Variabile statistice. (clasificare, indicatori)
|
|
- Ευρώπη Παπαντωνίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Variabile statistice (clasificare, indicatori)
2 Definiţii caracteristică sau variabilă statistică proprietate în functie de care se cerceteaza o populatie statistica şi care, în general, poate fi măsurată, căpătând valori diferite de la un individ la altul; valoare (stare, realizare) forma concretă de manifestare a unei variabile statistice pentru un individ; scală totalitatea valorilor diferite ale unei caracteristici sau intervalul în care se conţin acestea (domeniu de valori al variabilei); măsurare procesul prin care se obţin valorile variabilelor sau atribuirea de valori caracteristicilor indivizilor potrivit unor reguli; cercetare studiul variabilelor şi a relaţiilor dintre ele.
3 Clasificarea variabilelor după modul de exprimare variabile calitative variabile, valorile cărora sunt exprimate prin cuvinte care desemnează apartenenţa individului la una din categoriile scalei (exemple: sexul, calificativul, profesia, starea civilă etc.). Variabilele calitative sunt de 2 tipuri: nominale şi ordinare. variabile cantitative variabile, valorile cărora se exprimă numeric (exemple: vârsta, salariul, inaltimea etc.). Variabilele cantitative sunt de 2 tipuri: de interval şi de raport.
4 Clasificarea variabilelor după numărul de valori (sau a variantelor de răspuns) dihotomice (binare, alternative) variabile calitative scala cărora e compusă din 2 valori antonime (da nu, prezent absent, aprins stins etc.). Noţiunea de variabilă binară provine de la codificarea valorilor acestora cu 0 şi 1. Codificarea prin 0/1 permite utilizarea acestor variabile în proceduri dedicate nivelurilor mai înalte de măsurare (ordinal, interval). nealternative (categoriale) celelalte variabile calitative, ce nu posedă proprietăţi ale variabilelor dihotomice.
5 Clasificarea variabilelor după modul de obţinere primare variabile obţinute în etapa de culegere a datelor (exemplu: vârsta înregistrată în ani, notele primite la examenele din sesiune etc.); derivate (auxiliare) variabile obţinute în urma procesului de prelucrare a variabilelor primare (exemplu: vârsta calculată pe grupe de vârstă, nota medie la sesiune etc.).
6 Clasificarea variabilelor după natura variaţiei caracteristicii numerice continue, care pot lua orice valoare din scala lor de variaţie (exemple: înălţime, greutate, cifră de afaceri etc.); discrete, care nu pot lua decât anumite valori pe scala lor de variaţie, de regulă numere întregi (exemple: numărul de copii dintr-o familie, numărul de sate dintr-un raion etc.).
7 Variabile nominale - variabile calitative care pot lua un număr finit de valori neordonate sau variabile, ce permit doar clasificarea observaţiilor. Observaţie: în vederea prelucrării, valorile variabilelor nominale se codifică, de regulă, cu numere întregi. În acest caz nivelul de măsurare (tipul variabilei) nu se modifică prin utilizarea unei astfel de codificări.
8 Variabile ordinare - variabile calitative ale căror valori sunt ordonate dar nu este definită (nu se poate defini) distanţa dintre oricare două valori. Observaţie: la codificarea valorilor (ordonate) ale variabilelor ordinare se folosesc şiruri ordonate de numere întregi.
9 Variabile de interval - variabile cantitative (numerice), utilizând o valoare 0 convenţională. La compararea valorilor găsim răspuns la întrebări de tipul: Cu cât e mai mare? sau Cu cât e mai mică? Observaţie: valorile variabilelor numerice nu se codifică: în calitate de cod se ia chiar valoarea variabilei.
10 Variabile de raport - variabile cantitative (numerice), utilizând o valoare 0 naturală. La compararea valorilor găsim răspuns şi la întrebări de tipul: De câte ori e mai mare? sau De câte ori e mai mică? Observaţie: valoarea 0 indică inexistenţa variabilei.
11 Notări n numărul indivizilor cercetaţi; X o caracteristică studiată; x 1, x 2,,x m valorile caracteristicii X; n 1, n 2,...,n m numărul de indivizi corespunzător valorilor caracteristicii (sau care posedă valoarea respectivă a caracteristicii).
12 Frecvenţe definiţii şi calculare (I) Se numeşte frecvenţă absolută a unei valori x i a caracteristicii, numărul de unităţi ale populaţiei n i corespunzătoare acestei valori. Se numeşte frecvenţă relativă a unei valori x i a caracteristicii raportul dintre frecventa absolută n i a valorii x i şi numărul total al indivizilor n. Frecvenţele relative exprimate în procente se mai numesc frecvenţe procentuale. Ele se calculează după formula: f i = n n i 100%
13 Frecvenţe definiţii şi calculare (II) Se numeşte frecvenţă cumulată procentul de indivizi ce se găsesc până la sau sub o treaptă (valoare) a scalei. Ea se calculează după formula: = n + n + n n n 100% i F i = f f f... f i Observaţie: frecvenţele cumulate au sens pentru variabilele ordinare şi cele cantitative.
14 Distribuţii de frecvenţe Un tabel de forma: X x 1 x 2 x 3... x m F f 1 f 2 f 3... f m poartă denumirea de distribuţie de frecvenţe.
15 Exerciţiu: de construit distribuţia de frecvenţe a culorilor bilelor observate
16 Distribuţia de frecvenţe a culorilor bilelor Culoare Frecvenţe absolute Frecvenţe relative (procentuale) 40% 20% 30% 10%
17 Reprezentarea grafică a distribuţiilor de frecvenţe (I) Albastră Roşie Galbenă Neagră
18 Reprezentarea grafică a distribuţiilor de frecvenţe (II) Neagră 10% Albastră 40% Galbenă 30% Roşie 20%
19 Indicatori ai variabilelor nominale În calitate de indicator al tendinţei centrale se utilizează modulul sau moda (Mo) categoria cu cea mai mare frecvenţă. În calitate de indicator al împrăştierii se utilizează Indicele variaţiei calitative (IVC) raportul dintre variaţia distribuţiei observate şi variaţia distribuţiei uniforme.
20 Determinarea indicatorilor pentru exemplul analizat Modulul categoria A (bila albastră) Pentru determinarea IVC se iau distribuţiile: - observată: { 8, 4, 6, 2 } şi - uniformă: { 5, 5, 5, 5 }. Atunci: 8 ( ) + 4 (6 + 2) IVC = 5 ( ) + 5 (5 + 5) % 93.3%
21 Indicatori ai variabilelor ordinare Tendinţa centrală: modulul (Mo); mediana (Me) valoarea din mijloc a şirului ordonat (în creştere sau descreştere) de valori ale caracteristicii. Indicator al împrăştierii: indicele variaţiei calitative (IVC). Forma distribuţiei de frecvenţe: simetrică (Mo=Me) sau asimetrică (Mo Me).
22 Exemplul 1 (În ce măsură sunteţi mulţumit de...?) 1 foarte nemulţumit (3) 2 nemulţumit (7) 3 indiferent (10) mulţumit (7) 6 5 foarte mulţumit (3) 4 2 Mo = indiferent Me = indiferent IVC = 63,3% Distribuţia - simetrică 0 f. nemult. nemult. indiferent mult. f. mult.
23 Exemplul 2 (În ce măsură sunteţi mulţumit de...?) 1 foarte nemulţumit (3) 2 nemulţumit (5) 3 indiferent (8) mulţumit (10) 6 5 foarte mulţumit (4) 4 2 Mo = mulţumit Me = indiferent IVC = 63,3% Distribuţia - asimetrică 0 f. nemult. nemult. indiferent mult. f. mult.
24 Indicatori ai tendinţei centrale pentru variabile cantitative modulul (Mo) se calculează numai după ce variabila se transformă în una ordinară cu scală de intervale; mediana (Me) valoarea din mijloc a şirului ordonat (numărul de valori impar) sau media aritmetică a celor două valori din mijlocul şirului ordonat (numărul de valori par); media (M) media aritmetică a şirului de valori ale caracteristicii, calculată după formula: M = x + x + x n = n 1 x n n i= 1 x i
25 Indicatori ai împrăştierii pentru variabile cantitative Amplitudinea: A = x max x min Dispersia (abaterea standard): σ n i= 1 = ( x i n M 2 )
26 Calcularea indicatorilor în Excel Modulul Mediana Media Amplitudinea Dispersia Frecvenţa =MODE(domeniu) =MEDIAN(domeniu) =AVERAGE(domeniu) =MAX(domeniu)-MIN(domeniu) =STDEV(domeniu) =FREQUENCY(domeniu,limite) Notări: domeniu domeniul de celule în care se gasesc datele analizate; limite domeniu ce conţine capetele intervalelor, în care se calculează frecvenţele
27 Calcularea indicatorilor în SPSS (1)
28 Calcularea indicatorilor în SPSS (2) Lista variabilelor transferate spre a fi prelucrate Lista tuturor variabilelor din baza de date
29 Calcularea indicatorilor în SPSS (rezultate)
30 Exerciţiu Notele la examen a unei grupe de studenţi sunt următoarele: 7, 5, 7, 8, 4, 6, 8, 2, 7, 1, 8, 10, 9, 7, 9, 6, 4, 2, 3, 7 Să se determine frecvenţele şi indicatorii statistici ai acestei variabile.
31 Răspuns Se aranjează şirul în creştere: 1, 2, 2, 3, 4, 4, 5, 6, 6, 7 7, 7, 7, 7, 8, 8, 8, 9, 9, 10 Distribuţia de frecvenţe: Nota n i Mo=7; Me=7; M=6 σ= 63 8
32 Indicatori ai variabilelor statistice (recapitulare) Indicatori ai tendinţei centrale Indicatori de dispersie Modul Mediană Medie IVC Amplitudine Dispersie Nominale X X Ordinare X X X Numerice X X X X X
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
POPULAŢIE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE
DATE NUMERICE POPULAŢIE DATE ALFANUMERICE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE Cursul I Indicatori statistici Minim, maxim Media Deviaţia standard Mediana Cuartile Centile, decile Tabel de date
Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011
1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Scoruri standard Curba normală (Gauss) M. Popa
Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
NOTIUNI DE BAZA IN STATISTICA
NOTIUNI DE BAZA IN STATISTICA INTRODUCERE SI DEFINITII A. PARAMETRI SI STATISTICI Parametru valoare sau caracteristica asociata unei populatii constante fixe notatie - litere grecesti: media populatiei
Indicatori sintetici ai distribuțiilor statistice
Indicatori sintetici ai distribuțiilor statistice STATISTICA DESCRIPTIVĂ observarea Obiective: organizarea descrierea datelor sintetizarea 1. Populație 2. Eșantion 3. Caracteristica observată Tabel de
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Mihai Orzan joi, 19:30, sala 1406
Analiza datelor de marketing utilizand S.P.S.S. - curs introductiv - Mihai Orzan mihai.orzan@ase.ro joi, 19:30, sala 1406 Chestiuni organizatorice Nota: Examen final (1 iunie): 40% Test seminar: 60% http://orzanm.ase.ro/spss
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
7 Distribuţia normală
7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare
Statistica descriptivă
Statistica descriptivă Indicatori sintetici ai distribuţiilor statistice M. Popa Statistica descriptivă - obiective Cum se prezintă valorile unei distribuţii? Cât de apropiate sunt unele de altele? Cât
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
ECO-STATISTICA-NOTITZZE DE LABORATOR
ECO-STATISTICA: OBIECTIVE: A. EVALUAREA CELEI MAI PROBABILE VALORI A UNEI CARACTERISTICI A MEDIULUI IN ZONA INVESTIGATA si a ERORII DE ESTIMARE In zona investigata cu o probabilitate de 90% (riscul asumat
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
5 Statistica matematică
5 Statistica matematică Cuvântul statistică afostiniţial folosit pentru a desemna o colecţiededatedesprepopulaţie şi situaţia economică, date vitale pentru conducerea unui stat. Cu timpul, Statistica a
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
STATISTICĂ DESCRIPTIVĂ
STATISTICĂ DESCRIPTIVĂ » Reprezentarea şi sumarizarea datelor» Parametrii statistici descriptivi Centralitate Dispersie Asimetrie Localizare Cuprins Măsuri de centralitate Măsuri de împrăştiere Media Amplitudine
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
LUCRAREA DE LABORATOR Nr. 9 DETERMINAREA EXPERIMENTALÃ A DISTIBUŢIEI DIMENSIUNILOR EFECTIVE ÎN INTERIORUL CÂMPULUI DE ÎMPRÃŞTIERE
LUCRAREA DE LABORATOR Nr. 9 DETERMINAREA EXPERIMENTALÃ A DISTIBUŢIEI DIMENSIUNILOR EFECTIVE ÎN INTERIORUL CÂMPULUI DE ÎMPRÃŞTIERE 1. Scopul lucrãrii. Lucrarea are rolul de a permite cunoaşterea metodologiei
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Distribuţia multinomială Testul chi-pătrat. M. Popa
Distribuţia multinomială Testul chi-pătrat M. Popa Evenimente probabilistice binomiale valori dihotomice (P, Q): (masculin/feminin, absent/prezent, adevărat/fals, etc.) multinomiale mai mult de două valori
III. Reprezentarea informaţiei în sistemele de calcul
Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
ESTIMAREA PARAMETRILOR STATISTICI. Călinici Tudor
ESTIMAREA PARAMETRILOR STATISTICI Călinici Tudor 1 Obiective educaţionale Înţelegerea procesului de estimare Însuşirea limbajului specific pentru inferenţa statistică Enumerarea estimatorilor fără bias
Recapitulare - Tipuri de date
Recapitulare - Tipuri de date Date numerice vârsta, greutatea, talia, hemoglobina, tensiunea arterială, calcemia, glicemia, colesterolul, transaminazele etc. valori continue sau discrete numere întregi
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul
TERMOCUPLURI TEHNICE
TERMOCUPLURI TEHNICE Termocuplurile (în comandă se poate folosi prescurtarea TC") sunt traductoare de temperatură care transformă variaţia de temperatură a mediului măsurat, în variaţie de tensiune termoelectromotoare
Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
3.5. Indicatori de împrăştiere
Dragomirescu L., Drane J. W., 009, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucure ti, 07p. ISB 978-973-734-46-8. 3.5. Indicatori de împrăştiere
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Laborator biofizică. Noţiuni introductive
Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
3. I. Mihoc, C. Fătu, Calculul probabilităţilor şi statistică matematică, Transilvania Press, Cluj-Napoca, 2003
CURS STATISTICĂ CURS 1 Bibliografie: 1. P. Blaga, Calculul probabilităţilor şi statistică matematică, vol. 2, Curs şi Culegere de probleme, Litografiat Univ. Babeş-Bolyai, Cluj-Napoca, 1994 2. P. Blaga,
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08.
1. În argentometrie, metoda Mohr: a. foloseşte ca indicator cromatul de potasiu, care formeazǎ la punctul de echivalenţă un precipitat colorat roşu-cărămiziu; b. foloseşte ca indicator fluoresceina, care
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
9 Testarea ipotezelor statistice
9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,
Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.
Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.
Statisticǎ - notiţe de curs
Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor
Modelarea şi Simularea Sistemelor de Calcul Distribuţii ( lab. 4)
Modelarea şi Simularea Sistemelor de Calcul Distribuţii ( lab. 4) În practică eistă nenumărate eperienţe aleatoare care au un câmp de evenimente nenumărabil şi implicit sistemul complet de evenimente aleatoare
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE
2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Sistemul de clasificare si evaluare al corpurilor de apa de suprafata in conformitate cu Directiva Cadru Apa
Sistemul de clasificare si evaluare al corpurilor de apa de suprafata in conformitate cu Directiva Cadru Apa Anexa 6.1.1A - elemente biologice: fitoplancton Rauri INDICATORI / INDICI PROPUSI INITIAL Pentru
CARACTERISTICI GENERALE ALE TRADUCTOARELOR. Caracteristicile statice şi indicatori de calitate deduşi din caracteristicile statice
ENZORI ŞI TRADUCTOARE note de curs - Eugenie Posdărăscu CARACTERITICI GENERALE ALE TRADUCTOARELOR tudiul traductoarelor prin prisma sistemelor automate impune un studiu al comportamentelor acestora atât
Cursul 6. Tabele de incidenţă Sensibilitate, specificitate Riscul relativ Odds Ratio Testul CHI PĂTRAT
Cursul 6 Tabele de incidenţă Sensibilitate, specificitate Riscul relativ Odds Ratio Testul CHI PĂTRAT Tabele de incidenţă - exemplu O modalitate de a aprecia legătura dintre doi factori (tendinţa de interdependenţă,
Stabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
1. Distribuţiile teoretice 2. Intervalul de încredere pentru caracteristicile cantitative (medii) Histograma Nr. valori Nr. de clase de valori
1. Distribuţiile teoretice (diagramă de distribuţie, distribuţia normală sau gaussiană) 2. Intervalul de încredere pentru caracteristicile cantitative (medii) 1. Distribuţia constituie ansamblul tuturor
Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu
INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Distribuţia binomială Teste statistice neparametrice nominale. M. Popa
Distribuţia binomială Teste statistice neparametrice nominale M. Popa a) parametrice Teste statistice inferenţele sunt probate prin utilizarea parametrilor populaţiei (indicatori care descriu tendinţa