5 TIRISTORSKA STIKALA IN NASTAVLJALNIKI
|
|
- Κύμα Βαρνακιώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Močnostna elektronka 5. Trstorska stkala n nastavljalnk 5 TIISTOSKA STIKALA IN NASTAVLJALNIKI Za vklapljanje n zklapljanje elektrškh tokokrogov lahko namesto mehanskh porabmo td polprevodnška (elektronska) stkala. Za velke zklopne moč prhajajo v poštev predvsem trstorj. Vendar lahko trstor v fnkcj stkala porabmo le v zmenčnh tokokrogh, kjer prehaja zmenčn tok v vsak polperod skoz vrednost nč n omogoča, da se trstor na konc vsake polperode toka avtomatčno sam zklop. Vklapljamo pa trstor seveda s prožlnm mplzom. Če naj bo trstorsko stkalo stalno vklopljeno, moramo trstorj, v vsak polperod vedno znova dovajat prožln mplz preko IKN. Ker pa mora teč v zmenčnem tokokrog tok v obeh smereh, moramo trstorsko stkalo sestavt z dveh protparalelno vezanh trstorjev. Lahko pa porabmo td trac (sl.5.1 n sl.5.2). Za razlko od mehanskh stkal lahko pr polprevodnškh stkalh preko krmlnega mplza zelo natančno zberemo trentek vklopa. To omogoča najboljš vklop n nastavljanje (krmljenje) velkost napetost oz. toka n moč. 5.1 Trstorsko stkalo v zmenčnh tokokrogh Trstorska stkala porabljamo namesto mehanskh stkal za vklapljanje n zklapljanje zmenčnh tokokrogov. Slka 5.1 kaže strezno protparalelno vezavo dveh trstorjev, vkljčno z mplznma transformatorjema n zaščtnm C-členom. Prednost takšnega polprevodnškega stkala v prmerjav z mehanskm so: 1. se ne obrablja, 2. žvljenjska doba je praktčno neomejena, 3. čnek vklopa lahko poljbno zbramo n natančno zvedemo n 4. zklop stkala se zgod vedno v naravnem trentk, ko gre zmenčn tok skoz vrednost nč n n elektrčnega obloka. 72
2 Močnostna elektronka 5. Trstorska stkala n nastavljalnk U A a) T 1 A1 A2 A A1 C T 2 c) A1 b) A2 A2 Slka 5.1: Trstorsko stkalo: (a) protparalelna vezava dveh trstorjev, (b) statčna karakterstka, (c) zmenčn tok Slabost pa so: 1. v prevodn smer mamo padec napetost prblžno 1,5 V, 2. toplotne zgbe, kar zahteva td hlajenje, 3. v zklopljenem stanj teče še vedno nek majhen tok (nverzn tok nekaj ma) n stkalo potencalno (galvansko) ne ločje; če hočemo potencalno ločtev, moramo porabt dodatn mehansk preknjevalnk (npr. ločlno stkalo) n 4. cena je nekolko všja. Čeprav mamo na voljo trstorje za zaporne napetost nekaj kv n za maksmalno dopstne trajne toke prek 1 ka, kar daje fktvno moč prek 1 MVA, smemo zarad varnost v praks zkorstt le majhen del te moč. Slka 5.2 kaže trac v vlog polprevodnškega stkala. Krmljenje je enostavnejše kot pr vezj s sl Vendar zdeljejo zaenkrat trace le za majhne moč n zmorejo drektno vklapljat v omrežje 38 V le toke do največ 1 A. A T 1 A I H U BO A a) b) c) Slka 5.2: Trac kot polprevodnško stkalo v zmenčnem tokokrog: (a) vezje, (b) statčna karakterstka, (c) zmenčn tok 73
3 Močnostna elektronka 5. Trstorska stkala n nastavljalnk Zarad napetostnega padca v prevodn smer povzroča ventlsk tok zgbe prevajanja p T. Vdel smo, da je srednja zgbna moč na trstorj odvsna tako od artmetčne srednje vrednost ventlskega toka, kakor td od njegove efektvne vrednost. Zato moramo pr dmenzonranj trstorskega stkala poštevat td oblko toka. Slka 5.3 kaže potek napetost n tokov pr vklop n zklop tokokroga s trstorskm stkalom. Ker je breme ohmsko-ndktvno, zaostaja tok za napetostjo za elektrčn kot: ϕ = arctg ωl Če hočemo vklapljat tokokrog tako, da ne bo nkakega prehodnega pojava, moramo prpeljat trstorj prožln mplz v trentk, ko naj b tok A1 oz. A2, v staconarnem stanj prehajal skoz vrednost nč (sl.5.3.b). Če pa vklopmo v poljbnem drgem trentk, se pojav neka enosmerna prehodna komponenta toka, k nato v odvsnost od stopnje dšenja zgne v nekaj polperodah. V tem prmer je tok podan z enačbo: ( t) = A 2 2U + ( ωl) 2 sn( ϕ) sn( ϕ) e ( ) ωl ϕ IKN S, S A1 A2 A1 b) VKLOP A2 S S, A1 A2 S LS L IZKLOP a) c) Slka 5.3: Vklapljanje n zklapljanje zmenčnega tokokroga s trstorskm stkalom: (a)vezje, (b) vklop, (c) zklop Tok A je ob vklop sestavljen z dveh delov: z trajnega snsnega toka ter z nekega enosmernega toka, k ma največjo ampltdo v trentk vklopa n nato po eksponecaln fnkcj pada s časovno konstanto τ = L / prot vrednost nč. Kot 74
4 Močnostna elektronka 5. Trstorska stkala n nastavljalnk vdmo, je ta enosmerna komponenta toka nč le ob pogoj, da je sn( -ϕ)=, kar pomen, da moramo vklopt v trentk t =ϕ/ω, torej tedaj, ko začenja trajna snsna komponenta toka z vrednost nč. Fzkalno gledano prhaja do tega pojava zato, ker zarad ndktvnost L tok ob vklop trstorja nkol ne more hpoma poskočt na svojo staconarno vrednost, temveč mora njno začet z vrednost nč. K tem problem se bomo še povrnl. Izklop trstorskega stkala pa dosežemo preprosto tako, da prenehamo trstorja prožt: zatečen tok teče v tst polperod še tako dolgo, dokler naravno ne postane nč. Slka 5.4 kaže trstorsko stkalo za smetrčn trfazn ohmsko-ndktvn porabnk. Enako kot pr enofaznem stkal na sl. 5.3 s przadevamo td sedaj vklapljat trfazno stkalo tako, da se ob vklop ne bo pojavljala enosmerna zravnalna komponenta toka. To dosežemo tako, da prpeljemo prožlna mplza najprej samo dvema fazama hkrat (faz 1 n 2 na sl. 5.4), čez 9 el. pa še faz 3, pr čemer streza ta trentek proženja faze 3 trentk naravnega prehoda staconarnega faznega toka 3 skoz vrednost nč. Izklopmo pa trstorsko stkalo spet tako, da prenehamo trstorjem dovajat prožlne mplze: tok ene faze teče še tako dolgo, dokler ne postane nč n preneha, toka v ostalh dveh fazah pa tečeta še 9 o el. n nato prav tako prenehata teč , VKLOP VKLOP L Slka 5.4: Vklapljanje trfaznega L-porabnka s trstorskm stkal: (a) vezje, (b) potek napetost n tokov 75
5 Močnostna elektronka 5. Trstorska stkala n nastavljalnk 5.2 Vklop ndktvnost s trstorskm stkalom V prejšnjem poglavj smo obravnaval problematko vklopa mešanega ohmskondktvnega bremena (sl. 93). Tokrat analzrajmo podrobenje problemtko vklopa čste ndktvnost L s trstorskm stkalom! L K C, S VKLOP L IZKLOP S C L L L b) S VKLOP IZKLOP a), S c) L Slka 5.5: Vklop ndktvnost s trstorskm stkalom: (a) vezje, (b) vklop brez zravnalnega toka, (c) vklop z zravnalnm tokom V vezj na sl.5.5.a je narsan td vedno prsoten zaščtn C-člen, označena pa je td paraztna kapactvnost C L, k realno obstaja med ovoj dšlke L. V kvazstaconarnem stanj teče v tokokrog snsn tok, k zaostaja za gonlno snsno napetostjo za elektrčn kot 9 o. Le če vklopmo trstorsko stkalo, tj. enega od protparalelnh trstorjev, v trentk, k streza prehod jalovega toka skoz vrednost nč (sl.5.5.b), dobmo vklop brez prehodnega pojava: snsn tok začenja z svoje»naravne«vrednost nč. Ta najgodnejš trentek vklopa ndktvnega bremena streza trentk, ko ma snsna gonlna napetost maksmalno vrednost. Izklop toka pa dosežemo, kot vedno doslej tako, da prenehamo trstorjema dovajat prožlne mplze. Na sl. 5.5.b je z vertkalno šrafro označena napetost s na ventlh: ob vklop dobmo neko kratkotrajno sperponrano srednje frekvenčno nhanje, k se pršteva napetost L na ndktvnost. Njena krožna frekvenca je prblžno 1 L K CK, ampltda pa doseže največ temensko vrednost gonlne snsne napetost 2 U. Td pr zklop (sl.5.5.c) se pojav neko srednje frekvenčno sperponrano nhanje, k se pršteva k napetost s na zklopljenem trstorj. Njena krožna frekvenca je prblžno 1 (L + LK ) C, njeno ampltdo pa dš pornost. 76
6 Močnostna elektronka 5. Trstorska stkala n nastavljalnk 5.3 Trstorsk nastavljalnk za zmenčn tok Možnost, k jo nd trstorsko stkalo da ga lahko s prožlnm mplzom vklopmo v razlčnh trentkh glede na njegovo snsno blokrno napetost, lahko zkorstmo za t.. fazno krmljenje. Slka 5.6 kaže razmere, če je breme ohmsko. S spremnjanjem velkost zakasntve proženja glede na začetek poztvnega oz. negatvnega snsnega polvala gonlne napetost, tj. s spremnjanjem velkost krmlnega kota α, lahko krmlmo (spremnjamo) velkost napetost na bremen n s tem td velkost toka. Napetost na bremen (nešrafran del na sl. 5.6.b) je del (zrez) snsodne gonlne napetost. α IKN S A1 α A2 A1 S A2 Slka 5.6: Krmljenje enofaznega zmenčnega toka s trstorskm nastavljalnkom: a) vezje, b) potek napetost n toka pr ohmskem bremen In ker je breme ohmsko, je take oblke td tok. Krmln kot α lahko spremnjamo od do 18 o el. Pr kot α= n»zreza«n sta napetost na bremen n tok maksmalna. Pr največjem zkrmljenj α=18 o el. po postaneta napetost n tok nč. To kaže td sl. 5.7.a: pr razlčno velkh krmlnh koth α se z snsode»zrezjejo«večj al manjš začetn del polvalov., c), a) b) α Slka 5.7: Potek napetost n tokov v vezj s sl. 5.6.a v odvsnost od razlčno velkh krmlnh kotov α pr razlčnh bremenh: a) ohmsko breme, b) mešano ohmsko-ndktvno breme, c) ndktvno breme, α α 77
7 Močnostna elektronka 5. Trstorska stkala n nastavljalnk azmere se zelo spremenjo, če breme n ohmsko. Na sl. 5.7.b n c so prkazane oblke toka za nekaj razlčnh vrednost krmlnega kota α za mešano ohmsko-ndktvno oz. za čsto ndktvno breme. Pr ndktvnem bremen je tok (t) podan z enačbo: ( t) = 2U ωl π sn 2 π sn α 2 U... efektvna vrednost gonlne snsne napetost ω = 2πf... krožna frekvenca f=1/t... frekvenca gonlne snsne napetost T... peroda gonlne snsne napetost Ta enačba velja za območje krmlnega kota 9 o α 18 o el. Tok (t) je torej sestavljen z snsnega toka, zmanjšanega za nek konstantn del, k je tem večj, čm večj je kot α. Kakor vsak ndktvn tok zaostaja td ta tok za snsno napetostjo za 9 o el., zato je td krmlno območje za krmln kot α takšno. Potemtakem so na sl. 5.7.c narsan tok le»kape«al vrščk neke snsne krvlje. T vrščk postajajo manjš, če se povečje krmln kot α od 9 o prot 18 o el. ne glede na velkost kota α pa so t»ndktvn«tok, kot vdmo, vedno premaknjen glede na snsno napetost U za 9 o el. Med tokovnm vrščk nastopajo breztokovn odsek: tok je preknjevan (trgan). Matematčno bolj zamotane razmere dobmo, če je breme mešano, npr. ohmskondktvno (sl. 5.7 b). Tedaj velja za tok (t) enačba: ( t) = 2 2U + ( ωl) 2 sn ( ) ( ) ( α ωl ϕ sn α ϕ e ) ωl ϕ = arctan Tok (t) n več snsen, nt n del snsode, temveč ga sestavljata neka snsna n enosmerna komponenta, k pada eksponencalno s časovno konstanto: ω = L Slka 5.8 kaže, kako se spremnja efektvna vrednost nesnsnega toka pr ohmskem (cos φ=1) n ndktvnem (cosφ=) bremen v odvsnost od krmlnega kota α. Ponovno vdmo, da je krmlno območje pr ohmskem bremen α 18 o el., pr ndktvnem pa 9 α 18 o el.. 78
8 Močnostna elektronka 5. Trstorska stkala n nastavljalnk I ef I def 1.8 (ndktvno).6 cosϕ=1 cosϕ= α [ ] Slka 5.8: Krmlna karakterstka zmenčnega trstorskega nastavljalnka toka Slka 5.9 kaže velkost efektvne vrednost zhodne napetost na ohmskem oz. ndktvnem bremen v odvsnost od krmlnega kota α. 1.8 U L U S α [ ] Slka 5.9: Krmlna karakterstka zmenčnega trstorskega nastavljalnka s sl.5.6: U L - efektvna vrednost napetost na bremen ( al L) v odvsnost od krmlnega kota α; U S efektvna vrednost gonlne snsne napetost 79
9 Močnostna elektronka 5. Trstorska stkala n nastavljalnk Trfazn trstorsk nastavljalnk Td v trfaznh sstemh lahko porabmo trstorska stkala za krmljenje toka oz. napetost na bremen. Podobno kot pr enofaznem prmer lahko td pr trfaznem analzramo razmere n napšemo strezne enačbe, vendar so razmere precej bolj zamotane n rezltat nepregledn. Slka 5.1 kaže statčno karakterstko za breme. Vdmo, da je krmlno območje pr ohmskem bremen α 15 o el., pr ndktvnem pa 9 α 15 o el. 1 I ef I def.8.6 cosϕ=1 cosϕ= (ndktvno) α [ ] Slka 5.1: Krmlna karakterstka za tok za trfazn nastavljalnk: I ef -efektvna vrednost bremenskega toka, I ef -največja efektvna vrednost bremenskega toka pr krmlnem kot α = (za ohmsko breme) oz. α = 9 o el. (za ndktvno breme). 8
10 Močnostna elektronka 5. Trstorska stkala n nastavljalnk Slka 5.11 kaže krmlno karakterstko za napetost za trfazn trstorsk nastavljalnk. 1.8 U L U S α [ ] Slka 5.11: Krmlna karakterstka za napetost za trfazn trstorsk nastavljalnk v vezav zvezda brez nčlovoda: U L - efektvna vrednost napetost na bremen: U S - efektvna vrednost gonlne snsne napetost 81
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραPoglavje 5. Poglavje 5. Poglavje 5. c = 1! SPOMNIMO SE!!! Regulacijski sistemi. Regulacijski sistemi
Reglacjsk ssem lka 5. : Vekorja saorskega n roorskega oka v prosor Faklea za elekroehnko Reglacjsk ssem POMNIMO E!!! lka. 5: Kompleksn vekor saorskega oka γ jγ ( e ) j0 j ( ) c ( ) e ( ) e ( ) c! Faklea
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότερα1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Διαβάστε περισσότεραZaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραTokovni transformator z elektronskim ojačevalnikom
Tokovn transformator z elektronskm ojačevalnkom Tokovn transformator se sestoj z prmarnega navtja skoz katerga teče merjen tok n sekundarnega navtja. a sekundarno navtje je prklopljen merln upor s kompleksno
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραTOPNOST, HITROST RAZTAPLJANJA
OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna
Διαβάστε περισσότερα1. Enosmerna vezja. = 0, kar zaključena
1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih
Διαβάστε περισσότεραPoglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότεραdiferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Διαβάστε περισσότεραtransformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Διαβάστε περισσότεραBipolarni transistor se sestoji iz treh polprevodniških slojev različne prevodnosti. Glede na njihovo zaporedje ločimo NPN in PNP tranzistorje.
polarn ranzsor polarn ranssor se sesoj z reh polprevodnškh slojev razlčne prevodnos. Glede na njhovo zaporedje ločmo NPN n PNP ranzsorje. Slka: Zgradba n smbol NPN n PNP ranzsorja NPN ranzsor je orej sesavljen
Διαβάστε περισσότεραTrigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραStatistika 2, predavanja,
Statstka, predavana, 70 Jaka Smrekar februar 0 Dskretna porazdeltev na končno mnogo točkah Matematčno ozade Dskretna slučana spremenlvka X: Na bo m X = {ξ 0, ξ,, ξ m } n p = P (X = ξ Parametrčn prostor:
Διαβάστε περισσότεραvezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Διαβάστε περισσότεραElektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Διαβάστε περισσότεραIzpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότεραOsnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραMatematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Διαβάστε περισσότεραVaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim
Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Διαβάστε περισσότεραPodobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Διαβάστε περισσότεραwww.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Διαβάστε περισσότεραPOROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Διαβάστε περισσότεραV tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραMatematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Διαβάστε περισσότεραOsnovni pojmi pri obravnavi periodičnih signalov
Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.
Διαβάστε περισσότερα2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.
Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo
Διαβάστε περισσότεραVaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραMate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Διαβάστε περισσότεραC 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Διαβάστε περισσότεραcot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
Διαβάστε περισσότεραDržavni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραpismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke
Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [
Διαβάστε περισσότεραMERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Διαβάστε περισσότεραSarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
Διαβάστε περισσότεραA N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
Διαβάστε περισσότεραΤο άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Διαβάστε περισσότεραTEHNOLOGIJA MATERIALOV
Naslov vaje: Nastavljanje delovne točke trajnega magneta Pri vaji boste podrobneje spoznali enega od možnih postopkov nastavljanja delovne točke trajnega magneta. Trajne magnete uporabljamo v različnih
Διαβάστε περισσότεραMoguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραNavadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Διαβάστε περισσότερα7 TUJE VODENI PRETVORNIKI
7 TUJE VODENI PRETVORNII Pod tem naslovom bomo obravnavali pretvornike, ki kot stikalne elemente uporabljajo tiristorje, za takt delovanja in komutacijo pa skrbi bodisi omrežje omrežno vodeni pretvorniki
Διαβάστε περισσότερα!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Διαβάστε περισσότεραMatematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
Διαβάστε περισσότεραDISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Διαβάστε περισσότεραDefinicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Διαβάστε περισσότεραF (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Διαβάστε περισσότεραVEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότεραUniverza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak
Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,
Διαβάστε περισσότεραP P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Διαβάστε περισσότεραMatematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Διαβάστε περισσότερα1 Fibonaccijeva stevila
1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih
Διαβάστε περισσότεραNAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Διαβάστε περισσότεραAPROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραIzmenični signali. Dejan Križaj
Izenični signali Dejan Križaj . . KAZALO 6. PREHODNI POJAVI... 4 PREHODNI POJAVI... 5 ZVEZE MED TOKOM IN NAPETOSTJO NA ELEMENTIH VEZJA... 6 ZAČETNI POGOJI... 6 POLNJENJE KONDENZATORJA... 7 PRAZNENJE KONDENZATORJA...
Διαβάστε περισσότεραTema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Διαβάστε περισσότεραCM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Διαβάστε περισσότεραFrekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραTransformator. Izmenični signali, transformator 22.
zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator
Διαβάστε περισσότεραVzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost
Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Led dioda LED dioda je sestavljena iz LED čipa, ki ga povezujejo priključne nogice ter ohišja led diode. Glavno,
Διαβάστε περισσότεραDomače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Διαβάστε περισσότερα