17. Električni dipol

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "17. Električni dipol"

Transcript

1 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje v okolici dipola, navor na dipol Električni dipol je en pomembnejših elementov v teoriji električnega polja S tem konceptom (elementom) med drugim lahko razložimo vpliv in delovanje električnega polja v snovi, kar je seveda zelo pomembno Do sedaj smo bili sposobni ugotavljati le polje v vakuumu, kar pa v veliki meri velja tudi za zrak Poleg tega smo ugotovili, da električnega polja v prevodnikih ni, da je lahko le na površini prevodnika Tam je polje sorazmerno površinski gostoti naboja Električni dipol Če nevtralni prevodnik postavimo v električno polje, pride v prevodniku do prerazporeditve naboja, pri čemer se elektroni premaknejo (zamaknejo) v nasprotni smeri polja Ti zamiki potekajo toliko časa, da se v notranjosti prevodnika vzpostavi polje, ki je enako nič Prevodni delec tako dobi enovit potencial Presežek pozitivnega naboja lahko konceptualno združimo v pozitivni točkasti naboj, presežek negativnega pa v točkasti negativni naboj Ta naboja sta razmaknjena za neko fiksno razdaljo, ki jo lahko opišemo z vektorjem, ki kaže od negativnega v smeri pozitivnega naboja Električni dipol je torej definiran kot dva nasprotno-predznačena točkasta naboja razmaknjena za razdaljo d SLIKA: Prevodnik v električnem polju Prerazporeditev naboja lahko ponazorimo z dvema točkastima nabojema povezanima s fiksno razdaljo, kar ponazorimo s konceptom električnega dipola Električni dipolni moment imenujemo produkt naboja Q in vektorja d, ki je distančni vektor od naboja Q do naboja Q in ga zapišemo s simbolom p : p = Qd ( * enota je Cm) Velja opozoriti, da je smer vektorja d ravno nasprotna smeri polja, ki ga povzročata naboja in je torej definirana od minus naboja v smeri plus naboja * Pogosto, posebno v elektrokemiji, se uporablja za enoto električnega dipolnega momenta D (Debye) Velja D = 3,33 10 C m To omogoča tudi»lepše«zapise dipolnih momentov Npr dipolni moment vode je p(h 2 O)=1,85 D, p(hcl)=1,08 D, itd 1/8 DK

2 Primer: Vzdolž daljše osi ovalnega prevodnika dolžine 5 mm se prerazporedi elektronov Ponazorimo prevodnik v obliki električnega dipola in ocenimo njegov električni dipolni moment Izračun: p = Qd = 10 1,6 10 C 5 10 m= 8 10 C m Primer: V molekuli NaCl (sol) je razdalja med Na in Cl ionom 0,6 nm Izračunajmo električni dipolni moment molekule NaCl Izračun: p = Qd = 1,610 C0,610 m 10 Cm Polarne in nepolarne molekule Ni pa nujno potrebno, da dobimo električni dipol le pri vstavitvi prevodnika v električno polje Določene snovi (molekule) so lahko že same po sebi take, da imajo neenakomerno porazdeljen naboj Tipičen primer je molekula vode (H 2 0), ki ima vodikova atoma razmaknjena od središčnega kisikovega za kot Zakaj ravno tak kot? Izkaže se, da ta kot omogoča minimalno energijsko stanje molekule Zaradi nehomogene porazdelitve naboja je električni dipolski moment molekule vode 6, Cm Molekula vode ima torej vgrajen dipolni moment, rečemo tudi, da je polarna molekula (ima pozitivni in negativni pol) v nasprotju z nepolarnimi, kjer je naboj molekule porazdeljen tako, da je navzven nevtralna Lahko pa nepolarna molekula postane bolj ali manj polarna, če jo postavimo v električno polje Temu efektu rečemo polarizacija Neenakomerna porazdelitev pozitivnega in negativnega naboja v molekuli vode ustvari permanentni dipolni moment vode l_books/4em/ch05/ch05html SLIKA: Polarna in nepolarna molekula: a) brez zunanjega električnega polja, b) v zunanjem elektirčnem polju Dipol v električnem polju Kako se obnaša električni dipol v električnem polju? Nanj deluje električna sila, ki je F = F + F = Q E + ( Q) E = Q E E enaka Q Q Q Q ( Q Q) SLIKA: Dipol v homogenem in nehomogenem polju 2/8 DK

3 Če je polje homogeno, je EQ = E Q in skupna sila na dipol je enaka nič Deluje pa sila na oba naboja dipola v nasprotni smeri, tako, da bo delovala z navorom na dipol v taki smeri, da bi dipol usmerila v smer polja Če pa je polje nehomogeno, na dipol deluje poleg navora tudi premikalna sila, ki je različna od nič in deluje v smeri večjega polja Te sile so običajno zelo majhne, kljub temu pa jih je mogoče koristno izrabiti SLIKA: Sile na dipole usmerijo dipole v smer polja Primer semenk v enosmernem polju velike vrednosti * Primer je recimo koncentriranje mikronskih in submikronskih delcev v nehomogenem električnem polju To se uporablja predvsem za manipulacijo bioloških celic, kjer s pomočjo mikroelektronske tehnologije ustvarimo zelo majhne elektrode, ki imajo ravne in»ostre«robove Vzpostavitev napetosti med takima dvema elektrodama vzpostavi polje med njima, ki je izrazito nehomogeno in večje v okolici ostre elektrode Če se med elektrodama znajde delec, se polarizira, nato pa nanj deluje sila v smeri»ostre«elektrode Še bolj pogosta pa je manipulacija nevtralnih delcev (bioloških celic) z vzpostavitvijo izmeničnega električnega polja V tem primeru lahko s spreminjanjem frekvence električnega polja vplivamo na polarizabilnost molekul Pri določeni frekvenci se ustvarja večji ali manjši dipolni moment, odvisno od tega, kako hitro so se sposobni preorientirati naboji v električnem polju Zagotoviti je potrebno, da so električne lastnosti polarizacije delca različne od lastnosti polarizacije delca Če je to zagotovljeno, bo delec pri določenih frekvencah vzbu jalnega signala ustvarjal dipolni moment, ki je v smeri polja, pri drugih pa dipolni moment, ki je usmerjen v nasprotno smer kot polje S frekvenco je torej mogoče vplivati na silo na delce v smeri večjega polja ali pa v smeri manjšega polja Delci v električnem polju v zraku se polarizirajo, na njih deluje sila v smeri večjega polja (v smeri robov elektrodnih struktur, kot kaže zgornja slika) V primeru, da so delci v snovi, je njihov premik odvisen tudi od teh električnih lastnosti Če se delci v polju močneje polarizirajo kot snov v katero so postavljeni, bo sila na delce delovala v smeri večjega polja V nasprotnem primeru pa v smeri manjšega polja Te lastnosti pa je mogoče spreminjati tudi s frekvenco izmeničnega signala, kot je bilo opravljeno v primeru na sliki Tipični polmer celic je 10 µm 3/8 DK

4 Potencial v okolici električnega dipola Potencial v okolici električnega dipola ni težko določiti, saj gre za vsoto dveh potencialov, potencial od pozitivnega in negativnega naboja SLIKA: Električni dipol v koordinatnem sistemu Q Q Q r2 r1 VT ( ) = = 4πε r 4πε r 4πε rr Če je razdalja med nabojema dosti manjša od razdalje do točke T, lahko smatramo, da je 2 rr r in r 2 r 1 dcos( ϑ) Enačbo torej lahko zapišemo v obliki 1 2 Qd cos( ) p cos( ) VT ( ) = ϑ ϑ 4πε r = 4πε r p r * Pogosto se zgornjo enačbo zapiše tudi v obliki VT ( ) = 3 4πε r Potencial v okolici dipola se manjša s kvadratom razdalje od dipola 0 Električno polje dipola Električno polje bi lahko določili iz preprostega seštevanja prispevkov obeh nabojev Ker pa je polje vektor, bi imeli nekoliko več dela kot pri seštevanju V V V potencialov Bolj elegantna pot je s pomočjo gradienta polja, saj velja E =,, x y z V 1 V 1 V oziroma v sferičnih koordinatah E = ( Er, Eϑ, Eϕ) =,,, torej r r ϑ rsinϑ ϕ V pcos( ϑ) Er = = 3 r 2πε 0r V psin( ϑ) Eϑ = = 3 r ϑ 4πε r E ϕ = 0 0 Ugotovimo lahko, da polje v oddaljenosti od dipola upada s tretjo potenco (To je zelo hitreje od premega in točkastega naboja) 4/8 DK

5 SLIKA: Ekvipotencialne ravnine in normirani vektorji električne poljske jakosti SLIKA: Potencial in polje v okolici električnega dipola Navor na električni dipol Ugotovili smo že, da na električni dipol v zunanjem električnem polju deluje sila, ki želi usmeriti (zavrteti) dipol v smer polja Kako pa bi določili navor na dipol v zunanjem električnem polju? Preprosto, po definiciji za navor M = r F SLIKA: Električni dipol v homogenem polju Nanj deluje navor Opozoriti velja, da je pri vektorskem produktu pomembno, kateri vektor nastopa prvi, saj je rezultat vektorskega produkta vektor, ki kaže smer navora (vrtenja) Pravilno dobimo smer navora tako, da vektor radija (ročice) zavrtimo v smeri sile v smeri najmanjšega kota Velja torej M = e r F sin( ϑ), kjer je smer normale smer, ki je pravokotna na površino, ki jo določata vektorja r in F 5/8 DK n

6 Navor na pozitivni in negativni naboj je d d d d ( ) Qd M = F + F = QE + QE = E + E ( ) Q Q Q Q Q Q Če upoštevamo kratko razdaljo med nabojema, lahko smatramo, da je polje na pozitivni naboj enako polju na negativni naboj (lokalno homogeno polje) in navor na dipol bo enak M = Qd E = p E Ponovimo rezultat: navor na dipol je enak vektorskemu produktu električnega dipolskega momenta in jakosti polja Rezultat je vektor, ki opisuje smer vrtenja M = p E 200 Primer: Potencial se spreminja vzdolž X osi v skladu z enačbo V = V m Pri x = 1 cm x 6 se nahaja električni dipol z momentom p = 10 (1,2,0) Cm Določimo navor na dipol SLIKA: Električno polje in dipol v polju Izračun: Električno polje ima le komponento v smeri X osi, ki je enaka V Ex 2 V m 6 V = = Pri x = 1 cm je polje enako E x = V m = 2 10, navor 2 x x 1cm m -6 6 V pa je M = p E = ( 1, 2,0) 10 C/m 2 10,0,0 =( 0,0, 4) N m m * Način izračunavanja sile na dipol iz spremembe električne energije Podobno, kot smo poiskali zvezo med potencialom in električno poljsko jakostjo kot T( V= 0) V V V VT ( ) = E d l E=,, x y z T silo, saj velja lahko najdemo tudi povezavo med energijo in T( W= 0) W W W WT ( ) = F d l F=,, x y z T 6/8 DK

7 Ta način je pogosto uporabljen tudi pri numeričnemu izračunavanju, kjer izračunamo porazdelitev polja, potenciala in energije s pomočjo računalnika Za izračun sile je potrebno izračun opraviti 2x, vsakič na tak način, da rahlo zamaknemo strukturo (v našem primeru dipol) za neko majhno razdaljo in vsakič izračunamo polje in energijo Silo pa nato izračunamo kot diferenco W W W F,, x y z * Izračunavanje sile na dipol iz spremembe električne poljske jakosti Postavimo dipol vzdolž in v smeri X osi Na naboj Q deluje polje E x in torej sila Q Ex na naboj +Q, ki je dex od Q oddaljen za razdaljo dx, pa polje E x +dx oziroma Ex + dx, sila pa bo dx dex Q Ex + dx Če je polje nehomogeno, se bosta polji razlikovali, torej bo na dipol dx de delovala rezultančna sila v smeri osi X, ki bo enaka x Q dx, kar lahko pišemo tudi kot dx dex dex F = x Qdx p d x = d x, kjer smo Q d x zapisali z dipolnim momentom p Enačba, ki smo jo zapisali velja le, če dipol leži vzdolž X osi in nanj deluje polje v smeri X osi V splošnem je potrebno upoštevati možnost, da je dipol usmerjen poljubno Torej bo potrebno silo na dipol v smeri osi X izračunati kot dex dex dex Fx = px + py + pz in na enak način tudi sili v smeri osi Y in Z dx dy dz Energija rotacije dipola W = M dα = p E Vprašanja za obnovo: 1 Kaj je električni dipol? 2 Kako je definiran električni dipolni moement? 3 Kaj je razlika med polarnimi in nepolarnimi snovmi? 4 Kako se»obnaša«električni dipol, če je postavljen v zunanje homogeno ali nehomogeno električno polje? 5 Potencial v okolici električnega dipola Skicirajte ekcipotencialke, zapišite enačbo 6 Električna poljska jakost električnega dipola S katero potenco upada? 7 Navor na električni dipol WWW: Splošno: Elektrokardiogram: wwwupscaleutorontoca/iyearlab/ekgpdf Sevanje dipola: Dipole_320html Elektroforeza in dielektroforeza: LCD materiali: 7/8 DK

8 8/8 DK

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja. 6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

2. BIOT-SAVARTOV ZAKON

2. BIOT-SAVARTOV ZAKON iot-savartov akon.. IOT-SAVARTOV ZAKON Equation Section Vsebina poglavja: apis iot-savartovega akona, iračuni magnetnega polja v okolici osnovnih oblik tokovodnikov: premice, daljice, anke in solenoida.

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2 Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,

Διαβάστε περισσότερα

MAGNETNI PRETOK FLUKS

MAGNETNI PRETOK FLUKS MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE I s programom MATLAB (Dejan Križaj)

OSNOVE ELEKTROTEHNIKE I s programom MATLAB (Dejan Križaj) Page of 3 OSNOVE ELEKTROTEHNIKE I s programom MATLAB (Dejan Križaj). Elektrina (naboj), sila med elektrinami Elektrina je kvantizirana. Osnovna elektrina (naboj) elektrona je Q =-,69. -9 As. Enota za elektrino

Διαβάστε περισσότερα

2 Matematični repetitorij Vektorji Tenzorji Štirivektorji Štiritenzorji... 20

2 Matematični repetitorij Vektorji Tenzorji Štirivektorji Štiritenzorji... 20 Kazalo 1 Uvod 15 1.1. Kaj je teorija polja?.......................... 15 1.2. Koncept polja in delovanje na daljavo................ 15 1.3. So fundamentalna polja ali potenciali?................ 15 1.4.

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

INDUCIRANA NAPETOST (11)

INDUCIRANA NAPETOST (11) INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II. Magnetostatika. Dejan Križaj

OSNOVE ELEKTROTEHNIKE II. Magnetostatika. Dejan Križaj OSNOVE ELEKTROTEHNIKE II Magnetostatika Dejan Križaj 11 Section 1 KRATKO KAZALO (GLAVNA POGLAVJA) UVOD - ZGODOVINA MAGNETIKE 1. SILA NA (TOKO)VODNIK V MAGNETNEM POLJU. BIOT-SAVARTOV ZAKON Magnetno polje

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

9 PIEZOELEKTRIČNI SENZORJI

9 PIEZOELEKTRIČNI SENZORJI 9. PIEZOELEKTRIČNI SENZORJI 9 PIEZOELEKTRIČNI SENZORJI 9. UVOD 9.2 PIEZOELEKTRIČNI EEKT 9.3 PE SENZORJI 9.4 PE AKTUATORJI 9. UVOD V tem poglavju se bomo ukvarjali s piezoelektričnimi senzorji in aktuatorji,

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

Dielektrik u elektrostatskom polju

Dielektrik u elektrostatskom polju Seučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij ielektrik u elektrostatskom polju Polarizacija dielektrika snoe elektrotehnike I Jedno od osnonih sojstaa dielektrika

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1 B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 204, 5 Modeli atoma V nasprotju s teorijo relativnosti, ki jo je formuliral Albert Einstein v koncizni matematični obliki in so jo kasneje

Διαβάστε περισσότερα

GEL ELEKTROFOREZA. Seminar pri predmetu Molekularna Biofizika. Avtorica: Tjaša Parkelj

GEL ELEKTROFOREZA. Seminar pri predmetu Molekularna Biofizika. Avtorica: Tjaša Parkelj GEL ELEKTROFOREZA Seminar pri predmetu Molekularna Biofizika Avtorica: Tjaša Parkelj Povzetek: V tem seminarju bom predstavila fizikalno ozadje elektroforeze. Začela bom z opisom gibanja nabitega delca

Διαβάστε περισσότερα

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka:

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka: 1. Magnetostatika 1. Amperov zakon magnetne sile (med tokovnima elementoma) Pravilno predvideva, da če električni tok povzroča magnetno polje in s tem odklon magnetne igle, mora obstajati tudi sila med

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99) 386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da

Διαβάστε περισσότερα

Elektroni in ioni. Piezoelektrični pojav. Termoelektrični pojav

Elektroni in ioni. Piezoelektrični pojav. Termoelektrični pojav 39 Elektroni in ioni Piezo- in termoelektrika Termični elektroni Curki elektronov Odklon curka v poljih Relativistični odklon Masni spektrometer ionov Naboji na kapljicah Elektroni v snovi Dielektričnost

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Za boljšo komunikacijo s študenti in med študenti se poslužujte Foruma, ki smo ga odprli posebno v ta namen:

Za boljšo komunikacijo s študenti in med študenti se poslužujte Foruma, ki smo ga odprli posebno v ta namen: Spoštovani študenti! Ped vami je skipta, ki jo lahko upoabljate za lažje spemljanje pedavanj pi pedmetu Osnove elektotehnike 1 na visokošolskem študiju na Fakulteti za elektotehniko, Univeza v Ljubljani

Διαβάστε περισσότερα

PITAGORA, ki je večino svojega življenja posvetil številom, je bil mnenja, da ves svet temelji na številih in razmerjih med njimi.

PITAGORA, ki je večino svojega življenja posvetil številom, je bil mnenja, da ves svet temelji na številih in razmerjih med njimi. ZGODBA O ATOMU ATOMI V ANTIKI Od nekdaj so se ljudje spraševali iz česa je zgrajen svet. TALES iz Mileta je trdil, da je osnovna snov, ki gradi svet VODA, kar pa sploh ni presenetljivo. PITAGORA, ki je

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Poglavje 10. Molekule Kovalentna vez

Poglavje 10. Molekule Kovalentna vez Poglavje 10 Molekule Atomi se vežejo v molekule. Vezavo med atomi v molkuli posredujejo zunanji - valenčni elektroni. Pri vseh molekularnih vezeh negativni naboj elektronov posreduje med pozitinvimi ioni

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Visokošolski strokovni študijski program»tehnologija polimerov«

Visokošolski strokovni študijski program»tehnologija polimerov« Visokošolski strokovni študijski program»tehnologija polimerov«predmet: ELEKTROTEHNIKA Predavatelj: dr. Konrad Steblovnik Asistent: Drago Šebez 1 Elektrostatika. Električna polja. Sile v električnem polju.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone

UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone Bojan Žunkovič mentor: doc. dr. Matjaž Žitnik 7. maj 2007 Povzetek V preteklosti je bilo sinhrotronsko sevanje pri pospeševanju

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Kazalo. Namenoma prazna stran

Kazalo. Namenoma prazna stran Kazalo Kazalo Namenoma pazna stan 3 Kazalo Spoštovani študenti! Ped vami je skipta, ki jo lahko upoabljate za lažje spemljanje pedavanj pi pedmetu Osnove elektotehnike 1 na visokošolskem študiju na Fakulteti

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2 Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala

Διαβάστε περισσότερα