klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
|
|
- Λουκιανός Παπαδόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 2014 m. birželio 11 d. Trukmė 2 val. (120 min.) NURODYMAI Pasitikrinkite, ar nėra užduoties sąsiuvinyje tuščių lapų ar kito aiškiai matomo spausdinimo broko. Pastebėję praneškite vykdytojui. Užrašykite savo vardą ir pavardę tam skirtoje užduoties sąsiuvinio vietoje. Naudokitės rašymo priemonėmis, braižybos ir matavimo įrankiais bei skaičiuotuvu be tekstinės atminties. Koregavimo priemonėmis naudotis negalima. Skaitykite uždavinių sąlygas atidžiai. Rašykite sprendimus ar / ir atsakymus tvarkingai tam skirtose vietose mėlynai rašančiu rašikliu. Apveskite vieną teisingą atsakymą žyminčią raidę, jeigu atsakymą renkatės iš kelių variantų. PASTABA. Užduoties pabaigoje palikta vietos juodraščiui. Juodraščiai netikrinami ir nevertinami. Linkime sėkmės! VERTINIMAS Maksimalus 1 vertintojas 2 vertintojas taškų skaičius BENDRA TAŠKŲ SUMA 51 Galutinis įvertinimas Papildomi taškai 2 GALUTINĖ TAŠKŲ SUMA 53 Įvertinimas Vertinimo komisija: (parašas, vardas ir pavardė) (parašas, vardas ir pavardė) (parašas, vardas ir pavardė) Nacionalinis egzaminø centras, MAPUL
2 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL FORMULĖ S Standartinė skaičiaus išraiška. a 10 m ; čia 1 a < 10, m sveikasis skaičius. Kvadratinio trinario skaidymas daugikliais. ax 2 + bx + c = a(x x 1 )(x x 2 ). 2 b b 4ac Kvadratinės lygties sprendinių formulė. x 1, 2 =. 2a Daugiakampio kampų suma. 180 (n 2); čia n daugiakampio kampų skaičius. 2 R 2 R Skritulio išpjova. S, l ; čia S išpjovos plotas, centrinio kampo didumas laipsniais, l išpjovos lanko ilgis, R skritulio spindulio ilgis. Prizmės tūris. V SH; čia S prizmės pagrindo plotas, H prizmės aukštinės ilgis. Piramidės tūris. V 3 1 SH; čia S piramidės pagrindo plotas, H piramidės aukštinės ilgis. 1 Kūgio tūris. V SH ; čia S kūgio pagrindo plotas, H kūgio aukštinės ilgis. 3 Kūgio šoninio paviršiaus plotas. S Rl; čia R kūgio pagrindo spindulio ilgis, l kūgio sudaromosios ilgis. Ritinio tūris. V R 2 H; čia R ritinio pagrindo spindulio ilgis, H ritinio aukštinės ilgis. Ritinio šoninio paviršiaus plotas. S 2 RH; čia R ritinio pagrindo spindulio ilgis, H ritinio aukštinės ilgis. 4 3 Rutulio tūris. V R ; čia R rutulio spindulio ilgis. 3 Rutulio paviršiaus plotas. S 4 R ; čia R rutulio spindulio ilgis. 2 2
3 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 1. Apskaičiuokite: : % skaičiaus Ištraukite šaknį: Iš viso taškų 3 psl. (maks. 5 taškai) 3
4 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL 3. Skaičių 456,789 suapvalinkite šimtųjų tikslumu. 4. Kiek valandų turi trys savaitės? A 252 B 432 C 504 D Lygiagretainio ABCD kampas A yra 35 didumo. Apskaičiuokite kampo B didumą. 6. Akcijos metu pradinę dviračio kainą sumažinus 26 %, dviratis kainavo 407 Lt. Kokia pradinė dviračio kaina? A 301,18 Lt B 433 Lt C 512,82 Lt D 550 Lt 4 Iš viso taškų 4 psl. (maks. 4 taškai)
5 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 7. Triženklio skaičiaus skaitmenys yra iš eilės einantys skirtingi nelyginiai skaičiai, užrašyti mažėjimo tvarka. Užrašykite šį triženklį skaičių, jeigu žinoma, kad jis dalijasi iš Išspręskite nelygybę 5 2 x 13. A ( ; 9] B ( ; 4] C [ 9; ) D [ 4; ) 9. Apskaičiuokite trikampio ABC plotą. 10. Apskaičiuokite stačiakampio gretasienio tūrį. Iš viso taškų 5 psl. (maks. 4 taškai) 5
6 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL 11. Suprastinę reiškinį 2 x 16 x 4 gausime: A 1 x 4 B 1 x 4 C x 4 D x Paveiksle pavaizduotos dvi skritulio, kurio spindulio ilgis lygus 5, išpjovos. Mažesniosios išpjovos kampas yra 72 didumo. 5 O 72 o Parodykite, kad pilkosios skritulio išpjovos kampas yra 288 didumo Apskaičiuokite pilkosios skritulio išpjovos plotą. Atsakymą pateikite su π. Iš viso taškų 6 psl. (maks. 3 taškai) 6
7 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 13. Atkarpos AD ir CB kertasi taške O. Jų galai sujungti atkarpomis AB ir CD. Kampai BAD ir BCD yra lygūs. Įrodykite, kad trikampiai AOB ir COD yra panašūs. Įrodymas (2 taškai) 14. Kvadrato ABCD kraštinės ilgis lygus 5. Kraštinėje BA taip pažymėtas taškas L, kad BL 3, kraštinėje BC taškai M ir K taip pažymėti, kad BK 4, CM 3, ir kraštinėje CD taip pažymėtas taškas N, kad CN 4. Atkarpos LK ir MN susikerta taške O. Parodykite, kad kampas MOK yra status. (2 taškai) Iš viso taškų 7 psl. (maks. 4 taškai) 7
8 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL KINO TEATRAS 15. Mieste yra kino teatras. Jame yra kelios kino salės, kavinė. Šis teatras yra labai mėgstamas, tad jame apsilanko daugybė žiūrovų Teatro administracija nusprendė vieną savaitę registruoti žiūrovų lankomumą. Žemiau esančioje lentelėje pateikti tos savaitės duomenys. Žinoma, kad per šią savaitę kino teatre apsilankė žiūrovų. Pasinaudoję šiais duomenimis, apskaičiuokite, kiek žiūrovų apsilankė šeštadienį (VI). Savaitės diena I II III IV V VI VII Žiūrovų skaičius (2 taškai) Apskaičiuokite, kiek vidutiniškai žiūrovų per dieną apsilankė per pirmąsias penkias savaitės dienas. (2 taškai) Iš viso taškų 8 psl. (maks. 4 taškai) 8
9 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS Pirmoje kino salėje yra 24 eilės po 25 kėdes kiekvienoje eilėje. Kiek kėdžių yra pirmoje salėje? Antroje kino salėje yra dviem eilėmis mažiau, o kėdžių kiekvienoje eilėje 5 daugiau nei pirmoje salėje. Keliais procentais kėdžių skaičius antroje salėje didesnis nei pirmoje salėje? (3 taškai) Iš viso taškų 9 psl. (maks. 4 taškai) 9
10 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL 17. Trys dešimtokų klasės (10A, 10B ir 10C), prieš apsilankydamos kino teatre, susitarė sugalvoti įvairių klausimų, susijusių su šiuo kino teatru, ir juos pateikti per tarpklasines matematikos varžytuves. Prie kino teatro kasų pateikiama tokia informacija: BILIETØ KAINOS Pirmadienis penktadienis Šeštadienis sekmadienis IKI 16 VALANDOS 12 Lt 16 Lt NUO 16 VALANDOS 16 Lt 20 Lt VAIKAMS IKI 10 METŲ VAIKIŠKAS BILIETAS 8 Lt. MOKINIŲ GRUPEI, DIDESNEI NEI 12 ASMENŲ, KIEKVIENAM BILIETUI TAIKOMA 20 % NUOLAIDA A klasė, kurioje mokosi 30 mokinių, susitarė pažiūrėti kino filmą, kuris bus rodomas ketvirtadienį val. Kiek kainuos bilietai visai klasei, jei visiems mokiniams daugiau kaip 15 metų? (2 taškai) A klasės mokinė Gabija šeštadienį 12 valandą naują kino filmą žiūrės drauge su savo tėčiu, mama bei 5 metų broliuku Luku. Kiek kainuos šiai šeimai bilietai į kino seansą? 10 Iš viso taškų 10 psl. (maks. 3 taškai)
11 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS A klasės mokiniams labai patiko apsilankymas kino teatre, tad jie nusprendė dar kartą nueiti į kiną. Kino teatre filmą Laimės ratas rodo pirmadieniais val. ir antradieniais val. Dalis 10A klasės mokinių į kiną nuėjo pirmadienį, o visi likusieji antradienį. Žinoma, kad antradienį kino filme buvo daugiau kaip 18 mokinių. Pažymėję x antradienį apsilankiusių mokinių skaičių, x 18, o 30 x pirmadienį apsilankiusių, apskaičiuokite, kiek mokinių apsilankė kino teatre antradienį, jei už bilietus visa 10A klasė sumokėjo 320 Lt? (4 taškai) B klasės mokiniai užėjo į kino teatre esančią kavinę B klasės mokinys Jonas nori nusipirkti bandelę ir stiklinę sulčių. Kiek skirtingų pasirinkimo variantų jis turi, jei kavinėje siūloma įsigyti 3 skirtingų rūšių bandelių: su varške, su džemu, su šokoladu bei apelsinų arba persikų sulčių? Iš viso taškų 11 psl. (maks. 5 taškai) 11
12 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL Jei Jonas su draugais pirktų 2 bandeles su džemu ir 3 bandeles su šokoladu, tai sumokėtų 10,80 Lt, o jei pirktų 3 bandeles su džemu ir dvi su šokoladu, tai sumokėtų 10,20 Lt. Kiek kainuoja viena bandelė su šokoladu? (3 taškai) 19. Jonas virš vienos salės durų pamatė pakabintą girliandą. Namuose sąsiuvinio lape jis nubrėžė koordinačių ašis ir pavaizdavo duris stačiakampiu DCBE, pasirinkęs tokį mastelį, kad 1 langelio kraštinė atitinka 0,5 m. Virš stačiakampio DCBE Jonas nubraižė parabolės dalį CAB, vaizduojančią virš durų kabančią girliandą. Su klasės draugais jie sugalvojo klausimus matematikos varžytuvėms. C y A 1 B D O 1 E x Apskaičiuokite durų plotą. Atsakymą užrašykite kvadratiniais metrais. (2 taškai) Iš viso taškų 12 psl. (maks. 5 taškai) 12
13 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS Brėžinyje pavaizduota parabolė užrašoma lygtimi y ax 2 9. Žinodami, kad šiai parabolei priklauso taškas B(2; 5), apskaičiuokite koeficiento a reikšmę. (2 taškai) Apskaičiuokite taškų, kuriuose pavaizduota parabolė kirs Ox ašį, koordinates. (3 taškai) Pateiktame paveiksle užbaikite brėžti parabolę CAB iki Ox ašies. y A C B 1 D O 1 E x Iš viso taškų 13 psl. (maks. 6 taškai) 13
14 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL C klasės mokinė Ieva kino teatro fojė pamatė kabantį kūgio formos šviestuvą. Popieriaus lape ji nusibraižė kūgį be dugno, kuris yra matyto šviestuvo sumažintas vaizdas, tačiau vienetus paliko tikroviškus aukštis 21 cm, o spindulys 20 cm. Su draugais sugalvojo klausimus matematikos varžytuvėms Apskaičiuokite šio kūgio sudaromosios AB ilgį Apskaičiuokite pavaizduoto kūgio šoninio paviršiaus plotą. Atsakymą pateikite su π Kuris teiginys yra teisingas? A C AO tg BAO AB B BO tg BAO AB D tg BAO tg BAO AO BO BO AO Iš viso taškų 14 psl. (maks. 3 taškai) 14
15 141MAPUL 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS Kuris teiginys yra teisingas? A C AOB 2 BAO B BAC ABC BAC ACB ABC D BAO ABO Iš viso taškų 15 psl. (maks. 1 taškas) JUODRAÐTIS 15
16 2014 M. MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMØ PATIKRINIMO UÞDUOTIS 141MAPUL 16 Iš viso taškų 3 psl. (maks. 5 taškai) Iš viso taškų 4 psl. (maks. 4 taškai) Iš viso taškų 5 psl. (maks. 4 taškai) Iš viso taškų 6 psl. (maks. 3 taškai) Iš viso taškų 7 psl. (maks. 4 taškai) Iš viso taškų 8 psl. (maks. 4 taškai) Iš viso taškų 9 psl. (maks. 4 taškai) Iš viso taškų 10 psl. (maks. 3 taškai) Iš viso taškų 11 psl. (maks. 5 taškai) Iš viso taškų 12 psl. (maks. 5 taškai) Iš viso taškų 13 psl. (maks. 6 taškai) Iš viso taškų 14 psl. (maks. 3 taškai) Iš viso taškų 15 psl. (maks. 1 taškas) BENDRA TAŠKŲ SUMA (maks. 51 taškas)
klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 013 m. pagrindinio ugdymo pasiekimų patikrinimo
klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 06 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 06 m. gegužės
2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis m. birželio 1 d. Trukmė 2 val. (120 min.)
NACIONALINIS EGZAMINŲ CENTRAS (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2017 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 2017 m. birželio 1 d. Trukmė 2 val.
klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2012 m. pagrindinio ugdymo pasiekimų patikrinimo
I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI
008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis
Matematika 1 4 dalis
Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios
2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija
008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd
LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA
LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ
LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį
2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai
M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO
X galioja nelygyb f ( x1) f ( x2)
Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f
Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas
Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo
II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas
2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis
PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ
N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S 018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 018 m. birželio 9 d. įvyko matematikos valstybinis brandos egzaminas.
1 iš 15 RIBOTO NAUDOJIMO
iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos
5 klasė. - užduotys apie varniuką.
5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides
Matematika 1 3 dalis
Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2013 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ
LIETUVS RESPUBLIKS ŠVIETIM IR MKSL MINISTERIJ NINLINIS EGZMINŲ ENTRS 03 METŲ MTEMTIKS VLSTYBINI BRNS EGZMIN REZULTTŲ STTISTINĖ NLIZĖ 03 m. birželio 5 d. matematikos valstbinį brandos egzaminą leista laikti
NACIONALINIS EGZAMINŲ CENTRAS. Pasiruošk pasiekimų patikrinimui MATEMATIKA
NACIONALINIS EGZAMINŲ CENTRAS Pasiruošk pasiekimų patikrinimui MATEMATIKA Vilnius, 01 UDK 51(076.1) E1 8 Leidinyje pateikiami pagrindinės mokyklos 000 011 m. Matematikos baigiamojo egzamino ir pasiekimų
I.4. Laisvasis kūnų kritimas
I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės
Elektronų ir skylučių statistika puslaidininkiuose
lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt
Dviejų kintamųjų funkcijos dalinės išvestinės
Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento
KADETAS (VII ir VIII klasės)
ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip
MATEMATIKA PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO (PUPP) IR BRANDOS EGZAMINŲ (BE) UŽDUOČIŲ RENGĖJŲ MOKYMO PRAKTINĖ METODINĖ MEDŽIAGA
MATEMATIKA NACIONALINIS EGZAMINŲ CENTRAS Nacionalinis egzaminų centras Projektas Pagrindinio ugdymo pasiekimų patikrinimo ir brandos egzaminų sistemos tobulinimas (SFMIS VP1-21-ŠMM-01-V-01-002) PAGRINDINIO
11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas
11 klasei Pirmas skyrius MATEMATIKA tempus Bendrasis ir išplėstinis kursas MATEMATIKA tempus Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius UDK 51(075.3) Ma615 Autoriai: VILIJA DABRIŠIENĖ, MILDA
FDMGEO4: Antros eilės kreivės I
FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių
NACIONALINIS EGZAMINŲ CENTRAS
2017 NACIONALINIS EGZAMINŲ CENTRAS Vardas, Pavardė Klasė Mokinio kodas 8 MATEMATIKA 8 KLASĖ 1 Hansas Kristianas Andersenas (1805 1875 m.) - garsiausias danų rašytojas. Visas pasaulis žino jo sukurtas pasakas
2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo
MAŽYLIS (III ir IV klasės)
2001m. konkurso užduočių sąlygos MŽYLIS (III ir IV klasės) KLUSIMI PO 3 TŠKUS M1. Keturiuose paveikslėliuose pavaizduoti skaičiai nuo 1 iki 4 kartu su savo veidrodiniais atvaizdais. Koks bus penktas paveikslėlis?
Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1
Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa
Matematika 791. I. Bendrosios nuostatos. II. Tikslas, uždaviniai, struktūra. 5 6 klasės. 7 8 klasės klasės
I. Bendrosios nuostatos 1. Ugdymo srities paskirtis Matematika yra reikšminga pasaulio mokslo, technologijų ir žmogaus kultūros dalis. Ji yra svarbus abstrakčiojo dedukcinio ir indukcinio, empirinio-patyriminio,
KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis
Lietuvos Respublikos švietimo ir mokslo ministerija Kengūros konkurso organizavimo komitetas Matematikos ir informatikos institutas Leidykla TEV KENGŪRA 2010 Konkurso trukmė 50 minučiu Konkurso metu negalima
1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad
45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.
LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe
Mažylis (III ir IV klasės) 19 SA LYGOS. MAŽYLIS (III ir IV klasės)
Mažylis (III ir IV klasės) 19 SA LYGOS MAŽYLIS (III ir IV klasės) KLAUSIMAI PO 3 TAŠKUS M1. Peteliškė nutūpė ant vieno iš teisingos lygybės skaičiu. Kokį skaičiu dengia peteliškė? A 250 B 400 C 500 D 910
4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu
IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu
Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS
Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................
2007 m. rudens semestro matematikos istorijos kurso egzamino klausimai. matematika. paprastajai trupmenai išreikšti egiptietiškomis. 6. I.
2007 m rudens semestro matematikos istorijos kurso egzamino klausimai 1 tema Skaičiai ir skaičiavimai 1 Iš kokiu šaltiniu mes žinome apie egiptiečiu matematika 2 Kaip trupmenas rašė senovės egiptiečiai
ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)
ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...
MOKINIO GIMIMO DATA GIMNAZIJOS TREČIOS KLASĖS MATEMATIKOS IR GAMTOS DALYKŲ EGZAMINAS 2005 BALANDIS
MOKINIO KODAS ĮRAŠO MOKINYS MOKINIO GIMIMO DATA metai mėnuo diena PAPILDO PRIEŽIŪROS TARNYBA vieta lipdukui su kodu disleksija Instrukcija moksleiviui GIMNAZIJOS TREČIOS KLASĖS MATEMATIKOS IR GAMTOS DALYKŲ
LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S
LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S DĖL LĖTINIO VIRUSINIO C HEPATITO DIAGNOSTIKOS IR AMBULATORINIO GYDYMO KOMPENSUOJAMAISIAIS VAISTAIS TVARKOS APRAŠO TVIRTINIMO 2012 m. spalio
Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =
7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι
MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 004 m. gegužės 7 d. įsakymu Nr. ISAK-75 MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS
AIBĖS, FUNKCIJOS, LYGTYS
AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas
Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė.
Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra 2007 m. brandos egzaminų užduočių analizė Matematika Vilnius 2008 Išleista Europos Socialinio fondo ir Lietuvos Respublikos
Specialieji analizės skyriai
Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo
Laboratorinis darbas Nr. 2
M A T E M A T I N Ė S T A T I S T I K A Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2005 m. spalio 23 d. Reziumė Antras laboratorinis darbas skirtas išmokti generuoti tikimybinių skirstinių
MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS
PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS
1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3
Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................
3 modulis. Funkcijos sąvoka. Laipsninė, rodiklinė ir logaritminė funkcija
P R O J E K T A S VP--ŠMM-0-V-0-00 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS -9 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS, REIKALINGOS
PNEUMATIKA - vožtuvai
Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms
Kengūra Užduotys ir sprendimai. Senjoras
Kengūra 2014 Užduotys ir sprendimai Senjoras KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 2014 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudarytojas Aivaras Novikas Redaktorius
LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANIKA
LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS MECHANIKA SVEIKINAME MOKSLEIVIUS, ĮSTOJUSIUS Į OTONO MOKYKLĄ! Šiaulių universiteto jaunųjų fizikų mokykla otonas, siekianti padėti
Specialieji analizės skyriai
Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė
ELEMENTARIOJI TEORIJA
ELEMENTARIOJI TEORIJA Pirmosios kombinatorikos þinios siekia senàsias Rytø ðalis, kuriose mokëta suskaièiuoti këlinius bei derinius ir sudarinëti magiðkuosius kvadratus, ypaè populiarius viduramþiais.
06 Geometrin e optika 1
06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco
VERTINIMO INSTRUKCIJA 2008 m. valstybinis brandos egzaminas Pakartotinë sesija
PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 008 m. birželio 7 d. įsakymu (.3.)-V-37 VERTINIM INSTRUKIJA 008 m. valstybinis brandos egzaminas I dalis Kiekvienas I dalies klausimas vertinamas tašku.
KengÛra BiÈiulis, Kadetas V VIII. Tarptautinio matematikos. užduotys ir sprendimai. Autoriai-sudarytojai
- Kenguros konkurso organizavimo komitetas VU Matematikos ir informatikos institutas KengÛra 2012 BiÈiulis, Kadetas V VIII klasës Tarptautinio matematikos k o n k u r s o užduotys ir sprendimai Autoriai-sudarytojai
KOMPIUTERINIS PROJEKTAVIMAS
LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių
1 TIES ES IR PLOK TUMOS
G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu
Paprastosios DIFERENCIALINĖS LYGTYS
Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,
Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis
Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba
Matematikos brandos egzamino mokinių pasiekimų lygių aprašas su pavyzdžiais
Matematikos brandos egzamino mokinių pasiekimų lygių aprašas su pavyzdžiais Patenkinamas pasiekimų lygis Paprastose standartinėse situacijose atpažįsta ir teisingai vartoja (reprodukuodamas) pagrindines
Turininga informatikos mokymosi medžiaga pradinukams ir vyresniems
Turininga informatikos mokymosi medžiaga pradinukams ir vyresniems Parašė Tim Bell, Ian H. Witten ir Mike Fellows Darbui klasėje pritaikė Robyn Adams ir Jane McKenzie Iliustravo Matt Powell 2015 m. atnaujino
KENGŪRA SENJORAS
KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS VU MATEMATIKOS IR INFORMATIKOS FAKULTETAS VU MATEMATIKOS IR INFORMATIKOS INSTITUTAS LIETUVOS MATEMATIKŲ DRAUGIJA KENGŪRA 2016. SENJORAS TARPTAUTINIO MATEMATIKOS
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)
Riebalų rūgščių biosintezė
Riebalų rūgščių biosintezė Riebalų rūgščių (RR) biosintezė Kepenys, pieno liaukos, riebalinis audinys pagrindiniai organai, kuriuose vyksta RR sintezė RR grandinė ilginama jungiant 2C atomus turinčius
Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius. Mokomoji knyga
Lietuvos žemės ūkio universitetas Vandens ūkio ir žemėtvarkos fakultetas Algirdas Antanavičius GEODEZIJOS PAGRINDAI Mokomoji knyga Akademija, 2007 Redaktorė: M. Židonienė turinys ĮVADAS... 1. Geodezijos
IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,
41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς
Paprastosios DIFERENCIALINĖS LYGTYS
Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2005 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ
LIETUVOS RESPULIKOS ŠVIETIMO IR MOKSLO MINISTERIJ NIONLINIS EGZMINŲ ENTRS 25 M. HEMIJOS VLSTYINIO RNOS EGZMINO REZULTTŲ STTISTINĖ NLIZĖ Šiemet jau penktą kartą buvo vykdomas chemijos valstybinis brandos
LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius GEODEZIJOS PAGRINDAI
LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Algirdas Antanavičius GEODEZIJOS PAGRINDAI metodiniai PATARIMAI kaunas, ARDIVA 2008 UDK 528(076) An-136 Algirdas Antanavičius GEODEZIJOS
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
UAB Aveva planuojamos ūkinės veiklos metu į aplinkos orą išmetamų teršalų sklaidos modeliavimas
Objektas: UAB Aveva Kupiškio g. 54, Utena UAB Aveva planuojamos ūkinės veiklos metu į aplinkos orą išmetamų teršalų sklaidos modeliavimas 2017 m. 2 Skaičiavimo metodika, naudota kompiuterinė programinė
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Matematinės analizės konspektai
Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,
2008 m. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinë sesija. II dalis
008 m. HEMIJS VALSTYBINI BRANDS EGZAMIN UŽDUTIES VERTINIM INSTRUKIJA I dalis Kiekvienas I dalies klausimas vertinamas tašku. Klausimo Nr. 3 4 5 6 7 8 9 0 Atsakymas D A B A D B A Klausimo Nr. 3 4 5 6 7
Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010
Praeita paskaita Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje Atkarpos Tiesės lgtis = mx+ b kur m krpties koeficientas, o b aukštis, kuriame tiesė kerta ašį Susikirtimo taško apskaičiavimui sulginamos
1.4. Rungės ir Kuto metodas
.4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio
KB ALSIŲ PAUKŠTYNAS IŠSISKIRIANČIŲ APLINKOS ORO TERŠALŲ IR KVAPO SKLAIDOS MODELIAVIMAS
Objektas: KB Alsių paukštynas Žučių k., Žagarės sen., Joniškio r. KB ALSIŲ PAUKŠTYNAS IŠSISKIRIANČIŲ APLINKOS ORO TERŠALŲ IR KVAPO SKLAIDOS MODELIAVIMAS 2018-05-23 2 Aplinkos oro teršalų išsisklaidymo
Algoritmai. Vytautas Kazakevičius
Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Įžanginių paskaitų medžiaga iš knygos
MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio
Diskrečioji matematika
VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės
Atsitiktinių paklaidų įvertinimas
4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra
EKONOMETRIJA 1 (Regresinė analizė)
EKONOMETRIJA 1 Regresinė analizė Kontrolinis Sudarė M.Radavičius 004 05 15 Kai kurių užduočių sprendimai KOMENTARAS. Kai kuriems uždaviniams tik nusakytos sprendimų gairės, kai kurie iš jų suskaidyti į
2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS
.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame
Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka
WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2
DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 23 d. Santrauka Antras laboratorinis darbas skirtas išmokti sudarinėti daugialypės
FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga
VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R