστε περισσότερα14SYMV
ο!"#$ #$ #%&#' (ο)*ι,-./0()* ) (ο/)*ο*ο)/40#4(ο -( () )0-οι(ι,.0ο ο07890ο*ι;4ο,ι< ) οο=9)*ι,9οι ο550//4*οι96*ο,>#?@#&*>&*(.$ 9 ο, 0ο-A /()*ιι()(b(ο(.9/cb-)(ι,/*ι(bdι9(ο )*ι,&)/-ιο,ι 6(40ο) (ι0 EFGH!" I>">/
Διαβάστε περισσότεραMICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Διαβάστε περισσότεραEight Examples of Linear and Nonlinear Least Squares
Eight Examples of Linear and Nonlinear Least Squares CEE 699.4, ME 99.4 Sstem Identification Fall, 21 c Henri P. Gavin, September 2, 21 1 Not polnomial, but linear in parameters. ŷ(t i ; a) = a 1 sin(t
Διαβάστε περισσότερα1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Διαβάστε περισσότεραJasno je da je vektor količine kretanja tačke K r istog pravca i smera kao vektor brzine V r.
Kolčna keanja maejalne ačke Ako ačka mase m, u nekom enuku vemena, ma bnu V, onda je njena kolčna keanja K, u om enuku, jednaka povodu njene mase m bne V, dakle K = m V Jasno je da je veko kolčne keanja
Διαβάστε περισσότεραFUNKCIJE UTJECAJA I UTJECAJNE LINIJE
FUNKCIJE UTJECJ I UTJECJNE LINIJE Funkcje ujecaja ujecajne lnje korse se kod proračuna konsrukcja na djelovanje pokrenh operećenja. Zadaak: odred onaj položaj pokrenog operećenja koj će da najnepovoljnj
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραKOPOLIMERIZACIJA. UGRADNJA VIŠE RAZLIČITIH MONOMERA u istu makromolekulu Je li stupnjevita polimerizacija tipa A 2. kopolimerizacija?
KOPOLIERIZIJ UGRDNJ VIŠE RZLIČITIH ONOER u stu maomoleulu Je l stunevta olmezaca ta oolmezaca? ltenauć (zmenčn) oolme KOPOLIERIZIJ POLIURETNI Stunevta oolmezaca: ugadna vše azlčth monomea ste unconalnost
Διαβάστε περισσότεραMate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραMagneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
Διαβάστε περισσότεραSheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
Διαβάστε περισσότεραRegulacijski sistemi
Vanja Ambrožič Regulacijski sistemi (Poglavje 5- k učbeniku odobne regulacije pogonov z izmeničnimi stroji ) NEREDGRANA NAČCA, AO ZA NTERNO RABO! Ljubljana, oktober 006 5-. inhronski stroj v KP 5-. NHRONK
Διαβάστε περισσότεραAntene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
Διαβάστε περισσότεραΚΕΙΜΕΝΟ ΕΡΓΑΣΙΑΣ ΚΑΝΟΝΙΣΜΟΥ CB προς Δημόσια Διαβούλευση
ΚΕΙΜΕΝΟ ΕΡΓΑΣΙΑΣ ΚΑΝΟΝΙΣΜΟΥ CB προς Δημόσια Διαβούλευση CB εκδ.22 (ΔΔ) ΘΕΜΑ: Κανονισμός λειτουργίας σταθμών ασυρμάτου ζώνης συχνοτήτων πολιτών (CB) Άρθρο 1 Σκοπός-Γενικές Διατάξεις 1. Σκοπός του παρόντος
Διαβάστε περισσότεραKOMPONENTI ROLETE Slika Šifra artikla Boja Naziv artikla
KOMPONENTI ROLETE Slika Šifra artikla Boja Naziv artikla RP40 Pvc lamela - 37 dimna,prozirna RP31 RP33 RP35 RP53 RP 01 140 - RP 01 160 - RP 01 440 - RP 01 500 - RP 03 140 - RP 03 160 - RP 03 440 - RP 03
Διαβάστε περισσότεραPoglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
Διαβάστε περισσότεραECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Διαβάστε περισσότεραΠρώιμα αποτελέσματα προοπτικής μελέτης Ιπποθεραπείας σε παιδιά με κινητικά ελλείμματα λόγω Εγκεφαλικής Παράλυσης
Πρώιμα αποτελέσματα προοπτικής μελέτης Ιπποθεραπείας σε παιδιά με κινητικά Στεργίου Α.1, Βαρβαρούσης Δ.2, Παππάς Κ.3, Σιαφάκα Β.2, Πλούμης Α.2, Μπερής Α.2 Κέντρο Θεραπευτικής Ιππασίας & Ιπποθεραπείας Ιωαννίνων,
Διαβάστε περισσότεραPROMO AKCIA. Platí do konca roka 2017 APKW 0602-HF APKT PDTR APKT 0602-HF
AKCIA Platí do konca roka 2017 APKW 0602-HF APKT 060204 PDTR APKT 0602-HF BENEFITY PLÁTKOV LAMINA MULTI-MAT - nepotrebujete na každú operáciu špeciálny plátok - sprehľadníte situáciu plátkov vo výrobe
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραElectronic Supplementary Information (ESI)
Electronic Supplementary Information (ESI) Lanthanide metal-organic frameworks constructed by asymmetric 2-nitro-biphenyl-4,4 -dicarboxylate ligand: syntheses, structures, luminescence and magnetic investigations
Διαβάστε περισσότερα1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Διαβάστε περισσότεραΜηχανή κοπής και χάραξης µε Laser 5000χ4000mm CNC LASER 120W
Version: 1 Μηχανή κοπής και χάραξης µε Laser 5000χ4000mm CNC LASER 120W Πρόκειται για Ελληνική κατασκευή για το µηχανικό µέρος. Είναι κατάλληλη για κοπή και χάραξη εργοτεµαχίων σε µορφή φύλλου. Πρόκειται
Διαβάστε περισσότεραZASTORI SUNSET CURTAIN Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.
ZSTORI ZSTORI SUNSET URTIN Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. ŠIRIN (mm) VISIN (mm) Z PROZOR IM. (mm) TV25 40360 360 400 330x330 TV25 50450 450
Διαβάστε περισσότεραhttp://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 Έλυσαν οι Δημήτρης Ιωάννου, Γιώργος Βισβίκης, Μπάμπης Στεργίου, Χρήστος Κάναβης, Γιώργης Καλαθάκης, Παναγιώτης Γκριμπαβιώτης,
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραΑ Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),
Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου
Διαβάστε περισσότεραzastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.
zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410
Διαβάστε περισσότερα17. Električni dipol
17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje
Διαβάστε περισσότεραΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Ορισµός
ΓΕΝΙΚΕΥΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ f() τοπικά ολοκληρώσιµη στο (, b) αν για κάθε κλειστό [c, d] (, b) η f() είναι ολοκληρώσιµη. πχ f() =e είναι τοπικά ολοκληρώσιµη στο [, ) f() = είναι τοπικά ολοκληρώσιµη στο (, )
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Διαβάστε περισσότεραTable15 Table of Motors Used and Corresponding Intermediate Flanges
Intermediate Flange Motor Used and Applicable Intermediate Flanges for Model KR Several types of intermediate fl anges for mounting motors are available for model KR. Specify an intermediate flange that
Διαβάστε περισσότεραPREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE
TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραNAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότερα