2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis m. birželio 1 d. Trukmė 2 val. (120 min.)
|
|
- Φίλανδρος Ἱεριχώ Παπαντωνίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 NACIONALINIS EGZAMINŲ CENTRAS (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 2017 m. birželio 1 d. Trukmė 2 val. (120 min.) NURODYMAI Pasitikrinkite, ar užduoties sąsiuvinyje nėra tuščių lapų arba kito aiškiai matomo spausdinimo broko. Pastebėję praneškite vykdytojui. Užrašykite savo vardą ir pavardę tam skirtoje užduoties sąsiuvinio vietoje. Naudokitės rašymo priemonėmis, braižybos ir matavimo įrankiais bei skaičiuotuvu be tekstinės atminties. Koregavimo priemonėmis naudotis negalima. Skaitykite uždavinių sąlygas atidžiai. Rašykite sprendimus ir (ar) atsakymus, taip pat braižykite tvarkingai tam skirtose vietose mėlynai rašančiu rašikliu. Apveskite vieną teisingą atsakymą žyminčią raidę, jeigu atsakymą renkatės iš kelių variantų. PASTABA. Užduoties pabaigoje palikta vietos juodraščiui. Juodraščiai netikrinami ir nevertinami. Linkime sėkmės! VERTINIMAS Maksimalus taškų skaičius BENDRA TAŠKŲ SUMA 50 Papildomi taškai 2 GALUTINĖ TAŠKŲ SUMA 52 1 vertintojas 2 vertintojas Galutinis įvertinimas Įvertinimas Vertinimo komisija: (parašas, vardas ir pavardė) (parašas, vardas ir pavardė) (parašas, vardas ir pavardė) Nacionalinis egzaminų centras, 2017 m.
2 FORMULĖS Standartinė skaičiaus išraiška. a 10 m ; čia 1 a < 10, m sveikasis skaičius. Kvadratinio trinario skaidymas daugikliais. ax 2 + bx + c = a(x x 1 )(x x 2 ). 2 b b 4ac Kvadratinės lygties sprendiniai. x 1, 2 =. 2a Daugiakampio kampų suma. 180 (n 2); čia n daugiakampio kampų skaičius. 2 R 2 R Skritulio išpjova. S, l ; čia S išpjovos plotas, išpjovos kampo didumas laipsniais, l išpjovos lanko ilgis, R skritulio išpjovos spindulio ilgis. Prizmės tūris. V SH; čia S prizmės pagrindo plotas, H prizmės aukštinės ilgis. Piramidės tūris. V 3 1 SH; čia S piramidės pagrindo plotas, H piramidės aukštinės ilgis. 1 Kūgio tūris. V R 2 H; čia R kūgio pagrindo spindulio ilgis; H kūgio aukštinės ilgis. 3 Kūgio šoninio paviršiaus plotas. S Rl; čia R kūgio pagrindo spindulio ilgis, l kūgio sudaromosios ilgis. Ritinio tūris. V R 2 H; čia R ritinio pagrindo spindulio ilgis, H ritinio aukštinės ilgis. Ritinio šoninio paviršiaus plotas. S 2 RH; čia R ritinio pagrindo spindulio ilgis, H ritinio aukštinės ilgis. 4 3 Rutulio tūris. V R ; čia R rutulio spindulio ilgis. 3 Rutulio paviršiaus plotas. S 4 R ; čia R rutulio spindulio ilgis. 2 2 Iš viso taškų 3 p. (maks. 7 taškai) Iš viso taškų 4 p. (maks. 5 taškai) Iš viso taškų 5 p. (maks. 4 taškai) Iš viso taškų 6 p. (maks. 3 taškai) Iš viso taškų 7 p. (maks. 4 taškai) Iš viso taškų 8 p. (maks. 3 taškai) Iš viso taškų 9 p. (maks. 5 taškai) Iš viso taškų 10 p. (maks. 4 taškai) Iš viso taškų 11 p. (maks. 4 taškai) Iš viso taškų 12 p. (maks. 2 taškai) Iš viso taškų 13 p. (maks. 4 taškai) Iš viso taškų 14 p. (maks. 2 taškai) Iš viso taškų 15 p. (maks. 3 taškai) BENDRA TAŠKŲ SUMA (maks. 50 taškų)
3 1. Skaičių tiesėje tašku A pažymėta trupmenos 3 1 vieta. Šioje skaičių tiesėje: 1.1. tašku B pažymėkite trupmenos 3 2 vietą; 1.2. tašku C pažymėkite trupmenai 3 2 atvirkštinės trupmenos vietą; 1.3. tašku D pažymėkite, kur maždaug galėtų būti skaičiaus 5 vieta. 2. Kurį skaičių pridėję prie trupmenos 3 1, gausime skaičių 1? 3. Apskaičiuokite: ( 5) = 3.2. ( 2) 5 = = Iš viso taškų 3 p. (maks. 7 taškai) 3
4 4. Nuotykių parko kasoje skelbiama informacija apie bilietų kainas Kokia yra 11-to bilieto kaina, grupei perkant 11 bilietų? A 7,20 Eur B 7,90 Eur C 7,92 Eur D 7,99 Eur 4.2. Kiek pinigų iš viso už bilietus sumokės 12 žmonių grupė? 4.3. Kiek žmonių buvo grupėje, jeigu už jų visų bilietus sumokėta 137,60 Eur? 4.4. Į nuotykių parką atvyko x žmonių (x skaičius, didesnis už 10) ir kiekvienas atskirai pirko bilietą. Kokią pinigų sumą jie sutaupytų, jeigu bilietus pirktų kaip viena grupė? A (x 10) 0,8 B x 7,2 C x 0,8 D (x 10) 7,2 Iš viso taškų 4 p. (maks. 5 taškai) 4
5 5. Paveiksle pavaizduota nuotykių parko schema Į parką įėjęs lankytojas neturi parko schemos ir atsitiktinai pasirenka vieną iš dviejų takų: vedantį link atrakcionų aikštelės arba link batutų. Kokia tikimybė, kad jis pasirinks taką, vedantį link batutų? 5.2. Atrakcionų aikštelės darbuotojas stebėjo, kiek minučių šioje parko vietoje praleido kiekvienas iš pirmųjų 10 lankytojų. Duomenis jis surašė lentelėje. Laikas (min.) Kiek vidutiniškai minučių atrakcionų aikštelėje praleido vienas lankytojas? Raskite atrakcionų aikštelės darbuotojo užregistruotų duomenų medianą Giedrė nusprendė apsilankyti keturiuose iš penkių šio nuotykių parko objektuose. Keliais skirtingais būdais ji gali pasirinkti tuos objektus? Apsilankymo pasirinktuose objektuose tvarka nėra svarbi. Iš viso taškų 5 p. (maks. 4 taškai) 5
6 5.4. Lankytojai, išeidami iš nuotykių parko, vertinimo anketoje pažymėjo vieną labiausiai patikusį objektą. Apibendrinti anketos duomenys pavaizduoti skritulinėje diagramoje. Remdamiesi jos duomenimis, raskite neteisingą teiginį. A B C D Ketvirtadalis apklaustųjų pasirinko atsakymą Batutai arba Žaidimų aikštelė. Penktadalis apklaustųjų pasirinko atsakymą Pilis. Daugiau kaip pusė apklaustųjų pasirinko atsakymą Trasa arba Atrakcionų aikštelė. Mažiau kaip pusė apklaustųjų pasirinko atsakymą Batutai arba Atrakcionų aikštelė. 6. Iš spalvotų lygiagretainio formos stiklo detalių gaminamas vitražas. Viena tokia detalė pavaizduota paveiksle. Žinomi trijų šios detalės atkarpų ilgiai: AD = 6, CD = 12, AC = Apskaičiuokite pavaizduotos detalės (lygiagretainio) perimetrą Įrodykite, kad trikampis CAD yra statusis. Įrodymas Iš viso taškų 6 p. (maks. 3 taškai) 6
7 6.3. Žinodami, kad trikampis CAD yra statusis, apskaičiuokite jo plotą Žinodami, kad trikampis CAD yra statusis, pažymėkite neteisingą teiginį apie lygiagretainio atkarpą AC. A B C D Atkarpa AC lygiagretainį dalija į du lygius trikampius. Atkarpa AC yra lygiagretainio įstrižainė. Atkarpa AC yra lygiagretainio aukštinė. Atkarpa AC yra lygiagretainio simetrijos ašis Visą pavaizduotą didesnę detalę meistras turi supjaustyti į mažesnes lygiagretainio formos dalis. Kiekviena gautoji dalis būtų panaši į didesnę detalę, jos trumpesniosios kraštinės ilgis būtų lygus 1, o ilgesniosios x Raskite x reikšmę Kiek daugiausia tokių dalių galima pagaminti iš didesnės detalės? Iš viso taškų 7 p. (maks. 4 taškai) 7
8 7. Ūkininkas užsakė meistrui pagaminti tris vienodus kūginius sraigtus savo malkų skaldyklei. Kūginiai sraigtai gaminami iš 30 cm ilgio ir 8 cm skersmens ritinio formos ruošinių. Pagaminto kūginio sraigto ilgis ir pagrindo skersmuo sutampa su atitinkamais ruošinio matmenimis Apskaičiuokite pavaizduoto ruošinio (ritinio) tūrį. Atsakymą parašykite su π Pagamintus kūginius sraigtus meistras sudės į stačiakampio gretasienio formos dėžę taip, kad jie liestųsi vienas su kitu ir visomis dėžės sienelėmis, kaip pavaizduota paveiksle. Raskite šios dėžės matmenis. (Spręsdami uždavinį, į dėžės sienelių storį nekreipkite dėmesio.) Ats.: ilgis cm, plotis cm, aukštis cm. Iš viso taškų 8 p. (maks. 3 taškai) 8
9 7.3. Kūginio sraigto viduje meistras ištekino 3 cm skersmens kiaurymę, kad sraigtą būtų galima užmauti ant malkų skaldyklės veleno. Brėžinyje pavaizduotas kūginio sraigto vaizdas iš apačios. Apskaičiuokite kūginio sraigto pagrindo (žiedo) plotą. Atsakymą užrašykite su π. 8. Koordinačių plokštumoje nubraižytas funkcijos y = x 2 grafikas Užrašykite šios funkcijos apibrėžimo sritį Su kuriomis x reikšmėmis taškas (x; 4) priklauso šios funkcijos grafikui? Iš viso taškų 9 p. (maks. 5 taškai) 9
10 8.3. Kuris iš nurodytų taškų nepriklauso funkcijos y = x 2 grafikui? A ( 5; 25) B (3; 9) C (16; 4) D (6; 36) 8.4. Koordinačių plokštumoje nubraižytas funkcijos y = x 2 grafikas. Toje pačioje koordinačių plokštumoje nubraižykite funkcijos y = x grafiką. 9. Išspręskite lygčių sistemą x y 6, x 2y. Iš viso taškų 10 p. (maks. 4 taškai) 10
11 10. Šeima planuoja buto remontą. Kambario, kurio grindų perimetras 12 m, o aukštis 2,5 m, sienas ji nori išklijuoti to paties nederinamo rašto tapetais. Parduotuvėje reikalingų tapetų rulonų skaičių siūloma nustatyti pagal lentelę. (Nustatant reikalingų tapetų rulonų skaičių, į langus ir duris nekreipiama dėmesio.) Kambario grindų perimetras 6 m 10 m 12 m 15 m 18 m 20 m 24 m Kambario aukštis 2,10 2,35 m 3 rulonai 5 rulonai 6 rulonai 8 rulonai 9 rulonai 10 rulonų 12 rulonų Kambario aukštis 2,40 3,05 m 4 rulonai 7 rulonai 8 rulonai 10 rulonų 12 rulonų 14 rulonų 16 rulonų Kiek nederinamo rašto tapetų rulonų turėtų nusipirkti šeima pagal šios parduotuvės siūlomą lentelę? Parduotuvėje visų rūšių tapetų kainos už ruloną nurodytos sveikuoju skaičiumi (eurais). Kokia gali būti tapetų rulono kaina, kad šeima visus reikiamus tapetų rulonus nusipirktų už pinigų sumą, ne mažesnę kaip 115 Eur ir ne didesnę kaip 135 Eur? Šeima susidomėjo parduotuvės darbuotojo siūlymu vieną kambario sieną, kurios ilgis 3,5 m, o aukštis 2,5 m, dekoruoti fototapetu. Kokių matmenų fototapetą turėtų pasirinkti šeima, kad jis visas tilptų ant šios sienos? A 368 cm 254 cm B 368 cm 127 cm C 184 cm 254 cm D 184 cm 127 cm Iš viso taškų 11 p. (maks. 4 taškai) 11
12 10.4. Parduotuvė šeimai sudarė sąlygas nusipirkti pasirinktą fototapetą su nuolaida 179 Eur kainavusį fototapetą pasiūlyta įsigyti už 125,30 Eur. Kelių procentų nuolaidą šeimai pasiūlė parduotuvė? A 30 % B 42 % C 43 % D 70 % 11. Aplink stačiakampę žaidimų aikštelę ABCD įrengtas takas, kurio plotis x metrų. Aikštelės kartu su taku ilgis 2x + 12 metrų, plotis 2x + 8 metrų Apskaičiuokite žaidimų aikštelės ABCD plotą. Iš viso taškų 12 p. (maks. 2 taškai) 12
13 11.2. Pagrįskite, kad žaidimų aikštelės ir tako bendras plotas aprašomas reiškiniu 4(x x + 24). Pagrindimas Yra žinoma, kad žaidimų aikštelės su taku plotas 140 m 2. Norint sužinoti, koks tako plotis, buvo sudaryta lygtis 4(x x + 24) = 140. Išsprendę šią lygtį, raskite tako plotį. Iš viso taškų 13 p. (maks. 4 taškai) 13
14 12. Žmona ir vyras išvyko iš namų į darbą skirtingu laiku. Paveiksluose pavaizduota, kaip keitėsi kiekvieno iš jų nukeliautas atstumas, skaičiuojant nuo išėjimo iš namų momento iki atvykimo į darbą momento Vyras į darbą važiavo dviračiu. Pirmuosius 12 km jis įveikė per 1,25 val. Tuo metu jo laikrodis rodė 9 val. 20 min. Kelintą valandą jis išvyko iš namų? Ats.: val. min Tam tikru laiko momentu vyras važiavo 9,6 km/h greičiu. Išreikškite šį greitį metrais per minutę. Iš viso taškų 14 p. (maks. 2 taškai) 14
15 12.3. Žmona į darbą ėjo pėsčiomis. Apskaičiuokite jos ėjimo greitį (km/h) Vyras išvažiavo iš namų tuomet, kai žmona nuo namų jau buvo nutolusi 0,5 km. Žmona ėjo priešinga kryptimi, negu važiavo jos vyras. Koks bus atstumas tarp žmonos ir vyro, praėjus 1,25 val. nuo vyro kelionės pradžios? Iš viso taškų 15 p. (maks. 3 taškai) JUODRAŠTIS 15
16 JUODRAŠTIS 16
klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 013 m. pagrindinio ugdymo pasiekimų patikrinimo
klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo
klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 06 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 06 m. gegužės
Matematika 1 4 dalis
Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios
klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis
2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis
PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7
2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai
M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO
LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA
LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai
2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ
N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S 018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 018 m. birželio 9 d. įvyko matematikos valstybinis brandos egzaminas.
I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI
008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI
Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas
Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo
Matematika 1 3 dalis
Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį
5 klasė. - užduotys apie varniuką.
5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides
2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija
008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd
X galioja nelygyb f ( x1) f ( x2)
Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f
Elektronų ir skylučių statistika puslaidininkiuose
lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt
II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas
1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad
45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai
Dviejų kintamųjų funkcijos dalinės išvestinės
Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento
AIBĖS, FUNKCIJOS, LYGTYS
AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2013 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ
LIETUVS RESPUBLIKS ŠVIETIM IR MKSL MINISTERIJ NINLINIS EGZMINŲ ENTRS 03 METŲ MTEMTIKS VLSTYBINI BRNS EGZMIN REZULTTŲ STTISTINĖ NLIZĖ 03 m. birželio 5 d. matematikos valstbinį brandos egzaminą leista laikti
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos
Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1
Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa
1 iš 15 RIBOTO NAUDOJIMO
iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7
PNEUMATIKA - vožtuvai
Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms
NACIONALINIS EGZAMINŲ CENTRAS
2017 NACIONALINIS EGZAMINŲ CENTRAS Vardas, Pavardė Klasė Mokinio kodas 8 MATEMATIKA 8 KLASĖ 1 Hansas Kristianas Andersenas (1805 1875 m.) - garsiausias danų rašytojas. Visas pasaulis žino jo sukurtas pasakas
NACIONALINIS EGZAMINŲ CENTRAS. Pasiruošk pasiekimų patikrinimui MATEMATIKA
NACIONALINIS EGZAMINŲ CENTRAS Pasiruošk pasiekimų patikrinimui MATEMATIKA Vilnius, 01 UDK 51(076.1) E1 8 Leidinyje pateikiami pagrindinės mokyklos 000 011 m. Matematikos baigiamojo egzamino ir pasiekimų
MAŽYLIS (III ir IV klasės)
2001m. konkurso užduočių sąlygos MŽYLIS (III ir IV klasės) KLUSIMI PO 3 TŠKUS M1. Keturiuose paveikslėliuose pavaizduoti skaičiai nuo 1 iki 4 kartu su savo veidrodiniais atvaizdais. Koks bus penktas paveikslėlis?
4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu
IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu
MATEMATIKA PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO (PUPP) IR BRANDOS EGZAMINŲ (BE) UŽDUOČIŲ RENGĖJŲ MOKYMO PRAKTINĖ METODINĖ MEDŽIAGA
MATEMATIKA NACIONALINIS EGZAMINŲ CENTRAS Nacionalinis egzaminų centras Projektas Pagrindinio ugdymo pasiekimų patikrinimo ir brandos egzaminų sistemos tobulinimas (SFMIS VP1-21-ŠMM-01-V-01-002) PAGRINDINIO
Laboratorinis darbas Nr. 2
M A T E M A T I N Ė S T A T I S T I K A Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2005 m. spalio 23 d. Reziumė Antras laboratorinis darbas skirtas išmokti generuoti tikimybinių skirstinių
2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo
t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.
LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe
1 TIES ES IR PLOK TUMOS
G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu
I.4. Laisvasis kūnų kritimas
I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės
3 modulis. Funkcijos sąvoka. Laipsninė, rodiklinė ir logaritminė funkcija
P R O J E K T A S VP--ŠMM-0-V-0-00 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS -9 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS, REIKALINGOS
Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS
Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................
KADETAS (VII ir VIII klasės)
ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip
MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 004 m. gegužės 7 d. įsakymu Nr. ISAK-75 MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS
11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas
11 klasei Pirmas skyrius MATEMATIKA tempus Bendrasis ir išplėstinis kursas MATEMATIKA tempus Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius UDK 51(075.3) Ma615 Autoriai: VILIJA DABRIŠIENĖ, MILDA
KOMPIUTERINIS PROJEKTAVIMAS
LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių
Specialieji analizės skyriai
Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo
EUROPOS CENTRINIS BANKAS
2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo
VERTINIMO INSTRUKCIJA 2008 m. valstybinis brandos egzaminas Pakartotinë sesija
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 008 m. birželio 7 d. įsakymu (.3.)-V-37 VERTINIM INSTRUKIJA 008 m. valstybinis brandos egzaminas I dalis Kiekvienas I dalies klausimas vertinamas tašku.
KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis
Lietuvos Respublikos švietimo ir mokslo ministerija Kengūros konkurso organizavimo komitetas Matematikos ir informatikos institutas Leidykla TEV KENGŪRA 2010 Konkurso trukmė 50 minučiu Konkurso metu negalima
ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)
ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...
Paprastosios DIFERENCIALINĖS LYGTYS
Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,
MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS
Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010
Praeita paskaita Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje Atkarpos Tiesės lgtis = mx+ b kur m krpties koeficientas, o b aukštis, kuriame tiesė kerta ašį Susikirtimo taško apskaičiavimui sulginamos
V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI
V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI Uždirbtų palūkanų suma priklauso ne tik nuo palūkanų normos dydžio, bet ir nuo palūkanų kapitalizavimo dažnio Metinė palūkanų norma nevisada atspindi
Paprastosios DIFERENCIALINĖS LYGTYS
Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 1
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 1 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 9 d. Santrauka Pirmas laboratorinis darbas skirtas išmokti generuoti nesudėtingus
LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANIKA
LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS MECHANIKA SVEIKINAME MOKSLEIVIUS, ĮSTOJUSIUS Į OTONO MOKYKLĄ! Šiaulių universiteto jaunųjų fizikų mokykla otonas, siekianti padėti
Mažylis (III ir IV klasės) 19 SA LYGOS. MAŽYLIS (III ir IV klasės)
Mažylis (III ir IV klasės) 19 SA LYGOS MAŽYLIS (III ir IV klasės) KLAUSIMAI PO 3 TAŠKUS M1. Peteliškė nutūpė ant vieno iš teisingos lygybės skaičiu. Kokį skaičiu dengia peteliškė? A 250 B 400 C 500 D 910
Matematikos brandos egzamino mokinių pasiekimų lygių aprašas su pavyzdžiais
Matematikos brandos egzamino mokinių pasiekimų lygių aprašas su pavyzdžiais Patenkinamas pasiekimų lygis Paprastose standartinėse situacijose atpažįsta ir teisingai vartoja (reprodukuodamas) pagrindines
VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?
VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 23 d. Santrauka Antras laboratorinis darbas skirtas išmokti sudarinėti daugialypės
Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė
Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė dėst. T. Rekašius, 2012 m. lapkričio 19 d. 1 Duomenys Visi trečiam laboratoriniam darbui reikalingi duomenys yra tekstinio formato failuose http://fmf.vgtu.lt/~trekasius/destymas/2012/ekomet_lab3_xx.dat,
IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,
41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,
Specialieji analizės skyriai
Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė
Atsitiktinių paklaidų įvertinimas
4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra
MOKINIO GIMIMO DATA GIMNAZIJOS TREČIOS KLASĖS MATEMATIKOS IR GAMTOS DALYKŲ EGZAMINAS 2005 BALANDIS
MOKINIO KODAS ĮRAŠO MOKINYS MOKINIO GIMIMO DATA metai mėnuo diena PAPILDO PRIEŽIŪROS TARNYBA vieta lipdukui su kodu disleksija Instrukcija moksleiviui GIMNAZIJOS TREČIOS KLASĖS MATEMATIKOS IR GAMTOS DALYKŲ
Statistinė termodinamika. Boltzmann o pasiskirstymas
Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros
Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė.
Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra 2007 m. brandos egzaminų užduočių analizė Matematika Vilnius 2008 Išleista Europos Socialinio fondo ir Lietuvos Respublikos
NEKILNOJAMOJO TURTO VERTINIMAS
LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Žemėtvarkos katedra Audrius ALEKNAVIČIUS NEKILNOJAMOJO TURTO VERTINIMAS Metodiniai patarimai Akademija, 2007 UDK 332.6(076) Spausdino UAB Judex, Europos pr. 122, LT-46351
Įžanginių paskaitų medžiaga iš knygos
MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio
Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka
WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs
1 teorinė eksperimento užduotis
1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios
FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga
VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R
FDMGEO4: Antros eilės kreivės I
FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių
. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai)
0 m. ietuvos 6-ojo fizikos čempionato UŽDUOČŲ SPRENDMA 0 m. gruodžio 6 d. (Kiekvienas uždavinys vertinamas 0 taškų, visa galimų taškų suma 00). Pervyniojant transformatoriaus ritę buvo pastebėta, kad ritėje
ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE
ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,
Arenijaus (Arrhenius) teorija
Rūgštys ir bazės Arenijaus (Arrhenius) teorija Rūgštis: Bazė: H 2 O HCl(d) H + (aq) + Cl - (aq) H 2 O NaOH(k) Na + (aq) + OH - (aq) Tuomet neutralizacijos reakcija: Na + (aq) + OH - (aq) + H + (aq) + Cl
KOMPTONO EFEKTO TYRIMAS
VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Atomo ir branduolio fizikos laboratorija Laboratorinis darbas Nr. 7 KOMPTONO EFEKTO TYRIMAS Eksperimentinė dalis 2014-10-25 Čia yra tik smulkus
Matematika 791. I. Bendrosios nuostatos. II. Tikslas, uždaviniai, struktūra. 5 6 klasės. 7 8 klasės klasės
I. Bendrosios nuostatos 1. Ugdymo srities paskirtis Matematika yra reikšminga pasaulio mokslo, technologijų ir žmogaus kultūros dalis. Ji yra svarbus abstrakčiojo dedukcinio ir indukcinio, empirinio-patyriminio,
LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S
LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S DĖL LĖTINIO VIRUSINIO C HEPATITO DIAGNOSTIKOS IR AMBULATORINIO GYDYMO KOMPENSUOJAMAISIAIS VAISTAIS TVARKOS APRAŠO TVIRTINIMO 2012 m. spalio
MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos
MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio
MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA
LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS
TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010
TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 Tikimybiu teorija nagrin eja atsitiktinius ivykius ir tu ivykiu tikimybes ivykio pasirodymo galimyb es mat, i²reik²t skai iumi p,
Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje
Stiklo pluošto laikikliai - gali būti sprendimas langams/durims tvirtinti šiltinimo sluoksnyje Lango vieta angoje Reguliuojami stiklo pluošto laikikliai Sukurta mūsų, pagaminta mūsų Geram rezultatui
Patekimo į darbo vietas aukštyje priemonės
Patekimo į darbo vietas aukštyje priemonės Patekimo į darbo vietas aukštyje priemonės Turinys Pratarmė... 5 I. Fiksuotų priėjimo priemonių tarp dviejų lygių darbo vietų parinkimas... 6 1. Pagrindinės
1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3
Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................
Įvadas į laboratorinius darbus
M A T E M A T I N Ė S T A T I S T I K A Įvadas į laboratorinius darbus Marijus Radavičius, Tomas Rekašius 2005 m. rugsėjo 26 d. Reziumė Laboratorinis darbas skirtas susipažinti su MS Excel priemonėmis
AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA. Plotis, mm 99,149,199,249,299 Aukštis, mm 199
AKYTOJO BETONO BLOKELIŲ AEROC CLASSIC MŪRO KONSTRUKCIJOS TECHNINĖ SPECIFIKACIJA Statinio sienos bei pertvaros projektuojaos ūrinės iš piros kategorijos akytojo betono blokelių AEROC CLASSIC pagal standartą
Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos
Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas
KENGŪRA SENJORAS
KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS VU MATEMATIKOS IR INFORMATIKOS FAKULTETAS VU MATEMATIKOS IR INFORMATIKOS INSTITUTAS LIETUVOS MATEMATIKŲ DRAUGIJA KENGŪRA 2016. SENJORAS TARPTAUTINIO MATEMATIKOS
CeraPro. Grindų šildymo kabelis. Montavimo instrukcija
CeraPro Grindų šildymo kabelis Montavimo instrukcija A 1 2 3 4 5 6 7 8 9 1. Medinės juodgrindės 2. Išlyginamasis sluoksnis 3. Daviklis 4. Dvipusė juosta 5. Tinklelis 6. CeraPro 7. Betonas 8. Plytelės,
ELEMENTARIOJI TEORIJA
ELEMENTARIOJI TEORIJA Pirmosios kombinatorikos þinios siekia senàsias Rytø ðalis, kuriose mokëta suskaièiuoti këlinius bei derinius ir sudarinëti magiðkuosius kvadratus, ypaè populiarius viduramþiais.
A priedas. Diagnostikoje naudojami tarptautiniai ISO standartai
Priedai A priedas. Diagnostikoje naudojami tarptautiniai ISO standartai B priedas. Patikslintas tiesiakrumplės pavaros matematinis modelis C priedas. Patikslintas tiesiakrumplė pavaros matematinis modelis
Rankinio nustatymo ventiliai MSV-F2, PN 16/25, DN
Rankinio nustatymo ventiliai MSV-F2 PN 16/25 DN 15-400 Aprašymas MSV-F2 DN 15-150 MSV-F2 DN 200-400 MSV-F2 yra rankinio nustatymo ventiliai. Jie naudojami srautui šildymo ir šaldymo įrenginiuose balansuoti.
Matematinės analizės konspektai
Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,
Lietuvos mokinių septintoji astronomijos olimpiada (2009) Pirmo turo uždavinių sprendimai. IX klasių ir jaunesni mokiniai
Lietuvos mokinių septintoji astronomijos olimpiada (2009) Pirmo turo uždavinių sprendimai IX klasių ir jaunesni mokiniai 1 uždavinys Vilnietis Tadas mėgsta stebėti naktinį dangų. Tame pačiame mieste gyvenantis
06 Geometrin e optika 1
06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco
Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis
Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba
Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius. Mokomoji knyga
Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas Algirdas Antanavičius GEODEZIJOS PAGRINDAI Mokomoji knyga Akademija, 2007 Redaktorė: M. Židonienė turinys ĮVADAS... 1. Geodezijos
SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE
VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra SIGNALAI TELEKOMUNIKACIJŲ SISTEMOSE Mokymo priemonė Parengė A. Poškus 4 Turinys. ĮVADAS..... Telekomunikaijų sistemos struktūrinė shema. Pagrindinės
LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ELEKTROS SROVĖS STIPRIS ĮTAMPA. VARŽA LAIDININKŲ JUNGIMO BŪDAI
LETVOS FZKŲ DAGJA ŠALŲ NVESTETO JANŲJŲ FZKŲ MOKYKLA FOTONAS ELEKTOS SOVĖS STPS ĮTAMPA. VAŽA LADNNKŲ JNGMO BŪDA LETVOS FZKŲ DAGJA ŠALŲ NVESTETO JANŲJŲ FZKŲ MOKYKLA FOTONAS omas Senkus ELEKTOS SOVĖS STPS.
III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:
III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia