CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA
|
|
- ÚΑἰσχύλος Βιλαέτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple anotación dun ítem como solución as cuestións teóricas. Pode usarse calculadora sempre que non sexa programable nin memorice texto. 1.- Un cilindro macizo e homoxéneo de 3 kg de masa e 0,1 m de radio xira baixo a acción dunha pesa de 0,3 kg que colga do extremo dunha corda que se enrola sobre o cilindro, de tal xeito que ó baixar imprímelle ó cilindro un movemento de rotación arredor do eixe horizontal. (I = mr 2 /2 ; g = 9,8 m/s 2 ). Calcule: a) a aceleración angular; b) o número de voltas que da o cilindro nun minuto partindo do repouso. 2- Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso del globo (sen o helio) é de 3000 kg. Calcule: a) a aceleración de subida ; b) as enerxías cinética e potencial ó cabo de 10 s. (Datos g = 9,8 m/s 2 d aire = 1,3 kg/m 3 d Helio =0,17 kg/m 3 ). 1.- A cantidade de movemento dun fotón ven expresada por: a) p=mc 2 ; b) p=hν; c) p=h/λ. 2.- En cál destes tres puntos é maior a gravidade terrestre: a) nunha sima a 4 Km de profundidade; b) no ecuador; c) no alto do monte Everest. 3.- Si se mergullan en auga dous obxectos pesados aparentemente iguais en forma pero de diferente densidade cál dos dous descenderá mais lentamente?: a) o de menor densidade; b) o de maior densidade; c) os dous por igual. CUESTIÓN PRÁCTICA: Cunha lente converxente debuxa a marcha dos raios e o tipo de imaxe formada en cada un destes dous casos: a) si a distancia obxecto s é igual ó dobre da focal (2f); b) si a distancia obxecto é igual a focal f. 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (- 2,0) (en metros). Calcule: a) campo eléctrico en (0,0) e en (0,10); b) traballo para transportar unha carga q de -1 µc desde (1,0) a (-1,0). (Dato K = Nm 2 /C 2 ). 2.- Lánzase un proxectil verticalmente dende a superficie da terra, cunha velocidade inicial de 3 km/s, calcule: a) qué altura máxima alcanzará?; b) a velocidade orbital que é preciso comunicarlle a esa altura para que describa unha órbita circular. (Datos G = 6, Nm 2 /kg 2, R T = 6378 km M T = 5, kg). 1.- Si os casquetes de xeo polares se fundiran totalmente, a velocidade de rotación da terra: a) aumentaría; b) diminuiría; c) non se vería afectada. 2.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b) onda estacionaria; c) difracción. 3.- Segundo a teoría da relatividade dous observadores en sistemas de referencia inerciais miden: a) a mesma velocidade da luz; b) o mesmo espacio; c) o mesmo tempo. CUESTIÓN PRÁCTICA: Na determinación da K e polo método dinámico, valora a influencia que teñen as seguintes magnitudes: a) a masa total do resorte; b) a amplitude das oscilacións; c) o número de medidas feitas; d) a lonxitude do resorte.
2 CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) SETEMBRO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica o práctica). Non se valorará a simple anotación dun ítem como solución as cuestións teóricas. Pode usarse calculadora sempre que non sexa programable nin memorice texto. 1.- Unha masa de kg describe un M.H.S. de frecuencia 0,1 Hz e amplitude 0,05 m, sabendo que en t=0 x=0, determina: a) a velocidade e aceleración cando t= 3 s; b) as enerxías cinética e potencial nese instante. 2.- Un satélite artificial cunha masa de 200 kg móvese nunha órbita circular arredor da terra cunha velocidade constante de km/h, calcula: a) a qué altura está situado?; b) fai un gráfico indicando qué forzas actúan sobre o satélite e calcula a enerxía total. (Datos: g 0 = 9,8 m/s 2 ; R T = 6370 km). 1.- Si unha arteria se dilata, a presión sanguínea: a) aumenta; b) diminúe; c) non se modifica. 2.- Por dos conductores largos rectos e paralelos circulan correntes I no mesmo sentido. Nun punto do plano situado entre os dous conductores o campo magnético resultante, comparado co creado por un solo dos conductores é : a) maior; b) menor; c) o mesmo. 3.- A enerxía dun cuanto de luz é directamente proporcional a : a) lonxitude de onda; b) frecuencia; c) ó cadrado da velocidade da luz. CUESTIÓN PRÁCTICA: ai un esquema gráfico explicando cómo podes usar unha lente converxente como lupa de aumento. 1.- A ecuación de propagación dun movemento ondulatorio é y(x,t) = 2sen(8πt-4πx) (S.I.) ;a) cál é a amplitude, a frecuencia e a velocidade de propagación da onda?; b) cál é (en función do tempo) a velocidade e a aceleración dun punto para o que x é constante?. 2.-Unha carga puntual Q crea un campo electrostático. Ó trasladar outra carga q desde un punto A ó infinito realízase un traballo de 10J e si se traslada desde ó infinito a B o traballo é de -20J; a) qué traballo se realiza para trasladar q de A a B?; b) Si q =-2C cál é o signo de Q?, qué punto está mais próximo de Q, o A ou o B?. 1.- Terás visto algunha vez en T.V. ós astronautas flotando dentro da súa nave, elo é debido a: a) que non hai gravidade; b) a falta de atmosfera; c) que a forza gravitatoria é igual a forza centrípeta. 2.- Dúas rodas de coche da mesma masa e diferente radio, baixan rodando por unha pendente e chega antes ó chan: a) a de menor radio; b) a de maior radio; c) as dúas o mesmo tempo. 3. Cál dos seguintes fenómenos constitúe unha proba da teoría corpuscular da luz?: a) a refracción; b) a difracción; c) o efecto fotoeléctrico. CUESTIÓN PRÁCTICA: Na determinación de g cun péndulo simple, describe brevemente o procedemento e o material empregado.
3 convocatoria de xuño Aceleración angular rt = Iα mg T = ma a = rα 0.3 * 9.8 = α( ) α = 16.33rad/s 2 Número de voltas φ = αt 2 / 2 = (16.33/2) * (60) 2 = 29394rad = voltas A aceleración de subida calcúlase a partir da relación: E P = ma 5 * 10 3 * 1.3 * 9.8 (5 * 10 3 * 0.17 * * 10 3 * 9.8) = (5 * 10 3 * * 10 3 ) a a = 6.74m / s 2 As enerxías cinética e potencial e a altura acadada ó cabo de 10 segundos: v = at = 6.74 * 10 = 67.4m /s E c = (1/2) * 10 3 * 3.85 * (67.4) 2 = 8.74 * 10 6 J y = (1/2)at 2 = (1/2) * 6.74 * 100 = 337m E p = 10 3 * 3.85 * 9.8 * 337 = * 10 6 J A cantidade de movemento dun fotón ven dada pola relación p=h/λ xa que a lonxitude de onda é λ=c/ν λ=hc/hν=hc/e. Dado que E=hν é a enerxía dun fotón e como a cantidade de movemento dun fotón está relacionada coa enerxía E=pc, obtense finalmente λ =h/p. fluído, pero o peso e a aceleración de baixada e maior no caso do obxecto de maior densidade. Polo tanto descenderá mais lentamente o de menor densidade. Aplícase unha versión do teorema de Gauss ó campo gravitatorio segundo o cal a gravidade nun punto interior a unha distribución de masa esférica crece liñálmente coa distancia ó centro da distribución e en puntos exteriores diminúe co cadrado da distancia ó centro da distribución. Segundo ese razoamento ó valor máximo da gravidade creado por unha distribución esférica de masa estaría na superficie da distribución. Aplicando a relación P-E=ma, o empuxe é o mesmo nos dous casos porque desaloxan o mesmo volume de O Cunha separación igual a 2f, a imaxe será real, invertida e do mesmo tamaño. Si está situado na focal non se formará imaxe xa que dados dous raios, un que entre paralelo e outro que pasa polo centro óptico emerxen paralelos e non se atopan nunca.
4 Cálculo do campo eléctrico nos puntos A(0,0) e B(0,10) Cálculo dos potenciais nos puntos C(1,0) e D(-1,0) e o traballo W(A->B) Cálculo da altura máxima aplicando conservación da enerxía: Cálculo da velocidade orbital Se os casquetes de xeo polares se funden, a auga fundida distribúese na superficie da terra aumentando a súa distancia ó eixe de xiro e aumentando o momento de inercia. Polo principio de conservación do momento angular se aumenta o momento de inercia ten que diminuír a velocidade de rotación. Unha característica dun movemento ondulatorio cando interacciona cun obxecto cuias dimensións sexan comparables a súa λ é a difracción. A construcción da onda difractada realízase seguindo o principio de Huygens e o principio de superposición. Nestas circunstancias cada punto da onda na fenda se converte nun foco emisor de novas ondas e unha vez traspasada a fenda a onda propágase en todas as direccións, como se a súa dirección de movemento se curvara. Esto permite, por exemplo, oír detrás dun obstáculo ou ver luz atravesando una fenda sen observar na dirección da traxectoria inicial. A velocidade da luz ten o mesmo valor c en todos os sistemas de referencia inerciais. Esto permite xustificar as transformacións de Lorentz e explicar os feitos mais salientables da teoría da relatividade como a dilatación do tempo ou a contracción da lonxitude. A masa do resorte m debe ser desprezable fronte á masa que oscila suspendida. En caso contrario a masa que oscila debería incluír un termo de corrección que de conta da parte da masa do resorte que tamén oscila (xeralmente considérase m/3). Ha de procurarse que todas as oscilacións sexan da mesma amplitude, o amortecemento non ten importancia (sempre que se tomen precaucións para que todas as oscilacións sexan medidas igual) debido a que o período non depende del. O número de oscilacións ha de ser de un número suficiente para poder calcular o valor medio do período xa que ven afectado de menos erro que unha sola medida. A lonxitude do resorte non inflúe directamente na medida do período, pero si na forma de realizar as medidas. Para realizar o tratamento de datos, é axeitado confeccionar unha gráfica m-t 2, para cada resorte, resultando a pendente igual a k/4π 2.
5 CONVOCATORIA DE SETEMBRO Determinación da fase inicial ϕ 0 e da ω x = A sen(ωt + ϕ 0 ) si t = 0 x = 0 => ϕ 0 = 0 ω = 0.2πrad / s x = 0.05 sen(0.2πt) Cálculo da velocidade e da aceleración cando t = 3s v = 0.2π * 0.05 cos(0.2πt) = 9.71 * 10 3 m / s a = (0.2π) 2 * 0.05 sen(0.2πt) = m / s 2 Cálculo das enerxías, cinética, potencial e total Cálculo do radio da órbita Gráfico de forzas e cálculo da enerxía. Hai unha forza centrípeta que orixina un movemento circular. v c Supondo que o caudal se mantén constante Q=Sv, si aumenta a sección diminúe a velocidade. Aplicando o teorema de Bernuilli P+(½)ρv 2 +ρgh si diminúe a presión debida a velocidade, ha de aumentar a presión do fluído P. Tratándose de fíos paralelos con correntes no mesmo sentido, créanse campos magnéticos cuia dirección podemos saber aplicando a regra da man dereita, e polo tanto na zona entre os fíos os campos son de sentidos contrarios o que provocará una diminución do campo con respecto ó valor que tería si fora debido a un fío solo. A enerxía dun cuanto de luz, é E=hν sendo h a constante de Planck e ν a frecuencia da radiación. Constitúe o fundamento para explicar o efecto fotoeléctrico e o comportamento corpuscular da luz cando interacciona coa materia. O Colocando o obxecto entre a focal e o centro óptico a imaxe que se obtén é virtual dereita e de maior tamaño que o obxecto.
6 Identificación da amplitude e frecuencia e cálculo da velocidade de propagación do movemento ondulatorio. y(x,t) = 2 sen (ωt - kx) y(x,t) = 2 sen (8πt - 4πx) A = 2m 8π = ω = 2π / T T = 0.25s v = 4s -1 8π = 4πu u = 2m / s Cálculo da velocidade e aceleración dun punto para unha x constante v = 2ω cos (ωt - kx) a = 2ω 2 sen (ωt - kx) Cálculo do traballo de A a B 10 = q V A V A = 10 / q 20 = q V B V B = 20 / q B W A = q (V A V B ) = q ( ) = 10J q Si q = 2C negativo: signo de Q e punto máis próximo a Q V A = 5V V B = 10V V = K ( q) / r O máis próximo á orixe é o punto B, porque ten o maior valor do potencial. A velocidade da nave afastaríaa indefinidamente da terra. Pero debido a existencia de gravitación, aparece una forza centrípeta sobre todo o satélite que fai que describa un movemento circular arredor da terra. Os astronautas e a nave están sometidos a mesma forza de atracción pola terra pero non hai ningunha interacción mutua ou forza entre a nave e os astronautas. Aplicando a principio de conservación da enerxía (incluíndo rotación) mgh = (1/2)mv 2 + (1/2)mr 2 (v 2 / r 2 ) Observase que si teñen a mesma masa, como os radios do momento de inercia e da velocidade angular se anulan, han de chegar ó chan coa mesma velocidade lineal. O efecto fotoeléctrico constitúe un punto de partida para a xustificación da teoría corpuscular da luz o supor que a luz está formada por corpúsculos de enerxía hn que ó incidir sobre un metal alcalino extrae electróns e si se adopta un dispositivo no baleiro cun ánodo a tensión positiva que atrae ós electróns establécese unha corrente eléctrica detectable e medible experimentalmente. Hai una frecuencia umbral por debaixo da que non hai efecto fotoeléctrico porque a enerxía dos fotóns non e dabondo para arrincar os electróns do metal. Cando a enerxía do fotón excede esta enerxía umbral (traballo de extracción) a diferencia emprégase en enerxía cinética dos electróns arrincados. Preparación dunha corda e unha esfera de aceiro para colgar nela. Medir a lonxitude l. É un dato básico e o máis doado de achar. Medir un mínimo de 10 oscilacións. O período resultará de dividir o tempo entre o número de oscilacións, cunha precisión final que aumenta co número de oscilacións medidas. Repetir a medida ata un mínimo de tres veces, para lograr unha homoxeneidade e poder obter unha media nos datos. Variar o ángulo inicial e repetir a experiencia. É dicir, repetición da experiencia variando unha das magnitudes para contrastar os datos obtidos co axuste a unha relación matemática. Deste xeito, podemos observar a diferencia de período ó variar a lonxitude, e de igual xeito, como o erro vai aumentando cando o ángulo se fai relativamente grande.
PAU XUÑO 2013 FÍSICA
PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
Física e química 4º ESO. As forzas 01/12/09 Nome:
DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
PAU XUÑO 2010 FÍSICA
PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso
24/10/06 MOVEMENTO HARMÓNICO SIMPLE
NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
A LUZ. ÓPTICA XEOMÉTRICA
A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que
FISICA 2º BAC 27/01/2007
POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo
EJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
PAU XUÑO 2012 FÍSICA
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Exercicios de Física 01. Gravitación
Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na
Exercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
PAAU (LOXSE) Xuño 2002
PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior
FÍSICA. = 4π 10-7 (S.I.)).
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
PAU XUÑO 2011 FÍSICA
PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
ÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que
Exercicios de Física 04. Óptica
Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
FÍSICA. = 9, kg) = -1, C; m e
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1
Resorte: estudio estático e dinámico.
ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO
Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
Problemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
PAAU (LOXSE) Setembro 2006
PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica
FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B
ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada
Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B
ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
PAU SETEMBRO 2013 FÍSICA
PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2009
PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada
Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.
EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade
PAU Xuño 2011 FÍSICA OPCIÓN A
PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU SETEMBRO 2014 FÍSICA
PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Física e Química 4º ESO
Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta
Tema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
PAU Setembro 2010 FÍSICA
PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Exercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
FISICA 2º BACH. CURSO 99-00
26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética
FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A
22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018
Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).
Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
ELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
PAAU (LOXSE) Setembro 2004
PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou
PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PAAU (LOXSE) Xuño 2006
PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
Exercicios de Física 02b. Magnetismo
Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado
PAU XUÑO 2014 FÍSICA
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
PAU XUÑO 2015 FÍSICA
PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
ENERXÍA, TRABALLO E POTENCIA
NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente
PAU XUÑO 2016 FÍSICA
PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:
VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó
PROBLEMAS CUESTIONS 1.
PROBLMAS 1. Dende un cantil dispárase horizontalmente un proectil de 2 kg cunha velocidade inicial de 100 m/s. Se cando o proectil choca contra o mar a súa velocidade é de 108 m/s, calcular: a/ A enería
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
Materiais e instrumentos que se poden empregar durante a proba
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
Exercicios de Física 03a. Vibracións
Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal
Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física
Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.
MEDIDAS EXPERIMENTAIS DE DIVERSOS CAMPOS MAGNÉTICOS Xosé Peleteiro Salgado Área de Física Aplicada. Facultade de Ciencias. Ourense
MEDIDAS EXPERIMENTAIS DE DIVERSOS CAMPOS MAGNÉTICOS Xosé Peleteiro Salgado Área de Física Aplicada. Facultade de Ciencias. Ourense Se presentan tres procedementos diferentes nos que coas medidas realizadas
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
EXERCICIOS DE ÁLXEBRA. PAU GALICIA
Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M
Física P.A.U. ÓPTICA 1 ÓPTICA
íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar
PAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
Física cuántica. Relatividade especial
Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto
Ámbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial
Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 5 Movementos e forzas Índice 1. Introdución... 3 1.1 Descrición da
Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted
Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot
As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación
As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.
Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción
1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3
1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4
DINAMICA DE TRASLACION
DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj
1. Formato da proba [CS.PE.B03]
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: tres cuestións. Problema 2: dúas cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
MECÁNICA. = 1 m/s, calcular a velocidade angular da roda, e a velocidade do punto B.
37 MEÁNI (,5 puntos cada problema; escollerá a opción ou ; non é necesario escoller a mesma opción en tódolos problemas). PRLEM 1 PIÓN.- alcular a tensión das cordas,, e da figura, sabendo que o peso do
ACTIVIDADES INICIALES
Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.
Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL)
L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro Condiciones de contorno. Fuerzas externas aplicadas sobre una cuerda. condición que nos describe un extremo libre en una cuerda tensa. Ecuación
A circunferencia e o círculo
10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.
PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución