P621 - HW 4. Scott Dietrick November 17, b = i 4 (σµ σ ν σ ν σ µ ) a b. L ) b. 1 2 ǫijk σ k and (S k0. = i 4 (σ ki + Iσ k ) = i 2 σ k
|
|
- Υπάτιος Αποστόλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 P6 - HW 4 Scott Dietrick November 7, Show tht S ν implies S i L S i L b i 4 σi σ σ σ i b b L ǫik σ k nd S k b i 4 σ σ ν σ ν σ b L b iσ k. SL k b i 4 σk σ σ σ k b i 4 σi ċ σċb σ ċ σiċb i 4 σ iσ + σ σ i i σ iσ i iǫik σ k SL k b i 4 σ ki + Iσ k i σ k S i L b ǫik σ k Fierz identities nd Dirc fields. Prove the Fierz identities. χ σ χ χ 3 σ χ 4 χ ȧ σȧb χ b χ 3ċ σċd χ 4d σ ȧb σċd χ ȧ χ 3ċ χ bχ 4d σ ḃσ cd ǫbǫȧḃǫdc ǫċ d χ ȧ χ 3ċ χ bχ 4d ǫ c ǫḃ d ǫbǫȧḃǫdc ǫċ d χ ȧ χ 3ċ χ bχ 4d χ ȧ ǫȧḃǫḃ d ǫċ d χ 3ċ ǫdc ǫ c ǫ b χ b χ 4d χ ȧ ǫȧḃǫḃ dǫ dċ χ 3ċ ǫdc ǫ c ǫ b χ b χ 4d χ ȧ χ ȧ 3 χd χ 4d χ σ χ χ 3 σ χ 4 χ χ 3 χ χ 4
2 χ σ χ χ 3 σ χ 4 χ χ 3 χ χ 4 χ χ 3 χ χ 4 χ χ 3 χ 4χ χ χ 3 χ 4χ χ χ 3 χ 4χ χ σ χ χ 3 σ χ 4 χ σ χ 4 χ 3 σ χ b Write the Fierz identities in terms of Dirc fields. Ψ γ P L Ψ Ψ 3 γ P L Ψ 4 [ ξ χ σ c ] δb χc ḃ ȧ σ ȧb [ ξ 3 χ c ] σ ḃ δb χ4c 3ȧ σȧb χ ȧ σȧb δ b c χ c χ 3ȧ σȧb δ b c χ 4c χ σ χ χ 3 σ χ 4 χ σ χ 4 χ 3 σ χ Ψ γ P L Ψ Ψ 3 γ P L Ψ 4 Ψ γ P L Ψ 4 Ψ 3 γ P L Ψ χ σ χ χ 3 σ χ 4 χ χ 3 χ χ 4 [ ξ χ ȧ [ χ ξ c δ ȧ δȧċ Ψ γ P L Ψ Ψ 3 γ P L Ψ 4 Ψ P R Ψ C 3 Ψ C P LΨ 4 ξ3c χ ċ 3 χ4c 4 ] ] 4
3 c Show tht Ψ γ P R Ψ Ψ C γ P L Ψ C, Ψ P L Ψ Ψ C P LΨ C nd Ψ P R Ψ Ψ C P R Ψ C. Ψ γ P R Ψ ξ χ σ ḃ χc ȧ σ ȧb δḃċ ξ ċ σ ḃδḃċξ σ ċ ξ ξ ȧ ǫc ǫċȧ σ ċ ξ c ξ ȧ ǫc ǫȧċ σ ċ ξ c ξ ȧ σȧc ξ c ξ ȧ σȧb δ b c ξ c χ ξ ȧ σ ḃ σ ȧb c δb ξc χ ċ Ψ γ P R Ψ Ψ C γ P L Ψ C Ψ P L Ψ ξ χ ȧ c δ χc Ψ P R Ψ ξ χ ȧ δȧċ χc ξ δ c χ c χ ċ ȧδȧċξ χ ξ ξ ȧ χ ȧ χ δ c ξ c χ ξ ȧ c δ ξc χ ċ ξ ċ ȧδȧċχ χ ξ ȧ δȧċ ξc χ ċ Ψ P L Ψ Ψ C P LΨ C Ψ P R Ψ Ψ C P R Ψ C 3
4 Symmetries of fermion fields. Stte the invrince group for the following Lgrngins. N Weyl fields with common mss m. L iψ σ ψ }{{} mψ ψ }{{} +ψ ψ }{{} UN ON ON ON b N mssless Morn fields. L i ΨT Cγ Ψ i ψ ψ ȧ ǫ b ǫȧḃ σ bċ σ ḃc ψc ψ ċ i ψ ǫ b σ bċ ψ ċ + ψ ȧ ǫ ȧḃ σḃc ψ c i ψb σ bċ ψ ċ + ψ ḃ σḃc ψ c i ψ σ ψ }{{} +ψ σ ψ }{{} UN UN UN c N Morn fields with common mss m. L i ΨT Cγ Ψ }{{} mψt CΨ UN Ψ T CΨ ψ ψ ȧ ǫ b ǫȧḃ ψ b ψ ḃ ON ψ ǫ b ψ b + ψ ȧ ǫ ȧḃψ ḃ ψ bψ b + ψ ḃψ ḃ ψ ψ }{{} +ψ ψ }{{} ON ON 4
5 d N mssless Dirc fields. L i Ψ γ Ψ i ξ b χ ḃ σ bċ σ ḃc χc iξ b σ bċ + χ ḃ σḃc χ c iξ σ ξ +χ σ χ }{{} iψ i σ ψ i }{{}, i, UN UN e N Dirc fields with common mss, m. L i Ψ γ Ψ m Ψ Ψ Ψ Ψ ξ χ ȧ χ ξ ȧ ON ξ χ + χ ȧ ξ ȧ ξ χ + ξ χ ψ iψ i }{{} +ψ i ψ i, i, ON 5
6 Verify 38.5 γ βγ β γ γ σ σ σ ḃ σ ȧb σ ḃ σ bȧ σ σ S ν βs ν β β i 4 [γ, γ ν ] β i 4 βγ γ ν γ ν γ β i 4 βγν γ γ γ ν β i 4 βγν ββγ γ ββγ ν β i 4 γν γ γ γ ν i 4 γν γ γ γ ν S ν S ν iγ 5 β 4 ǫ νρσγ γ ν γ ρ γ σ β iγ 5 iγ 5 4 ǫ νρσβγ σ γ ρ γ ν γ β 4 ǫ νρσβγ σ ββγ ρ ββγ ν ββγ β 4 ǫ σρνγ σ γ ρ γ ν γ 4 ǫ σρνγ σ γ ρ γ ν γ 6
7 γ γ 5 β iγ iγ 5 β iβiγ 5 γ β iβiγ 5 ββγ β iiγ 5 γ iiγ 5 γ iiγ 5 γ I σ σ σ σ σ σ γ γ 5 γ γ 5 iγ 5 S ν βiγ 5 S ν β βs ν iγ 5 β βs ν ββiγ 5 β S ν iγ 5 S ν iγ 5 S ν i L S ν R S ν i L S ν R i iγ 5 S ν iγ 5 S ν S ν L S ν R 7
8 Show tht ū s p γ v s p nd v s p γ u s p. p + mv s p γ p γ i p i + mv s p γ p + γ i p i + mv s p γ p v s p γ i p i + mv s p γ p v s p p + mv s p ū s pγ v s pp ū s p p + mv s p ū s pγ v s p p + mu s p +γ p + γ i p i + mu s p +γ p γ i p i + mu s p γ p u s p γ i p i + mu s p γ p u s p p + mu s p v s pγ u s pp v s p p + mu s p v s pγ u s p 8
9 Show tht ū s p [p + p is ν p p ν ]γ u s p nd v s p [p + p is ν p p ν ]γ v s p. p + p is ν p p ν γ p + p γ [p + p is ν p p ν ]γ 5 γ p + p γ γ 5 ū s p [p + p is ν p p ν ]γ 5 u s p ū s p γ p + p γ γ 5 u s p ū s p [p + p is ν p p ν ]γ 5 u s p ū s p γ pγ 5u s p ū s p p γ γ 5 u s p ū s p γ mγ 5 u s p ū s p p γ γ 5 u s p ū s p γ p + mγ 5 u s p ū s p γ p + mv s ps v s p [p + p is ν p p ν ]γ 5 v s p v s p γ p + p γ γ 5 v s p v s p [p + p is ν p p ν ]γ 5 v s p v s p γ pγ 5v s p v s p p γ γ 5 v s p v s p γ pγ 5v s p ū s p mγ γ 5 v s p v s p γ p + mγ 5 v s p ū s p γ p + mu s ps 9
Srednicki Chapter 36
Srednicki Chapter 36 QFT Problems & Solutions A. George March 1, 13 Srednicki 36.1. Using the results of problem.9, show that, for a rotation by an angle θ about the z axis, we have: DΛ = exp iθs 1 and
E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389
97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 017.. 48.. 6.. 934Ä940 ˆ Š Ÿ Š ˆ ˆ ˆ ˆ ƒ Ÿ.. ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ± μ μ Ò ÕÉ Ö μ ³μ μ ÉÓ ±ÉÊ ²Ó μ ÉÓ É μ É ²Ó É É μ μ É ±- Éμ Ö μ³ ²μ Ê ±μ.
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Section 9: Quantum Electrodynamics
Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6 9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z
Η Ομάδα SL(2,C) και οι αναπαραστάσεις της
SL(2, C) SO(3, 1) D : Λ D(Λ) SO(3, 1) 2 1 D : ±A D(π(±A)) SL(2, C) SL(2, C) SO(3, 1) SL(2, C) SO(3, 1) ξ i (, ) K i x µ p µ J µν T µν A µ ψ α J i = J i, () K i = K i, ( ) K i M 0i = (iξ i K i ) A i = 1
Μάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00).
Μάθηµα 9 ο, 5 Νοεµβρίου 008 (9:00-:00) & Συµπλήρωµα 7 εκεµβρίου 00 (9:00-:00). ΑΣΚΗΣΗ 9- Θεωρούµε φυσικά µεγέθη που περιγραφονται από τους τελεστές A, B, C και H (Χαµιλτονιανή). Γνωρίζουµε για τους τελεστές
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.
Ιστοσελίδα:
½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel4 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Αποκωδικοποιηση Γραμμικων Κωδικων Μπλοκ Soft-Decision Decoding ψ(t),
ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ
Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ
ΓΙΟΡΤΗ ΚΟΛΥΜΒΗΤΗ 13/8/2013 50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ
50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ ΚΑΡΑΤΖΙΑ ΜΥΡΤΩ ΝΑΒΕ.05.9 2 ΠΑΠΑΓΕΩΡΓΙΟΥ ΑΝΑΣΤΑΣΙΑ ΗΡΑ 3 ΓΕΩΡΓΟΥΛΗ ΚΑΛΛΙΡΟΗ ΝΕΑΠΟΛΗ 0.45.44 4 ΚΑΡΑΛΙΔΟΥ ΝΑΤΑΛΙΑ ΑΡΗΣ 0.5.58 5 ΚΩΝΣΤΑΝΤΙΝΙΔΟΥ ΧΡΥΣΑΝΘΗ ΝΟΚ 0.43.84 ΒΕΛΟΥΖΟΥ ΙΩΑΝΝΑ
ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç
Να βρεθούν τα α και β Î R, ώστε η συνάρτηση ì 4 ημ - + = í - î α + β < ³ να είναι συνεχής και æ η γραφική της παράσταση να διέρχεται από το σημείο Mç è,- ö ø Να βρείτε τα α, β, γ Î R, ώστε να είναι συνεχής
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389
164/389 Ο διαδότης του ηλεκτρονίου Από την μη σχετικιστική θεωρία είχαμε δει T fi = 2πiδ(E f E i ) < f V i > + < f V n > n i 1 < n V i > +... E i E n όπου H 0 n >= E n n >. Φορμαλιστικά μπορούμε να γράψουμε
Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2
PiTP Study Guide to Spinors in D and 0D S.J.Gates Jr. John S. Toll Professor of Physics Director Center for String and Particle Theory University of Maryland Tel: 30-405-6025 Physics Department Fax: 30-34-9525
Abduction** Conversational*Implicature* and*misleading
Abduction** Conversational*Implicature* and*misleading Chiaki&Sakama&(WakayamaUniversity) Katsumi&Inoue&(Na2onalIns2tuteofInforma2cs) MBR2015 Abduction*in*Dialogue*(1) Mary:You relatethismorning,aren tyou?
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
Now, suppose the electron field Ψ(x) satisfies the covariant Dirac equation (i D m)ψ = 0.
PHY 396 K. Solutions for homework set #7. Problem 1a: γ α γ α 1 {γα, γ β }g αβ g αβ g αβ 4; S.1 γ α γ ν γ α γ α γ ν g να γ ν γ α γ α γ ν γ ν γ α γ α 4 γ ν ; S. γ α γ µ γ ν γ α γ α γ µ g µα γ µ γ α γ ν
Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4
Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±
Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper
o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a
M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)
Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Field Theory 263: Problem Set 1
Field Theory 263: Problem Set Michael Good Jan 27, 2006 Problem : Show that Pauli s equation, [ 2m ( i e A( r)) c 2 e 2mc σ B( r)] αβ ψ β ( r) = i t ψ α( r) can be more compactly written as where π = i
Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 2
Ε Ω Μ Ε Τ Ρ Ι - Κ Ε Φ Λ Ι Ο 2 Τριγωνομετρία ΛΟΟΣ ΕΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ α α β α β α β 1. ν 2, να υπολογίσετε τους λόγους :,, β β β α β 2. Σε ένα ισόπλευρο τρίγωνο με πλευρά 6 cm και ύψος, να υπολογίσετε τους
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
The tables gives expressions for VaR p (X) and ES p (X) when X is an absolutely continuous random variable specified by the stated pdf and cdf.
The tbles gies eressions for VR X nd ES X when X is n bsolutely continuous rndom rible secified by the stted df nd cdf. Eonentil Kumrswmy eonentil df cdf VR X ES X e b e e e b e e b /b / /b / Eonentited
ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Σωστό. Σωστό. Σωστό 4. Λάθος 5. Σωστό 6. Λάθος 7. Σωστό 8. Λάθος 9. Σωστό 0. Λάθος. Λάθος a. Σωστό b. Λάθος c. Λάθος
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
Errata 18/05/2018. Chapter 1. Chapter 2
Errata 8/05/08 Fundamentals of Neutrino Physics and Astrophysics C. Giunti and C.W. Kim Oxford University Press publication date: 5 March 007; 78 pages ± Lines are calculated before or after + the Anchor.
ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.
ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions
An Introduction to Quantum Field Theory Pekin and Schroeder Solution Andrzej Pokraka December, 7 Content The Dirac Equation. Lorentz grou.... Gordon Identity..................................................
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclss.ue.gr/courses/inf6/ Άνοιξη 207 - I. ΜΗΛΗΣ ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Divie Coquer D&C ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 207 - Ι. ΜΗΛΗΣ - 04 - DIVIDE & CONQUER I Divie & Coquer Διαίρεσε αναδρομικά το
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ. ii) = x και. Περιπτώσεις στις οποίες η συνάρτηση είναι πολλαπλού τύπου και το x
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ Περιπτώσεις στις οποίες βρίσκουμε την παράγωγο της f στο με τον ορισμό ~ Να βρεθούν με τη βοήθεια του ορισμού οι παράγωγοι αριθμοί των παρακάτω συναρτήσεων: i) f() = + + 4 στο =- ii) f()
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >
# % & ( ) ) +,. / 0, 1 / )., / 2 (& 3 5 % 6 6 7 8 : ; < : / : ; = 5 >
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Dirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation
. / )!! )! +! ) + 4
!! # % & ( ) ) +!,. / )!! )! +! 0 1!+! 2 3. 4 ) + 4! 5! # 6!, / / +! + 7 % + +!! 8 9! : #!! 5!.! ; %! %!! 8:! 0 9 + 8 9 < 4 4 + ) + ;= > ) 5! +! < : + 5 +!! + 1! ; 2! +! + / #!!! + 5 + < + # = ;!+ 1 0
Samples of common TEX font encodings
Samples of common TEX font encodings Scott Pakin scott+pkfh@pakin.org June 12, 2011 The pkfix-helper program occasionally needs help from the user in selecting an appropriate tfm file to match a Type 3
4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc
4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Lecture 2 The Wess-Zumino Model
Lecture 2 The Wess-Zumino Model Outline Review: two component spinors. The simplest SUSY Lagrangian: the free Wess-Zumino model. The SUSY algebra and the off-shell formalism. Noether theorem for SUSY:
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ
8/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματισμού κάτω από μετασχηματισμούς Lorentz ώστε να φτιάξουμε
V fn V ni 2πδ(E f E i )
Ο διαδότης Εχουμε δεί ήδη ότι στα διαγράμματα Feynman η γραμμή του εικονικού φωτονίου αντιστοιχεί στο όρο 1/q 2 με q η ορμή του εικονικού φωτονίου (q 2 0). Αν το εικονικό σωματίδιο έχει μάζα ο διαδότης
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ 1 ο ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ 01-06-009 α 1 1 Α. Να αποδείξετε ότι, για δύο διανύσματα = (x,ψ ) και β = ( x, ) ψ μη παράλληλα στον άξονα ψ ψ
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Εξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 5 η Ανιχνευτές Νικόλαος Χ. Σαγιάς Επίκουρος
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Supersymmetric Field Theories in Four and Two Dimensions
Bachelor Thesis Lukas Gnam Supersymmetric Field Theories in Four and Two Dimensions Institute for Theoretical Physics Advisors/Supervisors: Privatdoz. Dipl.-Ing. Dr.techn. Herbert Balasin Univ.Ass. Dipl.-Ing.
70. Let Y be a metrizable topological space and let A Ď Y. Show that Cl Y A scl Y A.
Homework for MATH 4603 (Advanced Calculus I) Fall 2017 Homework 14: Due on Tuesday 12 December 66 Let s P pr 2 q N let a b P R Define p q : R 2 Ñ R by ppx yq x qpx yq y Show: r s Ñ pa bq in R 2 s ô r ppp
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Magnetic bubble refraction in inhomogeneous antiferromagnets
Magnetic bubble refraction in inhomogeneous antiferromagnets Martin Speight University of Leeds Nonlinearity 19 (006) 1565-1579 Plan Planar isotropic inhomogeneous antiferromagnetic spin lattices Continuum
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..
இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0
ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ
Solutions for String Theory 101
Solutions for String Theory 0 Lectures at the International School of Strings and Fundamental Physics Munich July 6 - August 6 00 Email: Neil Lambert Theory Division CERN Geneva 3 Switzerland neil.lambert@cern.ch
Micro-Note on solving super p=2 form A MN
Micro-Note on solving super p=2 form A MN Sunny Guha April 10, 2016 1 Introduction Superforms are extended versions of differential forms which include superspace coordinates. For example a one-form superform
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
8.324 Relativistic Quantum Field Theory II
8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b