Statistica descriptivă
|
|
- Ευαδνη Παπαϊωάννου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Statistica descriptivă Indicatori sintetici ai distribuţiilor statistice M. Popa
2 Statistica descriptivă - obiective Cum se prezintă valorile unei distribuţii? Cât de apropiate sunt unele de altele? Cât de diferite sunt unele de altele? Există valori care reprezintă întreaga distribuţie?
3 Categorii de indicatori Indicatori ai tendinţei centrale valori tipice, reprezentative, care descriu distribuţia în întregul ei Indicatori ai împrăştierii descriu caracteristica de împrăştiere a valorilor distribuţiei Indicatori ai formei distribuţiei se referă la forma curbei de reprezentare grafică a distribuţiei
4 Indicatori ai tendinţei centrale modul mediana media
5 Modul (Mo) Definiţie: valoarea cu frecvenţa cea mai mare clasa de interval expresia ce mai directă a valorii tipice (reprezentative) se află prin alcătuirea tabelei de frecvenţe (simple sau grupate) şi este valoarea (clasa) căreia îi corespunde frecvenţa absolută cea mai ridicată. distribuţii unimodale ( Mo=5) distribuţii bimodale ( Mo=5; =2) distribuţii multimodale ( Mo=5; =2; =8)
6 MEDIANA (Me) valoarea din mijlocul unei distribuţii are 50% dintre valori deasupra ei şi 50% dintre valori dedesubtul ei corespunde valorii de 50% pe coloana frc%. percentila?... decila?... quartila? distribuţie cu număr impar de valori Me este chiar valoarea respectivă. distribuţie pară Me se calculează ca medie a valorilor din mijlocul distribuţiei 5,8,3,2,5,4, 2,3,4,5,5,8 Me=4,5 G. Fechner
7 MEDIA ARITMETICĂ (m) Notaţii uzuale: (miu) media populaţiei m media eşantionului Calcul pentru frecvenţe simple (583254) X m N ,50 Calcul pentru frecvenţe grupate ( ) ( X * m f f ) * 2 8*1 3* 4 2 * 2 4* ,90
8 Modul, Mediana și Media vizează același lucru, tendința centrală și totuși N= ΣX=300 media=20 ΣX/N=300/15 mediana=15 (N+1)/2=8 modul=12 (valoarea cea mai frecventă)
9
10 Proprietăţile mediei aritmetice Adăugarea\scăderea unei constante la fiecare valoare a distribuţiei, măreşte\scade media cu acea valoare Înmulţirea\împărţirea fiecărei valori a distribuţiei cu o constantă, multiplică\divide media cu acea constantă Suma abaterii valorilor de la medie este întotdeauna egală cu zero Suma pătratului abaterilor de la medie va fi întotdeauna mai mică decât suma pătratelor abaterilor în raport cu oricare alt punct al distribuţiei
11 Proprietățile mediei variabila constantă + * abateri medie , , , , , ,50 m=4.5 m=6.5 m=9 suma=0 media=?
12 Valori nedeterminate şi clase deschise Valorile nedeterminate valori a căror mărime nu decurge din procesul de măsurare, în acelaşi mod în care rezultă oricare valoare a seriei Exemplu: testul de asociere verbală (10 sec) Clase (categorii) deschise categorii care au una dintre limite liberă Exemplu: Câte ţigări fumezi zilnic? ( 30 sau mai mult ). În astfel de cazuri se utilizează mediana
13 Avantajele indicatorilor tendinţei centrale MODUL - Uşor de calculat (nesemnificativ în prezent); - Poate fi utilizat pentru orice tip de scală; - Este singurul indicator pentru scale nominale;- - Corespunde unui scor real al distribuţiei; MEDIANA MEDIA - Poate fi utilizată pe scale ordinale şi de interval\raport; - Poate fi utilizată şi pe distribuţii de frecvenţă cu clase deschise sau scoruri nedeterminate la marginile distribuţiei; - Reflectă valorile întregii distribuţii; - Are multe proprietăţi statistice dezirabile; - Adecvată pentru utilizare în statistici avansate;
14 Dezavantajele indicatorilor tendinţei centrale MODUL - În general, nesigur, mai ales în cazul eşantioanelor mici, când se poate modifica dramatic la o modificare minoră a unei valori; - Poate fi greşit interpretat. Se identifică total cu un scor anume, fără a spune nimic despre celelalte valori; - Nu poate fi utilizat în statistici inferenţiale; MEDIANA MEDIA - Poate să nu corespundă unei valori reale (N par); - Nu reflectă valorile distribuţiei (un scor extrem se poate modifica, fără a afecta Me); - Este mai puţin sigură în extrapolarea de la eşantion la populaţie; - Greu de utilizat în statistici avansate - De obicei nu corespunde unei valori reale; - Nu este tocmai adecvată pentru scale ordinale; - Conduce la interpretări greşite pe distribuţii asimetrice - Poate fi puternic afectată de scorurile extreme;
15
16 Valori extreme (excesive) ale distribuţiei valori excesive, neobişnuit de mari sau de mici faţă de celelalte valori ale unei distribuţii Identificare metoda grafică Box-and-Whisker-Plot (Box- Plot) autor Tukey
17 142 valoare extremă 135 valoare extremă Limita de sus poate urca până la 133,5 Cea mai apropiată valoare este x13= Percentila 75 (114) H= =13 Mediana (Q2) 101 Percentila 25 (101) Limita de jos este 81.5 Trasăm la x13=81.5
18
19 30 25 Rasp corecte examen iunie grupa
20 125 SUM (it_01 to it_22) f Gender m
21 Tratarea valorilor extreme Stabilirea naturii valorilor extreme: erori de înregistrare (tastare); erori de măsurare; rezultate influenţate de anomalii ale condiţiilor experimentale. eşantionul a fost extras dintr-o populaţie asimetrică valorile respective fac parte din altă populaţie de valori eşantion prea mic Tratarea lor pe una din căile posibile: eliminare (dacă sunt erori necorectabile); corectare (dacă este posibil); utilizarea mediei 5%trim, transformare (extragerea radicalului din toate valorile distribuţiei, logaritmarea distribuţiei, etc.)
22
23 Indicatori sintetici ai împrăştierii măsoară gradul de diversificare a valorilor împrăştierea scorului la un test de rezistenţă la stres, înainte şi după un program de psihoterapie înainte dupa m1=30 m2=40
24 Tipuri de indicatori 1. Amplitudinea absolută 2. Amplitudinea relativă 3. Abaterea quartilă (cvartilă, intercvartilă) 4. Abaterea semi-interquartilă 5. Abaterea medie 6. Dispersia (varianţa) 7. Abaterea standard 8. Coeficientul de variaţie
25 Amplitudinea absolută (R) diferenţa dintre valoarea maximă şi valoarea minimă a unei distribuţii indică în mod absolut plaja de valori între care se întinde distribuţia. poate fi influenţată de o singură valoare aflată la extremitatea distribuţiei 1,2,3,4,5,6,7 R=Xmax-Xmin=7-1=6
26 Amplitudinea relativă (R%) raportul procentual dintre amplitudine şi medie utilă când cunoaştem plaja teoretică de variaţie a valorilor 1,2,3,4,5,6,7 R R% *100 m 6 R% * % 4
27 Imprecizia amplitudinii Distribuţia A are o amplitudine mai mare dar şi o variabilitate mai mare decât distribuţia B Amplitudinile distribuţiilor A şi B sunt identice, dar distribuţia A are mai multă variabilitate.
28 Abaterea quartilă (cvartilă, intercvartilă) (RQ) diferenţa dintre quartila 3 şi quartila 1 este distanţa dintre limita superioară şi cea inferioară a casetei Box-Plot (valoarea H) R Q Q Q 3 1
29 Abaterea semi-interquartilă (RSQ) distanţa unui un scor tipic faţă de amplitudinea întregii distribuţii este abaterea quartilă împărţită la 2 într-o distribuţie perfect simetrică RSQ=Q2=Me RSQ nu este afectată de valorile aberante indicator robust al împrăştierii R SQ Q Q 3 1 2
30
31 Abaterea medie (d) X X i m 5 (5 4.5) =.5 8 (8 4.5) = (3 4.5) = (2 4.5) = (5 4.5) =.5 4 (4 4.5) = -.5 X = 27 (X i -m) = 0 N = 6 m = 4.5 d abaterea valorii abaterea medie Întotdeauna d=0 X i N dar... m 1.5
32 Dispersia (varianţa, abaterea medie pătratică) Notaţii uzuale: s 2 (eşantion) 2 (populaţie) Se calculează ca sumă a abaterilor de la medie ridicate la pătrat
33 Dispersia (varianţa) s 2 (eşantion) 2 (populaţie) X = 27 N = 6 X (X i m) (X i m) 2 5 (5 4.5) = (8 4.5) = (3 4.5) = (2 4.5) = (5 4.5) = (4 4.5) = m = 4.5 (X i -m) = 0 (X-m) 2 = 21.5 s s ( X N m 2 2 i ) 2 21,
34 Abaterea standard s (eşantion); (populaţie), SD (APA); ab.std. se calculează prin extragerea radicalului din expresia dispersiei s ( X i N m) 2 s 21,5 6 1,89
35 Corecţia indicatorilor împrăştierii calculaţi pentru eşantioane s ( X N m 2 2 i ) dispersia abaterea standard Abaterea standard nu este definită pentru (n-1), ci pentru n Dar... suma abaterilor de la medie este întotdeauna 0... dacă ştim n-1 abateri, o cunoaştem pe ultima... doar primele n-1 abateri pot varia liber....(n-1) sunt definite ca grade de libertate s ( X i N m) 2 s 2 ( X N i m) 1 2 s ( X N i m) 1 2
36 Proprietăţile abaterii standard 1. Dacă se adaugă/scade o constantă la fiecare valoare a unei distribuţii, abaterea standard nu este afectată
37 Proprietăţile abaterii standard 2. Dacă se multiplică/divide fiecare valoare a unei distribuţii cu o constantă, abaterea standard se multiplică/divide cu acea constantă
38 Proprietăţile abaterii standard 3. Abaterea standard faţă de medie este mai mică decât abaterea standard faţă de orice altă valoare a unei distribuţii X (X i m) (X i 5) 2 5 (5 4.5) =.5 (5-5) 2 =0 8 (8 4.5) = 3.5 (8-5) 2 =9 3 (3 4.5) = -1.5 (3-5) 2 =4 2 (2 4.5) = -2.5 (2-5) 2 =9 5 (5 4.5) =.5 (5-5) 2 =0 4 (4 4.5) = -.5 (4-5) 2 =1 X = 27 (X i -m) = 0 (X-5) 2 =23 N = 6 m = 4.5
39
40 Coeficientul de variaţie (cv) abaterea medie şi abaterea standard se exprimă în unităţile de măsură ale variabilei de referinţă ca urmare, nu pot fi comparate în mod direct, pentru variabile diferite cv s m *100 cv poate fi calculat numai pe scale de raport (origine în 0) cv<15%, împrăştierea este mică şi, deci, media este reprezentativă cv este între 15%-30%, împrăştierea este mijlocie şi media este suficient de reprezentativă cv > 30%, împrăştierea este mare şi media are o reprezentativitate redusă
41 Alegerea indicatorului împrăştierii Abaterea standard este cea mai utilizată pentru scale de măsurare interval/raport. Realizează cea mai bună combinaţie între calitatea estimării şi posibilitatea de a fundamenta inferenţe statistice. Amplitudinea este un indicator nesigur şi care nici nu poate fi calculat în cazul scalelor nominale Pe distribuţii cu valori nedeterminate sau cu intervale deschise, se alege abaterea interquartilă (semi-interquartilă).
42
43 Indicatori ai formei distribuţiei simetrie (skewness) simetrică asimetrică negativ asimetrică pozitiv Skewness 0 negativ pozitiv
44 Efectul asimetriei asupra mediei 3, 4, 5, 5, 6, 7 Modul: 5 Mediana: 5 Media: 5 3, 4, 5, 5, 6, 7, 17 Modul: 5 Mediana: 5 Media: 6.7
45 Distribuţie: simetrică asimetrică negativ asimetrică pozitiv Medie Mediana Mod Medie Mediană Mod Mod Medie Mediană
46 Indicatori ai formei distribuţiei boltire (kurtosis) leptocurtica Kurtosis pozitiv mezocurtica Kurtosis 0 platicurtica Kurtosis negativ
47 Pentru sănătatea dvs., Când traversați, uitați-vă spre partea de unde pot veni mașini!
Indicatori sintetici ai distribuțiilor statistice
Indicatori sintetici ai distribuțiilor statistice STATISTICA DESCRIPTIVĂ observarea Obiective: organizarea descrierea datelor sintetizarea 1. Populație 2. Eșantion 3. Caracteristica observată Tabel de
Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011
1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua
POPULAŢIE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE
DATE NUMERICE POPULAŢIE DATE ALFANUMERICE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE Cursul I Indicatori statistici Minim, maxim Media Deviaţia standard Mediana Cuartile Centile, decile Tabel de date
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
Scoruri standard Curba normală (Gauss) M. Popa
Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70
STATISTICĂ DESCRIPTIVĂ
STATISTICĂ DESCRIPTIVĂ » Reprezentarea şi sumarizarea datelor» Parametrii statistici descriptivi Centralitate Dispersie Asimetrie Localizare Cuprins Măsuri de centralitate Măsuri de împrăştiere Media Amplitudine
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Variabile statistice. (clasificare, indicatori)
Variabile statistice (clasificare, indicatori) Definiţii caracteristică sau variabilă statistică proprietate în functie de care se cerceteaza o populatie statistica şi care, în general, poate fi măsurată,
NOTIUNI DE BAZA IN STATISTICA
NOTIUNI DE BAZA IN STATISTICA INTRODUCERE SI DEFINITII A. PARAMETRI SI STATISTICI Parametru valoare sau caracteristica asociata unei populatii constante fixe notatie - litere grecesti: media populatiei
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
3.5. Indicatori de împrăştiere
Dragomirescu L., Drane J. W., 009, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucure ti, 07p. ISB 978-973-734-46-8. 3.5. Indicatori de împrăştiere
Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
ESTIMAREA PARAMETRILOR STATISTICI. Călinici Tudor
ESTIMAREA PARAMETRILOR STATISTICI Călinici Tudor 1 Obiective educaţionale Înţelegerea procesului de estimare Însuşirea limbajului specific pentru inferenţa statistică Enumerarea estimatorilor fără bias
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Mihai Orzan joi, 19:30, sala 1406
Analiza datelor de marketing utilizand S.P.S.S. - curs introductiv - Mihai Orzan mihai.orzan@ase.ro joi, 19:30, sala 1406 Chestiuni organizatorice Nota: Examen final (1 iunie): 40% Test seminar: 60% http://orzanm.ase.ro/spss
Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
LUCRAREA DE LABORATOR Nr. 9 DETERMINAREA EXPERIMENTALÃ A DISTIBUŢIEI DIMENSIUNILOR EFECTIVE ÎN INTERIORUL CÂMPULUI DE ÎMPRÃŞTIERE
LUCRAREA DE LABORATOR Nr. 9 DETERMINAREA EXPERIMENTALÃ A DISTIBUŢIEI DIMENSIUNILOR EFECTIVE ÎN INTERIORUL CÂMPULUI DE ÎMPRÃŞTIERE 1. Scopul lucrãrii. Lucrarea are rolul de a permite cunoaşterea metodologiei
Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Distribuţia multinomială Testul chi-pătrat. M. Popa
Distribuţia multinomială Testul chi-pătrat M. Popa Evenimente probabilistice binomiale valori dihotomice (P, Q): (masculin/feminin, absent/prezent, adevărat/fals, etc.) multinomiale mai mult de două valori
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
9 Testarea ipotezelor statistice
9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Elemente de bază în evaluarea incertitudinii de măsurare. Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie
Elemente de bază în evaluarea incertitudinii de măsurare Sonia Gaiţă Institutul Naţional de Metrologie Laboratorul Termometrie Sonia Gaiţă - INM Ianuarie 2005 Subiecte Concepte şi termeni Modelarea măsurării
2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Statisticǎ - notiţe de curs
Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor
sunt comparate grupuri formate din subiecńi diferińi, evaluańi în condińii diferite testul t pentru eşantioane independente ANOVA
M. Popa sunt comparate grupuri formate din subiecńi diferińi, evaluańi în condińii diferite testul t pentru eşantioane independente ANOVA sunt comparate valori măsurate pe acelaşi grup (eşantion) de subiecńi
Coeficientul de corelaţie Pearson(r) M. Popa
Coeficientul de corelaţie Pearson(r) M. Popa Asocierea valorilor perechi re studiu 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 10 Nota la examen Conceptul de corelaţie (Galton şi Pearson) cauzalitatea este
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Analiza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Statistică descriptivă Distribuția normală Estimare. Călinici Tudor 2015
Statistică descriptivă Distribuția normală Estimare Călinici Tudor 2015 Obiective educaționale Enumerarea caracteristicilor distribuției normale Enumerarea principiilor inferenței statistice Calculul intervalului
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
DistributiiContinue de Probabilitate Distributia Normala
8.03.011 STATISTICA -distributia normala -distributii de esantionare lectia 7 30 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/index.asp?item=fisiere&id=88 DistributiiContinue
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Laborator biofizică. Noţiuni introductive
Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
1. Distribuţiile teoretice 2. Intervalul de încredere pentru caracteristicile cantitative (medii) Histograma Nr. valori Nr. de clase de valori
1. Distribuţiile teoretice (diagramă de distribuţie, distribuţia normală sau gaussiană) 2. Intervalul de încredere pentru caracteristicile cantitative (medii) 1. Distribuţia constituie ansamblul tuturor
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
5 Statistica matematică
5 Statistica matematică Cuvântul statistică afostiniţial folosit pentru a desemna o colecţiededatedesprepopulaţie şi situaţia economică, date vitale pentru conducerea unui stat. Cu timpul, Statistica a
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
7 Distribuţia normală
7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare
Amplitudinea sau valoarea de vârf a unui semnal
Amplitudinea sau valoarea de vârf a unui semnal În curent continuu, unde valoarea tensiunii şi a curentului sunt constante în timp, exprimarea cantităńii acestora în orice moment este destul de uşoară.