diferencialne enačbe - nadaljevanje
|
|
- Ναθάμ Στυλιανός Παππάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne trajektorije so vse krivulje, ki sekajo to družino pod pravim kotom. F(x, y, C) = 0 y dif. enačba = f(x, y) = tangens naklonskega kota tangente y T = 1 f(x, y) = tangens naklonskega kota normale = tangente ortog. trajektorij rešitev te dif. enačbe so ortogonalne trajektorije 1. naloga: Dana je družina krivulj y = C(x 2 + 1). Poišči ortogonalne trajektorije. Določi še tisto ortogonalno trajektorijo, ki gre skozi točko T(1, 1). 4 Rezultat: y(x) = ± ( x2 + ln x) + C cela družina; y(x) = ± ( x2 9 + ln x) + ortogonalna trajektorija skozi točko T. linearne diferencialne enačbe višjih redov Homogene linearne diferencialne enačbe s konstantnimi koeficienti Tako imenujemo diferencialne enačbe oblike: kjer so a 0, a 1,..., a n konstantni koeficienti. a n y (n) + + a 1 y + a 0 y = 0, Navodilo za reševanje: Rešujemo jo z nastavkom y(x) = e λx, ki ga odvajamo in vstavimo v dif. enačbo. Dobimo karakteristično enačbo: a n λ n + + a 1 λ + a 0 = 0, 1
2 katere rešitve so λ 1,..., λ n. Splošna rešitev homogene linearne diferencialne enačbe s konstantnimi koeficienti je tedaj y = C 1 e λ 1x + C 2 e λ 2x + + C n e λnx. 2. naloga: Reši enačbo y 4y + 3y = 0. Rezultat: y(x) = C 1 e 3x + C 2 e x. 3. naloga: Reši enačbo y + 4y = 0. Poišči tisto rešitev, za katero velja y(0) = 0 in y (0) = 2. Namig: Uporabi Eulerjevo formulo e iϕ = cos ϕ + i sin ϕ. Rezultat: y(x) = C 1 cos 2x + C 2 sin 2x splošna rešitev; y(x) = sin 2x rešitev začetnega problema. 4. naloga: Reši enačbo y 2y + y = 0. Rezultat: y(x) = C 1 e x + C 2 xe x. 5. naloga: Poišči rešitev dif. enačbe y y y + y = 0, ki zadošča pogojem y(0) = 2, y(1) = e 1 e in y (0) = 0. Rezultat: y(x) = C 1 e x + C 2 xe x + C 3 e x splošna rešitev; y(x) = 3e x 4xe x e x. Nehomogene linearne diferencialne enačbe s konstantnimi koeficienti Tako imenujemo diferencialne enačbe oblike: a n y (n) + + a 1 y + a 0 y = b(x), kjer so a 0, a 1,..., a n konstantni koeficienti, b(x) pa funkcija spremenljivke x. Splošna rešitev je oblike y(x) = y h + y p, kjer je y h rešitev homogene linearne dif. enačbe s konst. koef., y p pa neka partikularna rešitev (zadošča diferencialni enačbi). A. Homogeni del (dobimo y h ): a n y (n) + + a 1 y + a 0 y = 0. To je homogena linearna dif. enačba s konstantnimi koeficienti. Dobimo rešitev y h. B. Nehomogeni del (dobimo y p ): a n y (n) + + a 1 y + a 0 y = b(x). Rešujemo z metodo inteligentnega ugibanja. To je, nastavek uganemo glede na obliko desne strani b(x): 2
3 b(x) polinom stopnje m = y p = a m x m + + a 1 x + a 0, b(x) = sin ax ali b(x) = cosax = y p = A sin ax + B cos ax, b(x) = e ax = y p = Ae ax, b(x) je vsota več členov iz zgornjih treh točk = y p je vsota pripadajočih nastavkov. Nastavek y p odvajamo in vstavimo v diferencialno enačbo. Iz dobljene enačbe izračunamo vse parametre iz nastavka (A, B,...). 6. naloga: Reši enačbo y y = 2e 2x. Rezultat: y(x) = C 1 e x + C 2 e x ex. 7. naloga: Reši enačbo y 5y 6y = cosx + e 2x. Rezultat: y(x) = C 1 e 6x + C 2 e x 7 74 cosx 5 74 sin x 1 12 e2x. 8. naloga: Reši začetni problem y 2y 3y = x 2, y(0) = 0 in y (0) = 1. Rezultat: y(x) = C 1 e 3x + C 2 e x 1 3 x2 + 4 x x2 + 4x 14 rešitev začetnega problema splošna rešitev; y(x) = e3x e x 9. naloga: Reši enačbo y y = 3e x. Namig: Partikularno rešitev išči v obliki y p = Axe x. Rezultat: y(x) = C 1 e x + C 2 e 1 2 cos 3 2 x + C 3e 1 2 sin 3 2 x xex. Eulerjeve enačbe Tako imenujemo diferencialne enačbe oblike: kjer so a 0, a 1,..., a n konstantni koeficienti. a n x n y (n) + + a 2 x 2 y + a 1 xy + a 0 y = 0, Navodilo za reševanje: Rešujemo jo z nastavkom y(x) = x λ, ki ga odvajamo in vstavimo v dif. enačbo. Dobimo karakteristično enačbo, katere rešitve so λ 1,...,λ n. Splošna rešitev Eulerjeve dif. enačbe je tedaj y = C 1 x λ 1 + C 2 x λ C n x λn. 10. naloga: Reši enačbo x 2 y xy 3y = 0. Rezultat: y(x) = C 1 x 3 + C 2 x 1. 3
4 11. naloga: Reši enačbo x 2 y xy + y = 0. Rezultat: y(x) = C 1 x + C 2 x ln x. 12. naloga: Reši diferencialno enačbo y = 2 + sin x. Rezultat: y(x) = x3 3 + cosx + Cx2 2 + Dx + E. nekaj primerov uporabe diferencialnih enačb v elektrotehniki 1. primer: LINEARNA DIFERENCIALNA ENAČBA 1. REDA Dano je LR vezje na sliki s podatki R = 6Ω, L = 3H in U = 2V. Izračunaj, kako se spreminja tok s časom, če smo ob času t = 0s preklopili stikalo (torej je bil tok takrat enak 0). Kolikšen je tok ob času t = 5s? Rešitev: Diferencialna enačba za to vezje se glasi: L di dt + RI = U. Začetni pogoj: I(0) = 0. To je nehomogena linearna diferencialna enačba prvega reda. Najprej rešimo homogeni del. L di dt + RI = 0 di = R I L dt ln I = R L t + ln k I h (t) = ke R L t 4
5 Nato z variacijo konstante izračunamo partikularno rešitev. I = k(t)e R L t I = k(t)e R L t k(t) R L e R L t Vstavimo v enačbo in dobimo L k(t)e R L t k(t)re R L t + k(t)re R L t = U k(t) = U L e R L t k(t) = U L e R L t = U R e R L t Partikularna rešitev je torej: I p (t) = U R. Splošna rešitev je vsota partikularne rešitve in rešitve homogenega dela: Ko upoštevamo še začetni pogoj, dobimo: I(t) = I p (t) + I h (t) = U R + ke R L t I(0) = U R + k = 0, od koder sledi, da je k = U R. Tok v vezju se torej s časom spreminja takole: Za dane podatke je tok ob času t = 5s: I(t) = U R (1 e R L t ) I(5) = 2 (1 e ) = 0.33A primer: LINEARNA DIFERENCIALNA ENAČBA 2. REDA Dano je LCR vezje na sliki s podatki U = 10V, R = 7Ω, L = 20mH in C = µ8f. Izračunaj, kako se spreminja tok s časom, če smo ob času t = 0s preklopili stikalo (torej je bil tok takrat enak 0). Rešitev: Napetostna enačba za to vezje: L di dt + RI + 1 C Idt = U. Enačbo enkrat odvajamo po času in delimo z L, da dobimo diferencialno enačbo: d 2 I dt + R di 2 L dt + I LC = 0. 5
6 Začetni pogoji: I(0) = 0 in di (0) = U. Drugi začetni pogoj dobimo iz prve enačbe pri dt L t = 0. To je homogena linearna diferencialna enačba drugega reda s konstantnimi koeficienti. Rešimo jo z nastavkom I = e λt, pri čemer označimo ω 2 = 1 in 2ξω = R : LC L λ 2 + 2ξωλ + ω 2 = 0 λ 1,2 = 2ξω ± 4ξ 2 ω 2 4ω 2 = ξω ± ω ξ Oblika rešitve je odvisna od tega, ali ima karakteristična enačba dve različni realni rešitvi, eno dvojno rešitev, ali dve konjugirano kompleksni rešitvi. To pa je seveda odvisno od danih podatkov. Ker je L = 20mH in C = 8µF, je ω = 2500 in zato je ξ = 7, kar 100 pomeni, da dobimo za dane podatke dve konjugirano kompleksni rešitvi. Zato je rešitev diferencialne enačbe oblike: I(t) = e (A 2ξωt cos (ω 1 ξ 2 t) + B sin (ω ) 1 ξ 2 t) Potrebno je še določiti konstanti A in B. V ta nemen rešitev odvajamo: I(t) = 2ξωe (A 2ξωt cos (ω 1 ξ 2 t) + B sin (ω ) 1 ξ 2 t) +e ( A(ω 2ξωt 1 ξ 2 ) sin (ω 1 ξ 2 t) + B(ω 1 ξ 2 ) cos (ω ) 1 ξ 2 t) Nato vstavimo začetna pogoja: I(0) = A = 0 I(0) = 2ξωA + Bω 1 ξ 2 = U L Od tod sledi, da je A = 0 in B = U Lω 1 ξ 2. Torej je rešitev diferencialne enačbe enaka: I(t) = U Lω 1 ξ 2e 2ξωt sin (ω 1 ξ 2 t) 3. primer: LINEARNA DIFERENCIALNA ENAČBA 2. REDA Dano je LCR vezje na sliki. Izračunaj, kako se spreminja izhodna napetost V o s časom, 6
7 če je vhodna napetost V i oblike V i = V cos Ωt. Rešitev: Napetostna enačba za to vezje je L di dt + RI + 1 C Idt = V i, kjer je V o = 1 C Idt. Od tod sledi, da je I = C dv o dt, Diferencialna enačba se torej glasi: di dt = C d2 V o dt 2. LC d2 V o dt 2 + RC dv o dt + V o = V i, oziroma d 2 V o dt + R dv o 2 L dt + V o LC = V i LC. To je nehomogena linearna diferencialna enačba 2. reda s konstantnimi koeficienti. Signal V i naj bo oblike V i (t) = V cos Ωt. Če pišemo ω2 = 1, 2ξω = R in F = V, dobimo LC L LC enačbo oblike: V o + 2ξω V o + ω 2 V o = F cos Ωt. Najprej rešimo homogeni del: λ 2 + 2ξωλ + ω 2 = 0 λ 1,2 = 2ξω ± 4ξ 2 ω 2 4ω 2 = ξω ± ω ξ Predpostavimo, da so podatki taki, da je ξ < 1, torej sta rešitvi karakteristične enačbe konjugirano kompleksni. Rešitev ima obliko: Vo (A h (t) = e 2ξωt cos (ω 1 ξ 2 t) + B sin (ω ) 1 ξ 2 t) Partikularno rešitev poiščemo z nastavkom (predpostavimo, da so podatki taki, da je Ω ω 1 ξ 2 ): Vo p (t) = D cos Ωt + E sin Ωt. 7
8 Ker je V p o = DΩ sin Ωt + EΩ cos Ωt in V p o = DΩ 2 cos Ωt EΩ 2 sin Ωt, sledi ( DΩ 2 + 2EξωΩ + Dω 2 ) cosωt + ( EΩ 2 2DξωΩ + Eω 2 ) sin Ωt = F cos Ωt Dobimo sistem enačb: DΩ 2 + 2EξωΩ + Dω 2 = F EΩ 2 2DξωΩ + Eω 2 = 0 Od tu dobimo konstanti D in E in partikularno rešitev diferencialne enačbe. Splošna rešitev je vsota partikularne rešitve in rešitve homogenega dela. 8
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne
Navadne diferencialne enačbe
Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Matematične metode v fiziki II. B. Golli, PeF
Matematične metode v fiziki II B. Golli, PeF 8. september 2014 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 Uvod.............................................. 5 1.1.1 Diferencialne enačbe v fiziki.............................
Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko
Jasna Prezelj DIFERENCIALNE ENAČBE za finančno matematiko Ljubljana 211 naslov: DIFERENCIALNE ENAČBE ZA FINANČNO MATEMATIKO avtorske pravice: Jasna Prezelj izdaja: prva izdaja založnik: samozaložba Jasna
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Matematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
8. Navadne diferencialne enačbe
8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
1 Obične diferencijalne jednadžbe
1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f
Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v
Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.
Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21
Nekaj zgledov J.Kozak Numerične metode II (IŠRM) 2011-2012 1 / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot
Navadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Kombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april
FMF Matematika Finančna matematika Kombinatorika Reševanje rekurzivnih enačb in rodovne funkcije Vladimir Batagelj Math fun: Pascal triangle Ljubljana, april 2008 4. Dec 2012 različica: December 4, 2012
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Afina in projektivna geometrija
fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Računski del izpita pri predmetu MATEMATIKA I
Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Čas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i
Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
11.5 Metoda karakteristik za hiperbolične PDE
11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,
ZBIRKA REŠENIH NALOG IZ MATEMATIKE II
Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,
Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga
1. UREJENE OBLIKE KVADRATNE FUNKCIJE
1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni
Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim
Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)
7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem
INTEGRALI RACIONALNIH FUNKCIJ
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Vaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo
3.1 Reševanje nelinearnih sistemov
3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo
ZBIRKA REŠENIH NALOG IZ MATEMATIKE I
Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)