R = Qarqet magnetike. INS F = Fm. m = m 0 l. l =

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "R = Qarqet magnetike. INS F = Fm. m = m 0 l. l ="

Transcript

1 E T F UNIVERSIETI I PRISHTINËS F I E K QARQET ELEKTRIKE Qarqet magnetike Qarku magnetik I thjeshtë INS F = Fm m = m m r l Permeabililiteti i materialit N fluksi magnetik në berthamë të berthamës l = m S Trupi i torusit - berthama Rm L m = nga materiali feromagnetik m S l rezistenca magnetike e berthamës IN F = Rm pecjellshmëria magnetike e berthamës IN =Q I R = m Q rrjedha Ligji I Ohmit për Qarkun magnetik F 1

2 E F Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKEO Për zgjidhjen e qarkut magnetik duhet të jenë të ditura dimenzionet e qarkut, numri i dredhave, lakorja e magnetizimit. Nese është dhënë fluksi F, atëherë së pari përllogaritet indukcioni B në berthamë. Nga lakorja e magnetizimit caktohet intenziteti I fushës H. Mbi bazë të intenzitetit të fushës H dhe gjatësisë mesatare të vijes së ushës l caktohet vlera e eksitimit Q (rrjedha). Rryma I përcaktohet nga : I =Q N 2

3 F = F 1 S B1 Të ditura N l I =? B H H 1 F 1 Q = IN = H l S 1 B = 1 1 H l I = N 3

4 Nëse është e ditur rryma, e caktohet fluksi, së pari caktohet eksitimi Q (rrjedha) si produkt I rrymes I e numrit të dredhave N. Intenziteti I fushës H i barabart me eksitimin Q pjestuar me gjatësinë e vijes së fushës l. Nga karakteristika e magnetizimit caktohet se indukcioni përkatës B. Fluksi F është prodhimi I indukcionit dhe prerjes së berthamës S. Sipas procedures së njejtë mund të caktohet cilado nga vlerat e fluksit apo eksitimit. 4

5 I = I 1 S N l F =? Të ditura B B1 H H 1 NI I N = H l H 1 F = 1 = B1S l 5

6 Qarku magnetik me hapësiren ajërore Qarku magnetik me berthamen me prerje të pandryshueshme I N I S S = konst. N l l Fluksi magnetik në berthamë Ligji I rrjedhes Fluksi magnetik në B S = BS Hl + H l = IN = Q hapësiren ajrore 6

7 Qarku magnetik me hapësiren ajërore - i dhënë fluksi magnetik, dhe lypset caktuar eksitimi Q : indukcioni në berthamë caktohet se na osnovu toka i presjeka jezgre, nga lakorja e magnetizimit lexohet intenziteti përkates, percaktohet eksitimi I nevojshëm për berthamen, eksitimi i nevojshëm për hapesiren ajrore fitohet mbi bazë osnovu intenziteti I fushes në hapesiren ajrore, eksitimi i tërë Q është shuma e eksitimit per hekur dhe hapesiren ajrore. 7

8 S l B B S l N Të ditura F H H I =? B F= Hl + H l = IN = Q S B F= B Hl + H l H = I = S m N 8

9 Qarku magnetik me hapsiren ajrore- është dhënë rryma eksituese dhe lypet fluksi magnetik: Mund të zgjidhet grafikisht nëse berthama është me sipërfaqe të prerjes konstante: shtrohet ekuacioni I rrjedhëse magnetike për vijen mesatare, nga kushti se fluksi nëpër berthamë është I njejti edhe në hapjen ajrore fitohet relacioni që paraqet drejtimin në diagramin B-H, prerja e këtij drejtimi dhe lakores së magnetiziimit definon piken e punës së berthames, perkatësisht vleren e indukcionit dhe fushës në berthamë, fluksi fitohet me shumzimin e noženjem indukcionit të fituar dhe prerjes së berthames. 9

10 S INS m B l Sl B Ekuacioni I drejtëzes S Të ditura l N Nuk dihet se sa është H! I H IN H l F =? Hl + H l = IN S lm INS m Vlenë për cilindo indukcion B = -H + Në hapësiren ajrore! Sl Sl B BS H = = m m B S = BS F = BS S 1

11 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE Qarku magnetik me berthamen me prerje të ndryshueshme S 2 Q = IN = H l + 2H l l 2 + H l + H l + H l I S l4 1 S Perzgjedhim S 4 F = F l 1 S F 1 B = N 2 S 2 S 2 l 3 B FFFF = 3 S l S F l 2 B = S S = S B = B

12 B B 3 B IN = H l + 2H l H (l + l )+ H l B 2 B H H H 2 1 H 3 m me ecurinë e njejtë është percaktuar një pikë për fluksin magnetik të perzgjedhur (ose të dhënë) 12

13 Është dhënë rryma dhe përcaktohet fluksi për rrymen e dhënë- nuk mund të përllogaritet direkt por as të caktohet grafikisht. Pika e caktuar e punës F Për fluksin e përzgjedhur [Wb] Karakteristika e qarkut magnetik Ecurija e perseritur per vlera tjera të fluksit rezulton me vlera tjera Q [A] 13

14 Prerja e berthames nuk është e thënë të jetë e njejta Vetitë e materialit të berthames j mundet gjithashtu të jenë të ndryshme për pjesë të ndryshme të qarkut magnetik: mundet vetëm të përcaktohet eksitimi I nevojshëm Q për fluksin magnetik të dhënë, procedura perseritet për vlera të ndryshme të fluksit, rezultatet paraqiten grafikisht në karakteristiken veberamperike të qarkut magnetik, mbi bazë të karakteristikës së qarkut magnetik percaktohët fluksi për eksitimin e dhënë Q. 14

15 F Drejtimi I magnetizimit të hapsires ajrore [Wb] Q Q Fe Hapsira ajrore e linearizon Karakteristiken e qarkut magnetik Q [A] 15

16 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE F [Wb] Q Q karakteristika për Fe hapsiren ajrore l Karakteristika për hapsiren ajrore 2l 2Q₀ Q Fe Tensioni magnetik për hekur nuk ndryshon tensioni magnetik për hapsiren ajrore rritet Q [A] Ndikimi I hapsires ajrore në karakteristiken e qarkut magnetik 16

17 Percaktimi i karakteristikes së qarkut magnetik berthamë e të cilit nuk ka gjithkundi prerje të njejtë është I njejtë për qarkun magnetik me hapsirë ajrore ose pa atë. Nëse hapsira ajrore ekziston, ajo është pjesa me rezistencen magnetike më të madhe në tërë qarkun. Rezistenca magnetike e hapësires ajrore është I madh dhe konstant ndikon dukshem në karakteristiken e qarkut Për vlera të vogla të fluksit magnetik karakteristika është praktikisht lineare eksitimi I nevojshëm shpenzohet gadi vetëm në magnetizimin e hapësires ajrore 17

18 Tangjenta në karakteristiken e qarkut magnetik në origjinë praktikisht karakteristika e magnetizimit të hapësires ajrore. Ky drejtim quhet drejtimi I hapësires ajrore. Nëse hapësira ndryshon, pjerrtësia e drejtimit të hapësires ajrore ndryshon. Hapësira ajrore më e madhe ndryshon drejtimin në të djathtë, e ajo më e vogël në të majtë Pjesa e eksitimit në hekur praktikisht gjatë kësaj nuk ndryshon 18

19 Qarqet magnetike të përbëra F S 3 F 1 3 a l 3 S 1 F l 2 5 I S 5 l N 2 S S l 2 l 1 b l 4 S 4 Shembëll i qarkut magnetik të përbërë 19

20 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE F = F +F I F S 3 F 1 3 a l3 S 1 F l 2 5 Ose në përgjithësi: S l 5 n 2 Σ F = Ligji I parë I Kirkofit kl për qarkun magnetik 1b k =1 m Ose në përgjithësi: H l + H l + H l + H l + H l = IN n H = Q N S S l 2 Σ k l k Σ i Ligji I dytë I Kirkofit për qarkun magnetik k =1 i=1 Gjatë zgjidhjes së qarkut magnetik duhet patur parasysh jolineariteti per pjeset e veqanta të qarkut. 2 l4 S 4

21 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE F S F a l3 S 1 F l I S 5 F = F +F N l 2 S 2 S l l 1 b l H l + H l = IN = Q H l + H l + H l + H l + H l = Vab =QQQQ - H 1l 1 = H 2 l 2 = H 3 l 3 + H 5 l 5 + H l + H 4 l 4 Tensioni magnetik mes nyjave a e b Neuk dihet intenziteti I fushes për segmentet e veqanta! Karakteristikat e pjesëve të veqanta të qarkut duhet llogaritet pikë për pikë. S 4 21

22 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE F S 3 F 1 3 a l3 S 1 F l 2 5 I S 5 N l S S l F = f (V ) F 2 l 1 [Wb] b l 4 H l +V 1 1 ab S 4 F V F +FFFF = (V ) 2 3 f 23 V ab 1 ab () f= Q F F 1 F (V ) 2 = f 2 ab F (V ) 3 = f 3 ab Q V [A] 22

23 E F O Elektrotehnički fakultet Osijek - Stručni studij QARQE ELEKTRIKE Përcaktimi i F2: F S 3 F 1 3 a l3 S 1 F l 2 5 përzgjedhet B2 I S 5 N l 2 prej B=f(H) përcaktohet H2 S S l 2 l 1 b l 4 Vab ====2 H l S 2 4 F = B S Ecurija perseritet per vlera të shumta të indukcionit B 2 ; percaktohet lakorja F = f (V )! 2 ab 23

24 E F Elektrotehnički fakultet Osijek - Stručni studij QARQE ELEKTRIKEO Percaktimi I F3: S 1 F S 3 F 1 3 a l B I S 5 B H = V = H l 2 S S l Caktohet N l m 2 F l 1 b l F = B S 4 F = F B = F3 nga B = f ( H ) caktohet H V = H l S 3 F = F B F 4 = nga B = f ( H ) caktoheth V = H l S 4 S 4 l S 5 = V +V +V +V Vab Per vlera të shumta të indukcionit B caktohet F = f (V ) 3 ab 24 F = F B = F5 nga B = f ( H ) caktohet H V = H l

25 F S 3 F 1 3 a l 3 Përllogaritja e F1: S 1 F l 2 5 I S 5 N l 2 Grafikisht (numerikisht ) caktohet lakorja S2 S l l F (V ) = F +F 1 b l4 1 ab Caktohet F B FFFF = ngab= f ( H ) caktoheth V = H l S 1 Caktohet Q = IN = VAb + V 1 Ecuria perseritet per vlera te ndryshme 1! Caktohet lakorja F (V ) 1 1 Caktohet lakorja F (QQQQ ) F1 Lexohet fluksi magnetikf per eksitimin e dhënëq! 1 S 4 25

26 Qarku magnetik me magnetin permanent e magnetizojmë berthamen deri në Hm dhe e largojmë eksitimin Berthama nga materijali feromagnetik B B r Në berthamë ekziston indukcioni remanent I H H m Magnetizimi I magnetit unazor 26

27 Gjatësia e vijes magnetike B në berthamë Fluksi magnetik remanent F në berthamë r Prehët magneti dhe fitohet hapësira ajrore l B B H - H H Ligji i m rrjedhës magnetike v v l Indukcioni zvoglohët Rrjedha Θ=A Hdl = Q (nuk ka eksitim) l B < B r H l ++ l H = H = -H l 27

28 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE Fluksi magnetik në hapsiren ajrore F = F B S = BS B = S Fluksi magnetik në berthamë BS Nga përpara B BS H = l = 1 l S H = -H = - B m m l m l S H = -k B R konstanta Ekuacioni I drejtëzes në diagramin B-H S kr = 1 l S koeficient i demagnetizimit m l S 28

29 Rm më e madhe Pika punuese Rm më e vogël B 1 l S B kr = H r µ l S = - k R B l S = B m S l T Rezistenca magnetike e hapsirës ajrore Rm - H H c H në magnet Herësi i siperfaqes dhe gjatësisë së magnetit 29

30 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE Volumi i magnetit? Paraprakisht nga ligji I rrjedhës H = H B S = BS Volumi i magnetit B l 2 = B =µ B H l m l Volumi I hapsirës ajrore l Sl S l l B m = H 2 V l B = m B H V S B = B 2 V B S V = m B H volumi minimal i magnetit fitohet nëse prodhimi BH është maksimal 3

31 E F O Fakulteti i inxhinierisë elektrike dhe kompjuterike QARQE ELEKTRIKE B r B BH T Pika optimale e punes B (BH ) opt )max - H H c Percaktimi I pikes optimale të punës 31

32 Materialet magnetike cilësore janë stë shtrenjtë dhe përpunohen tepër vështirë. Shpesh hapësira ajrore formësohet me shtesa nga hekuri I butë- rezistenca magnetike në përllogaritje mundet edhe të apstrahohet, ngase nuk bëhet fjalë për indukcione të larta. Hapësira ajrore formësohet ashtu që indukcioni është më I madh ose më I vogël se indukcioni në magnet. 32

33 Optimizimi I magnetit - duhet arritur indukcioni I nëvojshëm në hapësiren ajrore, në kushtet e volumit minimal të magnetit. Volumin minimal të magnetit e cakton pika e punës për të cilen prodhimi BH është maksimal. Volumi minimal i magnetit caktohet mbi bazë të: prodhimit BH, indukcionit të caktuar në hapësiren ajrore dhe volumit të hapësires ajrore. 33

34 Materialet magnetike bashkohore për magnetet permanent kanë indukcionin remanent relativisht të ulët, por koercitivitet të lartë. Prodhimi BH është i madh. Për magnetizimin e tyre janë të nëvojshme fusha të intenzitetit të lartë vështirë demagnetizohen. 34

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar

Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet. rezistenca. Georg Simon Ohm ka konstatuar Rezistenca elektrike Ligji I Ohmit Gjatë rrjedhës së rrymës nëpër përcjellës paraqitet rezistenca. Georg Simon Ohm ka konstatuar varësinë e ndryshimit të potencialit U në skajët e përcjellësit metalik

Διαβάστε περισσότερα

Materialet në fushën magnetike

Materialet në fushën magnetike Materialet në fushën magnetike Llojet e materialeve magnetike Elektronet gjatë sjelljes të tyre rreth bërthamës krijojnë taq. momentin magnetik orbital. Vet elektronet kanë momentin magnetik vetiak - spin.

Διαβάστε περισσότερα

Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët

Fluksi i vektorit të intenzitetit të fushës elektrike v. intenzitetin të barabartë me sipërfaqen të cilën e mberthejnë faktorët Ligji I Gauss-it Fluksi i ektorit të intenzitetit të fushës elektrike Prodhimi ektorial është një ektor i cili e ka: drejtimin normal mbi dy faktorët e prodhimit, dhe intenzitetin të barabartë me sipërfaqen

Διαβάστε περισσότερα

Indukcioni elektromagnetik

Indukcioni elektromagnetik Shufra pingul mbi ijat e fushës magnetike Indukcioni elektromagnetik Indukcioni elektromagnetik në shufrën përçuese e cila lëizë në fushën magnetike ijat e fushës magnetike homogjene Bazat e elektroteknikës

Διαβάστε περισσότερα

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht

INDUTIVITETI DHE MESINDUKTIVITETI. shtjellur linearisht 1. m I 2 Për dredhën e mbyllur të njëfisht INDUTIVITETI DHE MESINDUKTIVITETI Autoinduksioni + E Ndryshimi I fluksit të mbërthyer indukon tensionin - el = - d Ψ Fluksi I mbërthyer autoinduksionit F është N herë më i madhë për shkak të eksitimit

Διαβάστε περισσότερα

Qarqet/ rrjetet elektrike

Qarqet/ rrjetet elektrike Qarqet/ rrjetet elektrike Qarku elektrik I thjeshtë lementet themelore të qarkut elektrik Lidhjet e linjave Linja lidhëse Pika lidhëse Kryqëzimi I linjave lidhëse pa lidhje eletrike galvanike 1 1 lementet

Διαβάστε περισσότερα

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j =

Q k. E = 4 πε a. Q s = C. = 4 πε a. j s. E + Qk + + k 4 πε a KAPACITETI ELEKTRIK. Kapaciteti i trupit të vetmuar j = UNIVERSIEI I PRISHINËS KAPACIEI ELEKRIK Kapaciteti i trupit të vetmuar Kapaciteti i sferës së vetmuar + + + + Q k s 2 E = 4 πε a v 0 fusha në sipërfaqe të sferës E + Qk + + + + j = Q + s + 0 + k 4 πε a

Διαβάστε περισσότερα

Algoritmet dhe struktura e të dhënave

Algoritmet dhe struktura e të dhënave Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Algoritmet dhe struktura e të dhënave Vehbi Neziri FIEK, Prishtinë 2015/2016 Java 5 vehbineziri.com 2 Algoritmet Hyrje Klasifikimi

Διαβάστε περισσότερα

BAZAT E INFRASTRUKTURES NË KOMUNIKACION

BAZAT E INFRASTRUKTURES NË KOMUNIKACION MANUALI NË LËNDEN: BAZAT E INFRASTRUKTURES NË KOMUNIKACION Prishtinë,0 DETYRA : Shtrirja e trasesë së rrugës. Llogaritja e shkallës, tangjentës, dhe sekondit: 6 0 0 0.67 6 6. 0 0 0. 067 60 600 60 600 60

Διαβάστε περισσότερα

Dielektriku në fushën elektrostatike

Dielektriku në fushën elektrostatike Dielektriku në fushën elektrostatike Polarizimi I dielektrikut Njera nga vetit themelore të dielektrikut është lidhja e fortë e gazit elektronik me molekulat e dielektrikut. Në fushën elektrostatike gazi

Διαβάστε περισσότερα

BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE

BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE BAZAT E ELEKTROTEKNIKËS NË EKSPERIMENTE DHE USHTRIME PRAKTIKE LITERATURË PLOTËSUESE 1 FAKULTETI I INXHINIERISË ELEKTRIKE DHE KOMPJUTERIKE BAZAT E ELEKTROTEKNIKËS SEMESTRI I PARË TË GJITHA DREJTIMET Prof.

Διαβάστε περισσότερα

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA

QARQET ME DIODA 3.1 DREJTUESI I GJYSMËVALËS. 64 Myzafere Limani, Qamil Kabashi ELEKTRONIKA 64 Myzafere Limani, Qamil Kabashi ELEKTRONKA QARQET ME DODA 3.1 DREJTUES GJYSMËVALËS Analiza e diodës tani do të zgjerohet me funksione të ndryshueshme kohore siç janë forma valore sinusoidale dhe vala

Διαβάστε περισσότερα

PASQYRIMET (FUNKSIONET)

PASQYRIMET (FUNKSIONET) PASQYRIMET (FUNKSIONET) 1. Përkufizimi i pasqyrimit (funksionit) Përkufizimi 1.1. Le të jenë S, T bashkësi të dhëna. Funksion ose pasqyrim nga S në T quhet rregulla sipas së cilës çdo elementi s S i shoqëronhet

Διαβάστε περισσότερα

Nyjet, Deget, Konturet

Nyjet, Deget, Konturet Nyjet, Deget, Konturet Meqenese elementet ne nje qark elektrik mund te nderlidhen ne menyra te ndryshme, nevojitet te kuptojme disa koncepte baze te topologjise se rrjetit. Per te diferencuar nje qark

Διαβάστε περισσότερα

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B,

paraqesin relacion binar të bashkësisë A në bashkësinë B? Prandaj, meqë X A B dhe Y A B, Përkufizimi. Le të jenë A, B dy bashkësi të çfarëdoshme. Çdo nënbashkësi e bashkësisë A B është relacion binar i bashkësisë A në bashkësinë B. Simbolikisht relacionin do ta shënojmë me. Shembulli. Le të

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2013 LËNDA: FIZIKË BËRTHAMË VARIANTI

Διαβάστε περισσότερα

ELEKTROTEKNIKA (Pyetje dhe Pergjigje)

ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Bejtush BEQIRI ELEKTROTEKNIKA (Pyetje dhe Pergjigje) Prishtinë, 206. . Si definohet fusha elektrostatike dhe cila madhesi e karakterizon atë? Fusha elektrike është një formë e veqantë e materies që karakterizohet

Διαβάστε περισσότερα

2. DIODA GJYSMËPËRÇUESE

2. DIODA GJYSMËPËRÇUESE 28 Myzafere Limani, Qamil Kabashi ELEKTONIKA 2. IOA GJYSMËPËÇUESE 2.1 IOA IEALE ioda është komponenti më i thjeshtë gjysmëpërçues, por luan rol shumë vital në sistemet elektronike. Karakteristikat e diodës

Διαβάστε περισσότερα

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

III. FUSHA MAGNETIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 III.1. Fusha magnetike e magnetit të përhershëm Nëse në afërsi të magnetit vendosim një trup prej metali, çeliku, kobalti ose nikeli, magneti do ta tërheq trupin dhe ato do të ngjiten njëra me tjetrën.

Διαβάστε περισσότερα

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter.

Qark Elektrik. Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Qark Elektrik Ne inxhinierine elektrike, shpesh jemi te interesuar te transferojme energji nga nje pike ne nje tjeter. Per te bere kete kerkohet nje bashkekomunikim ( nderlidhje) ndermjet pajisjeve elektrike.

Διαβάστε περισσότερα

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike.

ELEKTROSTATIKA. Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. ELEKTROSTATIKA Fusha elektrostatike eshte rast i vecante i fushes elektromagnetike. Ajo vihet ne dukje ne hapesiren rrethuese te nje trupi ose te nje sistemi trupash te ngarkuar elektrikisht, te palevizshem

Διαβάστε περισσότερα

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen

9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen 9 KARAKTERISTIKAT E MOTORIT ME DJEGIE TË BRENDSHME DEFINICIONET THEMELORE Për përdorim të rregullt të motorit me djegie të brendshme duhet të dihen ndryshimet e treguesve të tij themelor - fuqisë efektive

Διαβάστε περισσότερα

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët.

Tregu i tët. mirave dhe kurba IS. Kurba ose grafiku IS paraqet kombinimet e normave tët interesit dhe nivelet e produktit tët. Modeli IS LM Të ardhurat Kështu që, modeli IS LM paraqet raportin në mes pjesës reale dhe monetare të ekonomisë. Tregjet e aktiveve Tregu i mallrave Tregu monetar Tregu i obligacioneve Kërkesa agregate

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 LËNDA: FIZIKË VARIANTI A E enjte,

Διαβάστε περισσότερα

Analiza e regresionit të thjeshtë linear

Analiza e regresionit të thjeshtë linear Analiza e regresionit të thjeshtë linear 11-1 Kapitulli 11 Analiza e regresionit të thjeshtë linear 11- Regresioni i thjeshtë linear 11-3 11.1 Modeli i regresionit të thjeshtë linear 11. Vlerësimet pikësore

Διαβάστε περισσότερα

5. TRANSISTORI ME EFEKT TË FUSHËS FET

5. TRANSISTORI ME EFEKT TË FUSHËS FET 16 Myzafere Limani, Qamil Kabashi ELEKTRONIKA 5. TRANSISTORI ME EFEKT TË FUSHËS FET 5.0 HYRJE Transistori me efektet të fushës ose FET transistori (nga anglishtja Field-Effect Transistor) është lloji i

Διαβάστε περισσότερα

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE

DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE DELEGATET DHE ZBATIMI I TYRE NE KOMPONETE KAPITULLI 5 Prof. Ass. Dr. Isak Shabani 1 Delegatët Delegati është tip me referencë i cili përdorë metoda si të dhëna. Përdorimi i zakonshëm i delegatëve është

Διαβάστε περισσότερα

Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal.

Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal. Analiza e qarqeve duke përdorur ligjet Kirchhoff ka avantazhin e madh se ne mund të analizojme një qark pa ngacmuar konfigurimin e tij origjinal. Disavantazh i kësaj metode është se llogaritja është e

Διαβάστε περισσότερα

ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR

ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR `UNIVERSITETI I PRISHTINËS FAKULTETI I INXHINIERISË MEKANIKE PRISHTINË Mr. sc. Rexhep Selimaj ANALIZA E DIFUZIONIT JOSTACIONAR TË LAGËSHTIRËS NË MURET E LOKALIT TË MODELUAR PUNIM I DOKTORATURËS Prishtinë,

Διαβάστε περισσότερα

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash?

FIZIKË. 4. Në figurë paraqitet grafiku i varësisë së shpejtësisë nga koha për një trup. Sa është zhvendosja e trupit pas 5 sekondash? IZIKË. Një sferë hidhet vertikalisht lart. Rezistenca e ajrit nuk meret parasysh. Si kah pozitiv të lëvizjes meret kahu i drejtuar vertikalisht lart. Cili nga grafikët e mëposhtëm paraqet shpejtësinë e

Διαβάστε περισσότερα

Metodat e Analizes se Qarqeve

Metodat e Analizes se Qarqeve Metodat e Analizes se Qarqeve Der tani kemi shqyrtuar metoda për analizën e qarqeve të thjeshta, të cilat mund të përshkruhen tërësisht me anën e një ekuacioni të vetëm. Analiza e qarqeve më të përgjithshëm

Διαβάστε περισσότερα

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m

Njësitë e matjes së fushës magnetike T mund të rrjedhin për shembull nga shprehjen e forcës së Lorencit: m. C m PYETJE n.. - PËRGJIGJE B Duke qenë burimi isotrop, për ruajtjen e energjisë, energjia është e shpërndarë në mënyrë uniforme në një sipërfaqe sferike me qendër në burim. Intensiteti i dritës që arrin në

Διαβάστε περισσότερα

Nocionet themelore të elektricitetit

Nocionet themelore të elektricitetit Bazat e elektroteknikës Nocionet themelore të elektricitetit Struktura e materies Materia ndërtohët nga atomet, të cilët kanë berthamën, rreth së cilës rrotullohën elektronet. Atomi më i thjeshtë është

Διαβάστε περισσότερα

Detyra për ushtrime PJESA 4

Detyra për ushtrime PJESA 4 0 Detyr për ushtrime të pvrur g lëd ANALIZA MATEMATIKE I VARGJET NUMERIKE Detyr për ushtrime PJESA 4 3 Të jehsohet lim 4 3 ( ) Të tregohet se vrgu + + uk kovergjo 3 Le të jeë,,, k umr relë joegtivë Të

Διαβάστε περισσότερα

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës

Rikardo dhe modeli standard i tregtisë ndërkombëtare. Fakulteti Ekonomik, Universiteti i Prishtinës Rikardo dhe modeli standard i tregtisë ndërkombëtare Fakulteti Ekonomik, Universiteti i Prishtinës Hyrje Teoritë e tregtisë ndërkombëtare; Modeli i Rikardos; Modeli standard i tregtisë ndërkombëtare. Teoritë

Διαβάστε περισσότερα

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi

Lënda: Mikroekonomia I. Kostoja. Msc. Besart Hajrizi Lënda: Mikroekonomia I Kostoja Msc. Besart Hajrizi 1 Nga funksioni i prodhimit në kurbat e kostove Shpenzimet monetare të cilat i bën firma për inputet fikse (makineritë, paisjet, ndërtesat, depot, toka

Διαβάστε περισσότερα

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1

MATERIAL MËSIMOR ELEKTROTEKNIK NR. 1 Agjencia Kombëtare e Arsimit, Formimit Profesional dhe Kualifikimeve MATERIAL MËSIMOR Në mbështetje të mësuesve të drejtimit/profilit mësimor ELEKTROTEKNIK Niveli I NR. 1 Ky material mësimor i referohet:

Διαβάστε περισσότερα

LUCIANA TOTI ELEKTRONIKA 1. Shtëpia botuese GRAND PRIND

LUCIANA TOTI ELEKTRONIKA 1. Shtëpia botuese GRAND PRIND LUCIANA TOTI ELETRONIA 1 Shtëpia botuese GRAN PRIN 1 Autorja: Tel. 042374066, 0672530590 Redaktore shkencore: Garentina Bezhani Arti grafik dhe kopertina: Agetina onomi Botues: Shtëpia botuese GRAN PRIN

Διαβάστε περισσότερα

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς

Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς ΟΡΘΟΔΟΞΟΣ ΑΥΤΟΚΕΦΑΛΟΣ ΕΚΚΛΗΣΙΑ ΑΛΒΑΝΙΑΣ ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΑΡΓΥΡΟΚΑΣΤΡΟΥ ΚΑΤΑΣΚΗΝΩΣΗ «Μ Ε Τ Α Μ Ο Ρ Φ Ω Σ Η» Γ Λ Υ Κ Ο Μ Ι Λ Ι Δ Ρ Ο Π Ο Λ Η Σ Α ί τ η σ η Δ ή λ ω σ η σ υ μ μ ε τ ο χ ή ς Πόλη ή Χωριό Σας

Διαβάστε περισσότερα

Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA. Mitrovicë, 2016.

Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA. Mitrovicë, 2016. Erduan RASHICA Shkelzen BAJRAMI ELEKTROTEKNIKA Mitrovicë, 2016. PARATHËNIE E L E K T R O T E K N I K A Elektroteknika është një lami e gjerë, në këtë material është përfshi Elektroteknika për fillestar

Διαβάστε περισσότερα

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36

KSF 2018 Cadet, Klasa 7 8 (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 Problema me 3 pië # 1. Sa është vlera e shprehjes (20 + 18) : (20 18)? (A) 18 (B) 19 (C) 20 (D) 34 (E) 36 # 2. Në qoftë se shkronjat e fjalës MAMA i shkruajmë verikalisht njëra mbi tjetrën fjala ka një

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 2008 KUJDES! MOS DËMTO BARKODIN Matematikë Sesioni I BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA QENDRORE E VLERËSIMIT TË ARRITJEVE TË NXËNËSVE PROVIMI I MATURËS SHTETËRORE 008

Διαβάστε περισσότερα

Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave

Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave Kërkesat teknike për Listën e Materialeve dhe Pajisjeve të Pranueshme LEME lista - Sektori Banesor dhe i Ndërtesave Kriteret e pranushmërisë së Materialeve dhe Pajisjeve Materiali/Pajisja /Mjeti Dritare

Διαβάστε περισσότερα

KSF 2018 Student, Klasa 11 12

KSF 2018 Student, Klasa 11 12 Problema me 3 pikë # 1. Figura e e mëposhtme paraqet kalendarin e një muaji të vitit. Për fat të keq, mbi të ka rënë bojë dhe shumica e datave të tij nuk mund të shihen. Cila ditë e javës është data 27

Διαβάστε περισσότερα

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

II. MEKANIKA. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 II.1. Lëvizja mekanike Mekanika është pjesë e fizikës e cila i studion format më të thjeshta të lëvizjes së materies, të cilat bazohen në zhvendosjen e thjeshtë ose kalimin e trupave fizikë prej një pozite

Διαβάστε περισσότερα

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

II. RRYMA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 II.1. Kuptimet themelore për rrymën elektrike Fizika moderne sqaron se në cilën mënyrë përcjellësit e ngurtë (metalet) e përcjellin rrymën elektrike. Atomet në metale janë të rradhitur në mënyrë të rregullt

Διαβάστε περισσότερα

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika

Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike. Agni H. Dika Universiteti i Prishtinës Fakulteti i Inxhinierisë Elektrike dhe Kompjuterike Agni H. Dika Prishtinë 007 Libri të cilin e keni në dorë së pari u dedikohet studentëve të Fakultetit të Inxhinierisë Elektrike

Διαβάστε περισσότερα

Përpjesa e kundërt e përpjesës a :b është: Mesi gjeometrik x i segmenteve m dhe n është: Për dy figura gjeometrike që kanë krejtësisht formë të njejtë, e madhësi të ndryshme ose të njëjta themi se janë

Διαβάστε περισσότερα

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS

PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS SHOQATA E MATEMATIKANËVE TË KOSOVËS PËRMBLEDHJE DETYRASH PËR PËRGATITJE PËR OLIMPIADA TË MATEMATIKËS Kls 9 Armend Sh Shbni Prishtinë, 009 Bshkësitë numerike Të vërtetohet se numri 004 005 006 007 + është

Διαβάστε περισσότερα

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE VITIT MËSIMOR 2012/2013 UDHËZIM Mjetet e punës: lapsi grafit dhe goma, lapsi kimik, veglat gjeometrike.

Διαβάστε περισσότερα

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe

Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Testimi i hipotezave/kontrollimi i hipotezave Mostra e madhe Ligjërata e tetë 1 Testimi i hipotezave/mostra e madhe Qëllimet Pas orës së mësimit ju duhet ë jeni në gjendje që të: Definoni termet: hipotezë

Διαβάστε περισσότερα

Vrojtimet Magnetike. 7.1 Hyrje

Vrojtimet Magnetike. 7.1 Hyrje 7 Vrojtimet Magnetike 7.1 Hyrje Q ëllimi i vrojtimeve magnetike është studimi i gjeologjisë nën sipërfaqësore në bazë të anomalive në fushën magnetike të Tokës, anomali të cilat shkaktohen nga vetitë magnetike

Διαβάστε περισσότερα

Definimi i funksionit . Thirrja e funksionit

Definimi i funksionit . Thirrja e funksionit Definimi i funksionit Funksioni ngërthen ne vete një grup te urdhrave te cilat i ekzekuton me rastin e thirrjes se tij nga një pjese e caktuar e programit. Forma e përgjithshme e funksionit është: tipi

Διαβάστε περισσότερα

UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË. DETYRË Nr.1 nga lënda H A R T O G R A F I

UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË. DETYRË Nr.1 nga lënda H A R T O G R A F I UNIVERSITETI SHTETËROR I TETOVËS FAKULTETI I SHKENCAVE HUMANE DHE ARTEVE DEPARTAMENTI I GJEOGRAFISË DETYRË Nr. nga lënda H A R T O G R A F I Punoi: Emri MBIEMRI Mentor: Asist.Mr.sc. Bashkim IDRIZI Tetovë,

Διαβάστε περισσότερα

Teste matematike 6. Teste matematike. Botimet shkollore Albas

Teste matematike 6. Teste matematike. Botimet shkollore Albas Teste matematike 6 Botimet shkollore Albas 1 2 Teste matematike 6 Hyrje Në materiali e paraqitur janë dhënë dy lloj testesh për lëndën e Matematikës për klasën VI: 1. teste me alternativa, 2. teste të

Διαβάστε περισσότερα

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017

Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 Olimpiada italiane kombëtare e fizikës, faza e pare Dhjetor 2017 UDHËZIME: 1. Ju prezantoheni me një pyetësor i përbërë nga 40 pyetje; për secilën pyetje Sugjerohen 5 përgjigje, të shënuara me shkronjat

Διαβάστε περισσότερα

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj

UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike. LËNDA: Bazat e elektroteknikës Astrit Hulaj UNIVERSITETI AAB Fakulteti i Shkencave Kompjuterike LËNDA: Bazat e elektroteknikës Prishtinë, Ligjëruesi: 2014 Astrit Hulaj 1 KAPITULLI I 1. Hyrje në Bazat e Elektroteknikës 1.1. Principet bazë të inxhinierisë

Διαβάστε περισσότερα

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT

VENDIM Nr.803, date PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT VENDIM Nr.803, date 4.12.2003 PER MIRATIMIN E NORMAVE TE CILESISE SE AJRIT Ne mbështetje te nenit 100 te Kushtetutës dhe te nenit 5 te ligjit nr.8897, date 16.5.2002 "Për mbrojtjen e ajrit nga ndotja",

Διαβάστε περισσότερα

AISHE HAJREDINI (KARAJ), KRISTAQ LULA. Kimia Inorganike. TESTE TË ZGJIDHURA Të maturës shtetërore

AISHE HAJREDINI (KARAJ), KRISTAQ LULA. Kimia Inorganike. TESTE TË ZGJIDHURA Të maturës shtetërore AISHE HAJREDINI (KARAJ), KRISTAQ LULA Kimia Inorganike TESTE TË ZGJIDHURA Të maturës shtetërore AISHE HAJREDINI (KARAJ), KRISTAQ LULA TESTE TË MATURËS SHTETËRORE Kimia inorganike S H T Ë P I A B O T U

Διαβάστε περισσότερα

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT, SHKENCËS DHE E ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR PROVUES Viti shkollor 2016/2017 TESTI MATEMATIKË

Διαβάστε περισσότερα

Manual i punëve të laboratorit 2009

Manual i punëve të laboratorit 2009 Contents PUNË LABORATORI Nr. 1... 3 1. KONTROLLI I AMPERMETRAVE, VOLTMETRAVE DHE VATMETRAVE NJË FAZORË ME METODËN E KRAHASIMIT... 3 1.1. Programi i punës... 3 1.2. Njohuri të përgjithshme... 3 1.2.1. Kontrolli

Διαβάστε περισσότερα

Kapitulli 1 Hyrje në Analizën Matematike 1

Kapitulli 1 Hyrje në Analizën Matematike 1 Përmbajtja Parathënie iii Kapitulli 1 Hyrje në Analizën Matematike 1 1.1. Përsëritje të njohurive nga shkolla e mesme për bashkësitë, numrat reale dhe funksionet 1 1.1.1 Bashkësitë 1 1.1.2 Simbole të logjikës

Διαβάστε περισσότερα

( ) 4πε. ku ρ eshte ngarkesa specifike (ngarkesa per njesine e vellimit ρ ) dhe j eshte densiteti i rrymes

( ) 4πε. ku ρ eshte ngarkesa specifike (ngarkesa per njesine e vellimit ρ ) dhe j eshte densiteti i rrymes EKUACIONET E MAKSUELLIT Ne kete pjese do te studiojme elektrodinamiken klasike. Fjala klasike perdoret ne fizike, nuk ka rendesi e vjeter ose para shekullit te XX ose jo realiste (mendojne disa studente).

Διαβάστε περισσότερα

KALKULIMI TERMIK I MOTORIT DIESEL. 1. Sasia teorike e nevojshme për djegien e 1 kg lëndës djegëse: kmol ajër / kg LD.

KALKULIMI TERMIK I MOTORIT DIESEL. 1. Sasia teorike e nevojshme për djegien e 1 kg lëndës djegëse: kmol ajër / kg LD. A KALKULII TERIK I OTORIT DIESEL. Sasa terke e nevjshme ër djegen e kg lëndës djegëse: 8 L C 8H O 0.3 3 C H O 0. 4 3 kml ajër / kg LD kg ajër / kg LD. Sasja e vërtetë e ajrt ër djegen e kg lëndë djegëse:

Διαβάστε περισσότερα

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT

NDËRTIMI DHE PËRMBAJTJA E PUNIMIT NDËRTIMI DHE PËRMBAJTJA E PUNIMIT Punimi monografik Vështrim morfo sintaksor i parafjalëve të gjuhës së re greke në krahasim me parafjalët e gjuhës shqipe është konceptuar në shtatë kapituj, të paraprirë

Διαβάστε περισσότερα

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE

FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE FIZIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE vitit mësimor 2012/2013 U d h ëzi m Mos e hapni testin derisa mos t ju japë leje administruesi i testit se

Διαβάστε περισσότερα

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1

I. FUSHA ELEKTRIKE. FIZIKA II Rrahim MUSLIU ing.dipl.mek. 1 I.1. Ligji mbi ruajtjen e ngarkesës elektrike Më herët është përmendur se trupat e fërkuar tërheqin trupa tjerë, dhe mund të themi se me fërkimin e trupave ato elektrizohen. Ekzistojnë dy lloje të ngarkesave

Διαβάστε περισσότερα

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë?

Shtrohet pyetja. A ekziston formula e përgjithshme për të caktuar numrin e n-të të thjeshtë? KAPITULLI II. NUMRAT E THJESHTË Më parë pamë se p.sh. numri 7 plotpjesëtohet me 3 dhe me 9 (uptohet se çdo numër plotpjesëtohet me dhe me vetvetën). Shtrohet pyetja: me cilët numra plotpjesëtohet numri

Διαβάστε περισσότερα

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre

Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Distanca gjer te yjet, dritësia dhe madhësia absolute e tyre Mr. Sahudin M. Hysenaj 24 shkurt 2009 Përmbledhje Madhësia e dukshme e yjeve (m) karakterizon ndriçimin që vjen nga yjet mbi sipërfaqen e Tokës.

Διαβάστε περισσότερα

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin?

2 Marim në konsiderate ciklet termodinamike të paraqitura në planin V p. Në cilin cikël është më e madhe nxehtësia që shkëmbehet me mjedisin? 1 Një automobile me një shpejtësi 58km/h përshpejtohet deri në shpejtësinë 72km/h për 1.9s. Sa do të jetë nxitimi mesatar i automobilit? A 0.11 m s 2 B 0.22 m s 2 C 2.0 m s 2 D 4.9 m s 2 E 9.8 m s 2 2

Διαβάστε περισσότερα

II. FIZIKA MODERNE. FIZIKA III Rrahim MUSLIU ing.dipl.mek. 1

II. FIZIKA MODERNE. FIZIKA III Rrahim MUSLIU ing.dipl.mek. 1 II.1. Modeli i atomit Mendimet e para mbi ndërtimin e lëndës datojnë që në antikë, ku mendohej se trupat përbëhen nga grimcat e vogla, molekulat dhe atomet. Në atë kohë është menduar se atomi është grimca

Διαβάστε περισσότερα

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA

REPUBLIKA E KOSOVËS REPUBLIKA KOSOVO REPUBLIC OF KOSOVA QEVERIA E KOSOVËS - VLADA KOSOVA - GOVERNMENT OF KOSOVA REPUBLIK E KOSOVËS REPUBLIK KOSOVO REPUBLIC OF KOSOV QEVERI E KOSOVËS - VLD KOSOV - GOVERNMENT OF KOSOV MINISTRI E RSIMIT E MINISTRSTVO OBRZOVNJ MINISTRY OF EDUCTION SHKENCËS DHE E TEKNOLOGJISË NUKE I

Διαβάστε περισσότερα

Teoria e kërkesës për punë

Teoria e kërkesës për punë L07 (Master) Teoria e kërkesës për punë Prof.as. Avdullah Hoti 1 Literatura: Literatura 1. George Borjas (2002): Labor Economics, 2nd Ed., McGraw-Hill, 2002, Chapter 4 2. Stefan Qirici (2005): Ekonomiksi

Διαβάστε περισσότερα

Yjet e ndryshueshëm dhe jo stacionar

Yjet e ndryshueshëm dhe jo stacionar Yjet e ndryshueshëm dhe jo stacionar Sahudin M. HYSENAJ Pjesa më e madhe e yjeve ndriçojnë pa e ndryshuar shkëlqimin e tyre. Por ka yje të cilat edhe e ndryshojnë këtë. Në një pjesë të rasteve ndryshimi

Διαβάστε περισσότερα

Propozim për strukturën e re tarifore

Propozim për strukturën e re tarifore Propozim për strukturën e re tarifore (Tarifat e energjisë elektrike me pakicë) DEKLARATË Ky dokument është përgatitur nga ZRRE me qëllim të informimit të palëve të interesuara. Propozimet në këtë raport

Διαβάστε περισσότερα

Analiza e Regresionit dhe Korrelacionit

Analiza e Regresionit dhe Korrelacionit 1-1 Analiza e Regresionit dhe Korrelacionit Qëllimet: Në fund të orës së mësimit, ju duhet të jeni në gjendje që të : Kuptoni rolin dhe rëndësinë e analizës së regresionit dhe korrelacionit si dhe dallimet

Διαβάστε περισσότερα

dv M a M ( V- shpejtësia, t - koha) dt

dv M a M ( V- shpejtësia, t - koha) dt KREU III 3. MEKANIKA E LËIZJES Pas trajtimit të linjave hekurudhore, para se të kalojmë në mjetet lëvizëse, hekurudhore (tëeqëse dhe mbartëse), është më e arsyeshme dhe e nevojshme të hedhim dritë mbi

Διαβάστε περισσότερα

"Ndërtimi i furnizimit me tension të një banese dhe masat e mbrojtjes sipas DIN VDE" ESM 3

Ndërtimi i furnizimit me tension të një banese dhe masat e mbrojtjes sipas DIN VDE ESM 3 "Ndërtimi i furnizimit me tension të një banese dhe masat e mbrojtjes sipas DIN VDE" ESM 3 Nr. kursi : SH5001-1S Versioni 1.0 Autori: Lutz Schulz Lucas-Nülle GmbH Siemensstraße 2 D-50170 Kerpen (Sindorf)

Διαβάστε περισσότερα

AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I. E mërkurë, 18 qershor 2014 Ora 10.00

AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I. E mërkurë, 18 qershor 2014 Ora 10.00 KUJDES! MOS DËMTO BARKODIN BARKODI AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2014 SESIONI I VARIANTI A E mërkurë, 18 qershor 2014 Ora 10.00 Lënda: Teknologji bërthamë Udhëzime

Διαβάστε περισσότερα

Republika e Serbisë. MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT

Republika e Serbisë. MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT Republika e Serbisë MINISTRIA E ARSIMIT, shkencës DHE ZHVILLIMIT TEKNOLOGJIK ENTI PËR VLERËSIMIN E CILËSISË SË ARSIMIT DHE TË EDUKIMIT PROVIMI PËRFUNDIMTAR NË FUND TË ARSIMIT DHE TË EDUKIMIT FILLOR Viti

Διαβάστε περισσότερα

ALGJEBËR II Q. R. GASHI

ALGJEBËR II Q. R. GASHI ALGJEBËR II Q. R. GASHI Shënim: Këto ligjërata janë të paredaktuara, të palekturuara dhe vetëm një verzion fillestar i (ndoshta) një teksti të mëvonshëm. Ato nuk e reflektojnë detyrimisht materien që e

Διαβάστε περισσότερα

Ngjeshmëria e dherave

Ngjeshmëria e dherave Ngjeshmëria e dherave Hyrje Në ndërtimin e objekteve inxhinierike me mbushje dheu, si për shembull diga, argjinatura rrugore etj, kriteret projektuese përcaktojnë një shkallë të caktuar ngjeshmërie të

Διαβάστε περισσότερα

Të dhënat e klasifikimit. : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit: C 5

Të dhënat e klasifikimit. : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit: C 5 Udhëzimet e përdorimit të IRONCLAD ALBANIAN Të dhënat e klasifikimit 1. Kapaciteti nominal C 5 : Shikoni tabelën specifikuese në bateri 2. Tensioni nominal: 2,0 V x nr. i qelive 3. Rryma e shkarkimit:

Διαβάστε περισσότερα

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1

III. FLUIDET. FIZIKA I Rrahim MUSLIU ing.dipl.mek. 1 III.1. Vetitë e lëngjeve dhe gazeve, përcjellja e forcës në fluide Lëngjet dhe gazet dallohen nga trupat e ngurtë, me atë se ato mund të rrjedhin. Substancat që mund të rrjedhin quhen fluide. Lëngjet dhe

Διαβάστε περισσότερα

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE

MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE MATEMATIKË KONTROLLIMI EKSTERN I DIJES SË NXËNËSVE NË FUND TË CIKLIT TË TRETË TË SHKOLLËS FILLORE QERSHOR, VITIT MËSIMOR 2015/2016 UDHËZIM KOHA PËR ZGJIDHJEN E TESTIT: 70 MINUTA Mjetet e punës: lapsi grafit

Διαβάστε περισσότερα

Shpërndarjet e mostrave dhe intervalet e besueshmërisë për mesatare aritmetike dhe përpjesën. Ligjërata e shtatë

Shpërndarjet e mostrave dhe intervalet e besueshmërisë për mesatare aritmetike dhe përpjesën. Ligjërata e shtatë Shërdarjet e mostrave dhe itervalet e besueshmërisë ër mesatare aritmetike dhe ërjesë Ligjërata e shtatë Shërdarja e mostrave dhe itervalet e besueshmërisë ër mesatare aritmetike dhe roorcio/ërqidje Qëllimet

Διαβάστε περισσότερα

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise

KAPITULLI4. Puna dhe energjia, ligji i ruajtjes se energjise Kapitui 4 Pua de eerjia KPIULLI4 Pua de eerjia, iji i ruajtjes se eerjise.ratori tereq e je rrue e au je tru e spejtesi 8/. Me care spejtesie do te tereqi tratori truu e je rrue te pastruar ur uqia e otorit

Διαβάστε περισσότερα

Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë. Lënda: Bazat Teknike të informatikës - BTI

Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë. Lënda: Bazat Teknike të informatikës - BTI Kolegji - Universiteti për Biznes dhe Teknologji Fakultetit i Shkencave Kompjuterike dhe Inxhinierisë Lënda: Bazat Teknike të informatikës - BTI Dispensë Ligjërues: Selman Haxhijaha Luan Gashi Viti Akademik

Διαβάστε περισσότερα

Udhëzues për mësuesin për tekstin shkollor. Matematika 12. Botime shkollore Albas

Udhëzues për mësuesin për tekstin shkollor. Matematika 12. Botime shkollore Albas Udhëzues për mësuesin për tekstin shkollor Matematika Botime shkollore Albas Shënim. K Udhëzues do të plotësohet me modele mësimi për çdo temë mësimore; për projekte dhe veprimtari praktike. Këtë material

Διαβάστε περισσότερα

I. VALËT. λ = v T... (1), ose λ = v

I. VALËT. λ = v T... (1), ose λ = v I.1. Dukuritë valore, valët transfersale dhe longitudinale Me nocionin valë jemi njohur që më herët, si p.sh: valët e zërit, valët e detit, valët e dritës, etj. Për të kuptuar procesin valor, do të rikujtohemi

Διαβάστε περισσότερα

2.1 Kontrolli i vazhdueshëm (Kv)

2.1 Kontrolli i vazhdueshëm (Kv) Aneks Nr 2 e rregullores 1 Vlerësimi i cilësisë së dijeve te studentët dhe standardet përkatëse 1 Sistemi i diferencuar i vlerësimit të cilësisë së dijeve të studentëve 1.1. Për kontrollin dhe vlerësimin

Διαβάστε περισσότερα

Kapitulli. Programimi linear i plote

Kapitulli. Programimi linear i plote Kapitulli Programimi linear i plote 1-Hyrje Për të gjetur një zgjidhje optimale brenda një bashkesie zgjidhjesh të mundshme, një algoritëm duhet të përmbajë një strategji kërkimi të zgjidhjeve dhe një

Διαβάστε περισσότερα

Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV

Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV ZYRA E RREGULLATORIT PËR ENERGJI ENERGY REGULATORY OFFICE REGULATORNI URED ZA ENERGIJU Shqyrtimi i Feed-in Tarifës për Hidrocentralet e Vogla RAPORT KONSULTATIV DEKLARATË Ky raport konsultativ është përgatitur

Διαβάστε περισσότερα

SUPERIORITETI DIELLOR ME TEKNOLOGJINË

SUPERIORITETI DIELLOR ME TEKNOLOGJINË SUPERIORITETI DIELLOR ME TEKNOLOGJINË E TË ARTHMES...Panele diellore te teknollogjisë Glass & Inox Si vend me mbi 45 ditë diellore me intesitet rrezatimi, 450 keh/m vit. Shqipëria garanton përdorimin me

Διαβάστε περισσότερα

Cilat nga bashkësitë = {(1, ), (1, ), (2, )},

Cilat nga bashkësitë = {(1, ), (1, ), (2, )}, RELACIONET. RELACIONI BINAR Përkufizimi. Le të jenë A, B dy bashkësi të çfarëdoshme. Çdo nënbashkësi e bashkësisë A B është relacion binar i bashkësisë A në bashkësinë B. Simbolikisht relacionin do ta

Διαβάστε περισσότερα

6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri

6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri 6.6 PROCESI I DJEGIES Paraqet procesin bazë dhe më të ndërlikuar të ciklit punues të motorët me djegie të brendshme. Te procesi i djegies vjen deri te transformimi i energjisë kimike të lëndës djegëse

Διαβάστε περισσότερα

INSTITUTI I ZHVILLIMIT TË ARSIMIT. PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje ) LËNDA: FIZIKË BËRTHAMË

INSTITUTI I ZHVILLIMIT TË ARSIMIT. PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje ) LËNDA: FIZIKË BËRTHAMË INSTITUTI I ZHVILLIMIT TË ARSIMIT PROGRAM ORIENTUES PËR MATURËN SHTETËRORE (Provim me zgjedhje ) LËNDA: FIZIKË BËRTHAMË Koordinatore: Mirela Gurakuqi Viti shkollor 017 018 Udhëzime të përgjithshme Ky program

Διαβάστε περισσότερα

VIZATIM Teknik Pjesa 1 MEKANIKË. Libri i teorisë

VIZATIM Teknik Pjesa 1 MEKANIKË. Libri i teorisë VIZATIM Teknik Pjesa 1 MEKANIKË Libri i teorisë 2 Përmbajtje Parafjalë... 5 1. Njohuri bazë... 6 1.1 Mjete vizatimi, Vija... 6 1.3 Diagramat në sistemin koordinativ... 10 2. Paraqitja e trupave... 12 2.1

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI

Διαβάστε περισσότερα

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011

REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 KUJDES! MOS DËMTO BARKODIN BARKODI REPUBLIKA E SHQIPËRISË MINISTRIA E ARSIMIT DHE E SHKENCËS AGJENCIA KOMBËTARE E PROVIMEVE PROVIMI ME ZGJEDHJE I MATURËS SHTETËRORE 2011 S E S I O N I II LËNDA: KIMI VARIANTI

Διαβάστε περισσότερα