LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA"

Transcript

1 LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai aibė plokštumos taškų, duotuoju atstumu R nutolusių nuo duotojo plokštumos taško C. Taškas C yra vadinamas apskritimo centru, o skaičius R jo spindulio ilgiu. Jei stačiakampėje Dekarto koordinačių sistemoje Oxy apskritimo centras C ( x 0, y0 ), tai taškas M ( x, y) yra apskritimo, kurio centras taškas C, o spindulys lygus R, taškas tada ir tik tada, kai CM R ( pav.), t. y. kai 0 0 R ( x x ) ( y y ). Tai yra apskritimo lygtis stačiakampėje Dekarto koordinačių sistemoje. pav. pav. pavyzdys. Rasime aibę plokštumos taškų, kurių atstumų iki dviejų duotųjų plokštumos taškų santykis lygus duotajam skaičiui k. Uždavinį spręsime koordinatiniu metodu. Pasirinkime koordinačių sistemą Oxy taip, kad Ox ašis eitų per duotuosius taškus A ir B, o jos pradžios taškas būtų atkarpos AB vidurio taškas ( pav.). Sakykime, kad atstumas tarp taškų A ir B lygus a, tuomet A( a, 0), B (a, 0). Taškas M ( x, y) yra ieškomosios taškų aibės taškas tada ir tik tada, kai AM k. Kadangi ( ), AM x a y BM ( x a) y, tai BM ( x a) y k. Iš čia seka, kad ( x a) y k ( x a) y. Pakėlę abi lygybės puses kvadratu ( x a) y ir suprastinę, gauname ( x a) y k ( x a) k y, ( k ) x ( k ) y a( k ) x ( k ) a. k Padaliję iš k 0, turime x y a a, k k x a y a a, t. y. k k k k 4a k x a y. Ši lygtis yra apskritimo, kurio centras k C a, 0, o spindulys k ( k ) k ka R, k lygtis, taigi ieškomoji taškų aibė yra apskritimas.. Kampas, kurio viršūnė yra apskritimo taškas, o kraštinės kerta apskritimą, vadinamos įbrėžtiniu kampu. teorema. Įbrėžtiniai į apskritimą, kurio centras taškas O, kampai, kurių kraštinės eina per du apskritimo taškus A ir B, o jų viršūnės yra vienoje tiesės AB pusėje, yra lygūs pusei centrinio kampo AOB (3 pav.). teorema. Aibė plokštumos taškų M, tenkinančių sąlygą AMB yra du apskritimų lankai, simetriški tiesės AB atžvilgiu (4 pav.). 3 teorema. Kampas, kurį apskritimo styga AB sudaro su apskritimo liestine taške A, lygus pusei centrinio kampo AOB (5 pav.). 4 teorema. Keturkampis ABCD yra įbrėžtas į apskritimą tada ir tik tada, kai jo priešingų kampų suma lygi 80: A C B D 80.

2 Šias teoremas Jūs įrodinėjote matematikos pamokose. AM B AM B AM 3 B AOB 3 pav. 4 pav. pavyzdys. Du apskritimai kertasi taškuose A ir B. Per tašką B nubrėžta tiesė, kertanti duotuosius apskritimus dar ir taškuose C ir D (6 pav.). Per taškus C ir D nubrėžtos apskritimų liestinės susikerta taške P. Įrodysime, kad taškai A, C, D ir P yra viename apskritime. Nubrėžkime stygas AB, AC ir AD. Iš 3 teoremos išplaukia, kad BAD BDP, CAB BCP. Iš čia CAD BAD CAB BDP BCP 80 CPD. Taigi CAD CPD 80 ir pagal 4 teoremą keturkampis ADPC yra įbrėžtas į apskritimą. B C A O 5 pav. 6 pav. 5 teorema. Sakykime, kad dvi tiesės susikerta taške A ir iškerta apskritime lankus BMC ir DNE. Jei taškas A yra apskritimo viduje, tai DAE ( DOE BOC), o jei taškas A yra apskritimo išorėje, tai DAE ( DOE BOC) (7 pav.). Teoremos įrodymui užtenka per vienos stygos (pvz., BD) galą nubrėžti stygą, lygiagrečią su kita styga. A B C M 7a pav. D O N 7b pav. 3 pavyzdys. Keturkampis ABCD yra įbrėžtas į apskritimą, kraštinė CD lygi apskritimo spinduliui, o kampas ADB lygus 50. Rasime kampą tarp keturkampio įstrižainių. Sakykime, kad keturkampio ABCD įstrižainės AC ir BD susikerta taške M (8 pav.). Kadangi taškas M yra apskritimo viduje, tai kampas tarp įstrižainių AMB pagal 5 teoremos tvirtinimą lygus E

3 ( AOB DOC). Kadangi atkarpa CD lygi apskritimo spinduliui, tai trikampis DOC lygiakraštis, taigi DOC 60. Kadangi ADB 50, tai centrinis kampas AOB 00. Taigi. AMB ( AOB DOC) (00 60 ) 80 6 teorema. Per apskritimo išorėje esantį tašką A nubrėžti apskritimo liestinė AT ir kirstinė) kertanti apskritimą taškuose B ir C (9 pav.). Tuomet AB AC AT. Teoremos įrodymas seka iš trikampių ATC ir ABT panašumo. 8 pav. 9 pav. 0 pav. 7 teorema. Per apskritimo viduje esantį tašką A nubrėžtos apskritimo kirstinės BC ir ED (0 pav.). Joms teisinga lygybė AB AC AD AE. Teoremos įrodymas seka iš trikampių ABD ir ACE panašumo. 4 pavyzdys. Per apskritimo išorėje esantį tašką O nubrėžta apskritimo liestinė, liečianti jį taške A. Atkarpa BC apskritimo styga, lygiagreti su tiese OA. Tiesės OB ir OC apskritimą kerta dar ir taškuose K ir L. Įrodysime, kad tiesė KL dalija atkarpą OA pusiau. Sakykime, kad tiesė KL kerta atkarpą OA taške M ( pav.). Kadangi tiesės OA ir BC lygiagrečios, tai LOM LCB LKB OKM. Taigi trikampiai OM LM KOM ir OLM panašieji, t. y.. Iš čia KM OM pav. OM KM LM. Kadangi pagal 6 teoremą AM MK ML, tai iš čia gauname, kad OM AM. 3. Sakykime, kad taškas A yra nutolęs nuo apskritimo centro O atstumu d, apskritimo spindulys yra R. Skaičius d R yra vadinamas taško A laipsniu duotojo apskritimo atžvilgiu. Jei taškas A yra apskritimo pav. 3 pav. išorėje, ir AT apskritimo liestinė, tai iš trikampio OAT ( pav.) gauname, kad d R AT. Jei BC bet kuri kirstinė einanti per tašką A, tai AB AC AT (6 teorema). Taigi šiuo atveju taško A laipsnis lygus iš taško A nubrėžtos apskritimo liestinės kvadratui, o taip pat bet kurios per tašką A išvestos kirstinės atkarpų sandaugai. Jei taškas A yra apskritimo viduje, BC bet kuri kirstinė, einanti per tašką A (3 pav.), o DE per tą tašką einantis apskritimo skersmuo, tai pagal 7 teoremą 3

4 AB AC AD AE ( R d)( R d) R d ( d R ). Taigi, apskritimo viduje esančio taško laipsnis šio apskritimo atžvilgiu yra neigiamas, to laipsnio modulis lygus bet kurios per tašką A einančios apskritimo kirstinės atkarpų sandaugai. 8 teorema. Aibė plokštumos taškų, kurių laipsniai dviejų apskritimų su nesutampančiais centrais atžvilgiu yra vienodi, yra tiesė, statmena tų apskritimų centrus jungiančiai tiesei. Teoremos įrodymui tarsime, kad atstumas tarp apskritimų centrų O O lygus a, parinksime koordinačių sistemą Oxy taip, kaip nurodyta pavyzdyje (4 pav.), tada O ( a; 0), O( a; 0). Jei M ( x; y) ieškomosios taškų aibės taškas, R ir R duotųjų apskritimų spinduliai, tai taško M laipsnių šių apskritimų atžvilgiu lygybė užrašoma taip ( x a) y R ( x a) y R. Pertvarkę gauname tokią R ieškomosios taškų aibės lygtį R x ; aišku, jog tai yra lygiagrečios su Oy ašimi tiesės lygtis. 4a AT AT AT3 AT4 4 pav. 5 pav. Teoremos formuluotėje minima tiesė yra dviejų apskritimų radikalioji ašis. Radikaliosios ašies taškai, nesantys duotųjų apskritimų viduje, pasižymi tokia savybe: iš jų nubrėžtų liestinių abiem apskritimams atkarpos iki lietimosi taškų yra lygios (5 pav.). Jei apskritimai kertasi taškuose A ir B, tai taškų A ir B laipsniai abiejų apskritimų atžvilgiu lygūs nuliui. Kadangi tiesė AB statmena apskritimų centrus jungiančiai tiesei, tai pagal 8 teoremą ji yra tų apskritimų radikalioji ašis. Analogiškai, jei du apskritimai liečiasi taške A, tai per tą tašką nubrėžta jų bendroji liestinė yra tų apskritimų radikalioji ašis. Jei apskritimai neturi bendrų taškų, tai pasirenkame tašką O, nepriklausantį duotųjų apskritimų centrus jungiančiai tiesei ir iš jo kaip iš centro brėžiame apskritimą, kertantį abu duotuosius (6 pav.). Sakykime, kad pirmąjį apskritimą jis kerta taškuose A ir B, o kitą taškuose C ir D. Tiesių AB ir CD sankirtos taško M laipsniai duotųjų apskritimų atžvilgiu yra vienodi (paaiškinkite, kodėl). Pagal 8 teoremą statmuo, nuleistas iš taško M apskritimų centrus jungiančiai tiesei, yra jų radikalioji ašis. 6 pav. 7 pav. 5 pavyzdys. Du apskritimai neturi bendrų taškų. Nubrėžta jų bendroji išorinė liestinė l, liečianti apskritimus taškuose A ir B, ir bendroji vidinė liestinė l, liečianti juos taškuose C ir D. Įrodysime, kad tiesių AC ir BD sankirtos taškas priklauso tų apskritimų centrus jungiančiai tiesei. Nubrėžkime apskritimu S ir S, kurių skersmenys yra atkarpos AB ir CD (7 pav.). Sakykime, kad tiesės l ir l susikerta taške F ir nubrėžkime tieses O F ir O F. Sakykime, kad DBO α BDO. 4

5 Jei BE skersmuo, kai kampų AO C ir DO E kraštinės O A ir O E statmenos tiesei l, o kraštinės O C ir O D tiesei l. Todėl AO C DOE. Kadangi FA FC, tai OF AC, t. y. FAC FO A AOC α. Tuomet AFO 90 α FBD. Taigi tiesės O F ir BD yra lygiagrečios, todėl AC BD. Iš čia seka, kad tiesių AC ir BD sankirtos taškas K yra ir apskritime S, ir apskritime S, t. y. yra jų radikaliojoje ašyje. Iš to, kad O A AB ir O C CD seka, kad atkarpos O A ir O C yra apskritimų S ir S liestinės. Kadangi O A OC, tai taškas O yra apskritimų S ir S radikaliojoje ašyje. Analogiškai įsitikiname, kad ir taškas O yra toje pačioje radikaliojoje ašyje. Taigi taškai O, K ir O yra vienoje tiesėje. 4. Kaip žinome, apskritimo, kurio spindulys R, ilgis skaičiuojamas pagal formulę C πr. Skaičius π yra lygus apskritimo ilgio ir skersmens santykiui; tai iracionalusis skaičius užrašomas begaline neperiodine dešimtaine trupmena. Apytikslė jo reikšmė π 3, Jei spindulio R apskritimo centrinio kampo AOB πrα didumas α laipsnių, tai lanko AB ilgis yra lygus l, jei centrinio kampo AOB didumas α radianu, tai 80 lanko AB ilgis lygus l Rα. Skritulio, kurio spindulys R, plotui skaičiuoti taikoma formulė S πr ; jei skritulio išpjovos AOB π R α centrinio kampo didumas α laipsniu, tai išpjovos plotas lygus S, o jei kampo AOB didumas α 360 radianų S R α. 6 pavyzdys. Trapecijos pagrindų ilgiai a ir b ( a b), aukštinės ilgis h. Apskaičiuosime apie trapeciją apibrėžto skritulio plotą. B C Kadangi įbrėžtam į apskritimą keturkampiui ABCD teisinga lygybė O A C 80, o trapecijai ABCD, kurios pagrindai AD ir BC (8 pav.) A H F D teisinga lygybė A B 80, tai B C, t. y. jei trapecija įbrėžta į apskritimą, tai ji lygiašonė. Nubrėžę aukštines BH AD, CF AD, turime AH FD ( AD BC) ( a b). Tuomet AB AH HB ( a b) 4h. 8 pav. Kadangi apie trapeciją ABCD apibrėžtas apskritimas yra ir apie trikampį ABD apibrėžtas apskritimas, tai jo spindulį rasime (( a b) 4h )(( a b) 4h ) AD AB BD AD AB BD AB BD iš formulės R 4 4S AD BH BH h ( a b ) 8h ( a b ) 6h. 8h ANTROJI UŽDUOTIS. Raskite apskritimo x y 8x y 3 0 centro koordinates ir spindulio ilgį. Nustatykite, ar taškas M ( 6; 3) yra apskritimo viduje, ar išorėje.. Raskite aibę taškų, kurių atstumų iki dviejų duotųjų taškų kvadratų suma lygi duotajam skaičiui a. 3. Du apskritimai kertasi taškuose P ir Q. Per pirmojo apskritimo tašką A nubrėžtos tiesės AP ir AQ antrąjį apskritimą dar kartą kerta atitinkamai taškuose B ir C. Per tašką A pirmajam apskritimui nubrėžta liestinė yra lygiagreti su tiese BC. Įrodykite. 5

6 4. Per tašką P, nepriklausantį apskritimui, nubrėžtos dvi apskritimo liestinės, liečiančios apskritimą taškuose A ir B. Jei taškas O apskritimo centras, o atkarpa BC skersmuo, tai tiesės AC ir OP lygiagrečios. Įrodykite. 5. Keturkampis ABCD yra įbrėžtas į apskritimą, kraštinė AB apskritimo skersmuo, kraštinė CD lygi apskritimo spinduliui. Raskite kampą tarp tiesių AD ir BC. 6. Apie trapeciją, kurios aukštinės ilgis lygus h, apibrėžtas apskritimas. Trapecijos šoninė kraštinė iš apskritimo centro matoma 60 kampu. Raskite trapecijos plotą. 7. Du apskritimai kertasi taškuose A ir B. Tiesė MN jų bendroji liestinė (taškai M ir N lietimosi taškai). Raskite kokiu santykiu tiesė AB dalija atkarpą MN. 8. Nubrėžtos dviejų nesikertančių apskritimų keturios bendrosios liestinės AB, CD, EF ir GH (taškai A, C, E, G priklauso vienam apskritimui, o taškai B, D, F ir H kitam). Įrodykite, kad atkarpų AB, CD, EF ir GH vidurio taškai yra vienoje tiesėje. 9. Du spindulio R apskritimai susikerta taip, kad kiekvienas jų eina per kito centrą. Kitų dviejų to paties spindulio apskritimų centrai yra pirmųjų dviejų apskritimų susikirtimo taškai. Raskite visų keturių skritulių bendrosios dalies plotą. 0. Apskritimas kerta kiekvieną lygiakraščio trikampio ABC kraštinę dviejuose taškuose, dalijančiuose tą kraštinę į tris lygias dalis: AB BB BC, CA A A A B, BC CC CA. Apskaičiuokite lanko B B ilgį, jei trikampio kraštinės ilgis lygus a. Užduoties sprendimus prašome išsiųsti iki 0 m. sausio 0 d. mokyklos adresu: Lietuvos jaunųjų matematikų mokykla, Matematikos ir informatikos metodikos katedra, VU Matematikos ir informatikos fakultetas, Naugarduko g. 4, LT-035 Vilnius. Mūsų mokyklos interneto svetainės adresas: LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLOS TARYBA 6

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas

11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius MATEMATIKA tempus Bendrasis ir išplėstinis kursas MATEMATIKA tempus Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius UDK 51(075.3) Ma615 Autoriai: VILIJA DABRIŠIENĖ, MILDA

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis? VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010 Praeita paskaita Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje Atkarpos Tiesės lgtis = mx+ b kur m krpties koeficientas, o b aukštis, kuriame tiesė kerta ašį Susikirtimo taško apskaičiavimui sulginamos

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

AIBĖS, FUNKCIJOS, LYGTYS

AIBĖS, FUNKCIJOS, LYGTYS AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd

Διαβάστε περισσότερα

1 iš 15 RIBOTO NAUDOJIMO

1 iš 15 RIBOTO NAUDOJIMO iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 013 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai)

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai) 0 m. ietuvos 6-ojo fizikos čempionato UŽDUOČŲ SPRENDMA 0 m. gruodžio 6 d. (Kiekvienas uždavinys vertinamas 0 taškų, visa galimų taškų suma 00). Pervyniojant transformatoriaus ritę buvo pastebėta, kad ritėje

Διαβάστε περισσότερα

1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos

1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos 1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos Vektoriu užrašymas MAPLE Vektorius MAPLE galime užrašyti daugeliu būdu. Juos grafiškai vaizduosime paketo Student[LinearAlgebra]

Διαβάστε περισσότερα

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 06 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 06 m. gegužės

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

KOMPIUTERINIS PROJEKTAVIMAS

KOMPIUTERINIS PROJEKTAVIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių

Διαβάστε περισσότερα

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ

2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S 018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 018 m. birželio 9 d. įvyko matematikos valstybinis brandos egzaminas.

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Kengūra Užduotys ir sprendimai. Senjoras

Kengūra Užduotys ir sprendimai. Senjoras Kengūra 2014 Užduotys ir sprendimai Senjoras KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 2014 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudarytojas Aivaras Novikas Redaktorius

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

ELEMENTARIOJI TEORIJA

ELEMENTARIOJI TEORIJA ELEMENTARIOJI TEORIJA Pirmosios kombinatorikos þinios siekia senàsias Rytø ðalis, kuriose mokëta suskaièiuoti këlinius bei derinius ir sudarinëti magiðkuosius kvadratus, ypaè populiarius viduramþiais.

Διαβάστε περισσότερα

ALFA ROMEO. Έτος κατασκευής

ALFA ROMEO. Έτος κατασκευής 145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

15 darbas ŠVIESOS DIFRAKCIJOS TYRIMAS

15 darbas ŠVIESOS DIFRAKCIJOS TYRIMAS 15 daras ŠVIESOS DIFRKCIJOS TYRIMS Užduotys 1. Išmatuoti plyšio plotį.. Išmatuoti atstumą tarp dviejų plyšių. 3. Nustatyti šviesos angos ilgį iš difrakcinio vaizdo pro apskritą angą. 4. Nustatyti kompaktinio

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

KENGŪRA SENJORAS

KENGŪRA SENJORAS KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS VU MATEMATIKOS IR INFORMATIKOS FAKULTETAS VU MATEMATIKOS IR INFORMATIKOS INSTITUTAS LIETUVOS MATEMATIKŲ DRAUGIJA KENGŪRA 2016. SENJORAS TARPTAUTINIO MATEMATIKOS

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos 0.1. BENDROSIOS SĄVOKOS 1 0.1. Bendrosios sąvokos 0.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε = 0, xt;ε) C n T), T [0,+ ), 0 < ε ε 0 ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas Gabija Maršalkaitė Motiejus Valiūnas Astronomijos pratybų užduočių komplektas Vilnius 2014 1 Įvadas 1.1 Astronomijos olimpiados Lietuvoje kylant moksleivių susidomėjimu astronomijos olimpiada buvo pastebėta,

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis m. birželio 1 d. Trukmė 2 val. (120 min.)

2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis m. birželio 1 d. Trukmė 2 val. (120 min.) NACIONALINIS EGZAMINŲ CENTRAS (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 2017 m. birželio 1 d. Trukmė 2 val.

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

TEORIJA. RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec., 2 srautas, magistrantūra, 1 semestras) PROGRAMA. su skaidžia savybe skaičiu

TEORIJA. RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec., 2 srautas, magistrantūra, 1 semestras) PROGRAMA. su skaidžia savybe skaičiu GRAFU TEORIJA RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec, 2 srautas, magistrantūra, 1 semestras) PROGRAMA 1 Pagrindinės sa vokos, pavyzdžiai Grafu veiksmai 2 Grafo parametru sa ryšiai 3 Jungiantysis

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius. Mokomoji knyga

Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius. Mokomoji knyga Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas Algirdas Antanavičius GEODEZIJOS PAGRINDAI Mokomoji knyga Akademija, 2007 Redaktorė: M. Židonienė turinys ĮVADAS... 1. Geodezijos

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos .1. BENDROSIOS SĄVOKOS 1.1. Bendrosios sąvokos.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε =, xt;ε) C n T), T [,+ ), < ε ε ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε,

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 Tikimybiu teorija nagrin eja atsitiktinius ivykius ir tu ivykiu tikimybes ivykio pasirodymo galimyb es mat, i²reik²t skai iumi p,

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS. FOTOMETRIJA. LĘŠIAI IR OPTINIAI PRIETAISAI. ŠVIESOS BANGINĖS SAVYBĖS

ŠVIESOS SKLIDIMAS. FOTOMETRIJA. LĘŠIAI IR OPTINIAI PRIETAISAI. ŠVIESOS BANGINĖS SAVYBĖS LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS ŠVIESOS SKLIDIMAS OTOMETRIJA LĘŠIAI IR OPTINIAI PRIETAISAI ŠVIESOS BANGINĖS SAVYBĖS LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO

Διαβάστε περισσότερα

5 klasė. - užduotys apie varniuką.

5 klasė. - užduotys apie varniuką. 5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

PNEUMATIKA - vožtuvai

PNEUMATIKA - vožtuvai Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms

Διαβάστε περισσότερα

EKONOMETRIJA 1 (Regresinė analizė)

EKONOMETRIJA 1 (Regresinė analizė) EKONOMETRIJA 1 Regresinė analizė Kontrolinis Sudarė M.Radavičius 004 05 15 Kai kurių užduočių sprendimai KOMENTARAS. Kai kuriems uždaviniams tik nusakytos sprendimų gairės, kai kurie iš jų suskaidyti į

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra Juozas Navickas FIZIKA I dalis MOKOMOJI KNYGA KAUNAS, ARDIVA 8 UDK 53(75.8) Na95 Juozas Navickas FIZIKA, I dalis

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2013 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2013 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVS RESPUBLIKS ŠVIETIM IR MKSL MINISTERIJ NINLINIS EGZMINŲ ENTRS 03 METŲ MTEMTIKS VLSTYBINI BRNS EGZMIN REZULTTŲ STTISTINĖ NLIZĖ 03 m. birželio 5 d. matematikos valstbinį brandos egzaminą leista laikti

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis

KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis Lietuvos Respublikos švietimo ir mokslo ministerija Kengūros konkurso organizavimo komitetas Matematikos ir informatikos institutas Leidykla TEV KENGŪRA 2010 Konkurso trukmė 50 minučiu Konkurso metu negalima

Διαβάστε περισσότερα

Statistinė termodinamika. Boltzmann o pasiskirstymas

Statistinė termodinamika. Boltzmann o pasiskirstymas Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

Atsitiktinių paklaidų įvertinimas

Atsitiktinių paklaidų įvertinimas 4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra

Διαβάστε περισσότερα

Algoritmai. Vytautas Kazakevičius

Algoritmai. Vytautas Kazakevičius Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

March 14, ( ) March 14, / 52

March 14, ( ) March 14, / 52 March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a

Διαβάστε περισσότερα