ΙΞΩ ΕΣ ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΟΡΜΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΞΩ ΕΣ ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΟΡΜΗΣ"

Transcript

1 ΙΞΩ ΕΣ ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΟΡΜΗΣ Ο Νόος του Νεύτωνα για το ιξώδες (Newton s law of viscosity) ΣΧΗΜΑ.-(BSL) F A V du or τ y Y dy ( Newton' s law of vis cosity) Ρευστά που υπακούουν τον νόο του Νεύτωνα λέγονται Νευτωνικά ρευστά (Newtonian fluids). Πολυερή (polymeric liquids), αιωρήατα (suspensionς), γαλακτώατα (slurries), πάστες (pastes) και άλλα ρευστά που δεν περιγράφονται ρεολογικά απο τον νόο του Νεύτωνα λέγονται ή-νευτωνικά ρευστά (non- Newtonian fluids). Συχνά το κινηατικό ιξώδες χρησιοποιείται που ορίζεται: ν ρ Τυπικές ονάδες για το ιξώδες είναι Pa.s και τυπικές τιές για τον αέρα στούς 20 o C,.80-5 Pa.s, Pa.s για την γλυκερόλη (glycerol) ή ακόα εγαλύτερες τιές για τα τηγένα πολυερή (molten polymers).

2 2 Οι πίνακες.-.-4 (BSL) δίνουν τιές για ιξώδη τυπικών ρευστών (ακόα και για υγρά έταλλα). O ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ ΣΕ ΤΡΕΙΣ ΙΑΣΤΑΣΕΙΣ Θεωρούε ροή όπου οι συνιστώσες της ταχύτητας είναι: u u (, y, z, t); u u (, y, z, t); u u (, y, z, t) y y z z Σε οποιαδήποτε στιγή το κυβικό στοιχείο πορεί να διατηθεί ε τέτοιο τρόπο ώστε το ισό ρευστό να αποακρυνθεί από έσα του. Σε ία τέτοια περίπτωση, ποιά είναι η δύναη που πρέπει να εξασκηθεί ώστε να αντικαταστήσει το αποακρυνθέν ρευστό? Υπάρχουν δύο συνιστώσες/συνεισφορές:. Η δύναη της πίεσης που είναι πάντα κάθετη και συπιεστική (compressive) στην επιφάνεια. Αυτές είναι pδ, pδ, pδ στις τρείς κατευθύνσεις. 2. Ιξωδική δύναη (Viscous force) όταν υπάρχουν κλίσεις ταχύτητας. Ας υποθέτουε γενικά ότι ία δύναη τ εξασκείται όπως φαίνεται στο σχήα.2-a. Αυτή πορεί να αναλυθεί σε τρείς συνιστώσες, ία κάθετη και δύο y z

3 3 διατητικές (στις τρείς καρτεσιανές συντεταγένες). Οταν αυτές διαιρεθούν ε την επιφάνεια τότε τρία στοιχεία του τανυστή τάσης, τ, προκύπτουν τ, τ, τ. Κάνοντας το ίδιο σε όλες τις άλλες κατευθύνσεις, όλα τα εννέα y z στοιχεία του τανυστή τάσης (stress tensor) πορούν να οριστούν (τρία κάθετα και έξι διατητικά στοιχεία (elements)) Η κάθετη τάση στην επιφάνεια πορεί τώρα να οριστεί: π + όπου i and j πορεί να είναι, y, ή z. ij pδ ij τ ij δ ij είναι ο δείκτης του Kronecker delta, o οποίοw ορίζεται να είναι ισον ε εάν ij και ηδέν εάν i j. i δείχνει το επίπεδο πάνω στο οποίο η δύναη εξασκείται, και j την δι(κατ)εύθυνση της δύναης. Για παράδειγνα τ y είναι η διατητική τάση που εξασκείται στην κατεύθυνση y πάνω σε ένα επίπεδο κάθετο στην κατεύθυνση. Γενικεύοντας το νόο του Νεύτωνα για το ιξώδες πρέπει να λάβουε υπ όψη: Οι ιξωδικές τάσεις πορεί να είναι γραικοί συνδιασοί των κλίσεων ταχύτητας Οι παράγωγοι χρόνου δεν πρέπει να υπάρχουν (some n-newtonian fluids are ecluded shear thickening)

4 4 Οι ιξωδικές τάσεις για ρευστά σε ισορροπία (at a rest or under purely rotation) είναι ηδέν. Το ρευστό είναι ισοτροπικό (isotropic). Η συπιεστικότητα του ρευστού (compressibility) πρέπει να ληφθεί υπ όψη. Χρησιοποιώντας όλες τις παραδοχές ο γενικός νόος του Νεύτωνα πορεί να γραφεί: τ ij u u 3 j i + + i 3 j i u i ( 2 i κ ) δ ij όπου κ είναι το διασταλτικό ιξώδες (dilatational viscosity) το οποίο είναι ηδέν για ονοατοικά αέρια σε χαηλές πυκνότητες. Αυτός είναι: τ T ( + ( v) ) + ( 2 κ )( v)δ v 3 όπου δ είναι ο οναδιαίος τανυστής ε στοιχεία δ ij, κλίσης τής ταχύτητα (velocity gradient tensor), τανυστής, and v είναι ο τανυστής της T ( v) είναι ο ανάστροφος v είναι η απόκλιση της ταχύτητας (divergence of the velocity vector) που είναι ηδέν για ασυπίεστα ρευστά. Ως εκ τούτου το διασταλτικό ιξώδες (dilatational viscosity) έχει σηασία όνο για τα συπιεστά ρευστά και άλιστα σε εφαρογές απορρόφησης ήχου (sound absorption) και σε ρευστά που περιέχουν φυσσαλίδες. Σε αυτό το άθηα ενδιαφερόαστε για ασυπίεστα ρευστά και ως εκ τούτου ο γενικός νόος του Νεύτωνα πορεί να απλοποιηθεί: u T ( ) j ui v + ( v or τ + ij i j τ )

5 5 Συβαση προσήου (sign convention): Θεωρούε τ y οτι είναι η δύναη στην θετική διεύθυνση πάνω σε ένα επίπεδο κάθετο στην διεύθυνση y, και ότι αυτή η δύναη εξασκείται απο ένα ρευστό σε ία περιοχή σε ικρότερη y συντεταγένη πάνω σε ρευστό σε περιοχή ε εγαλύτερη συντεταγένη y. Οως τα u περισσότερα βιβλία γράφουν το νόο τοθ Νεύτvνα: τ y + - αντίθετη y σύβαση προσίου. Σε αυτό το άθηα θεωρούε συπίεση, οπότε εφελκυστική τάση θεωρείται αρνητική. pδ ij and τ ii θετικές σε

6 6

7 7 ΕΧΑΡΤΗΣΗ ΙΞΩ ΟΥΣ ΑΠΟ ΘΕΡΜΟΚΡΑΣΙΑ ΚΑΙ ΠΙΕΣΗ Το ιξώδες ειναι συνάρτηση της θεροκρασίας και πίεσης. Το σχήα.3- δίνει ία ολική εικόνα της εξάρτησης του ιξώδους απο την θεροκρασία και πίεση. Το ειωένο ιξώδες (reduced viscosity) απεικονιζεται σαν συνάρτηση r c της ειωένης θεροκρασίας (reduced temperature) T T T και της ειωένης r c πίεσης (reduced pressure) p p p. r c Το ειωένο ιξώδες είτε πρέπει να είναι διαθέσιο για να χρησιποποιήσουε το σχήα.3- ή πορεί να υπολογισθεί εάν ία τιή του είναι γνωστή σε ία θεροκρασία και πίεση (given T and p). Εάν critical p-v-t στοιχεία είναι διαθέσια τότε: / 2 2 / 3 / 2 2 / 2 / 6 6.6( MT ) ( V ) and 7.70M p T c c c c c c όπου p c σε atm, T c σε K, και V c σε cm 3 g-mole.

8 8 Για ειγατα πορούε να χρησιποποιήσουε: N a ca a c N a ca a c N a ca a c T T p p ' ' ' Παρατηρείται οτι το ιξωδες των υγρών ελλατώνεται ε αύξηση της θεροκρασίας, ενώ για τα αέρια συβαίνει το αντίθετο. Αυτό οφείλεται στο διαφορετικό ηχανισό για την εταφορά ορής στα αέρια (συγκρούσεις ορίων - molecular collisions) και τα υγρά (ελεύθερος όγκος - free volume).

9 9

10 0 MOΡΙΑΚΗ ΘΕΩΡΙΑ ΓΙΑ ΤΟ ΙΞΩ ΕΣ ΑΕΡΙΩΝ Θεωρούε ένα αέριο που αποτελείται από άκαπτα (rigid), η-ελκυόενα (nonattracting) σφαιρικά όρια ε διάετρο d και άζα, m και ε πυκνότητα αριθού ορίων (number density, molecules per unit volume) n. Εάν η έση απόσταση εταξύ ορίων είναι πολλές φορές εγαλύτερη του d, τότε η κατανοή των οριακών ταχυτήτων (distribution of molecular velocities) (τυχαίας κατευθύνσεως) είναι: T u 8Κ πm όπου K είναι η σταυερά του Boltzamann. Η συχνότητα του οριακού «βοβαρδισού» (frequency of molecular bombardment) ανά ονάδα επιφάνειας είναι: Z 4 nu Το έσο ελεύθερο ονοπάτι (mean free path) εταξύ συγκρούσεων είναι: λ 2πd 2 n Κατά έσο όρο, τα όρια που πλησιάζουν ένα επίπεδο, είχαν την τελευταία σύγκρουση τους σε ία απόσταση α 2 3 λ. Το σχήα.4- δείχνει ενα πεδίο ροής ε κλίση ταχύτητας στη y-κατεύθυνση, όπου ένα αέριο ρέει στην -κατεύθυνση. FIGURE.4-

11 Η -ροή ορής ανά ονάδα επιφάνειαςτ y όρια ρέουν δια έσου του επιπέδου που έχει σταθερό y. Επίσης: - τ y Zmu y-a Zmu y+a (-momentum flu) θα αλλάξει επειδή u y± a u y ± 3 2 du λ dy Συνδιάζοντας : 2 mκt / π 2 πmκt 3 nmuλ 3 ρuλ πd 3π πd Αυτό το αποτέλεσα ανήκει στον Mawell (860). Μπορούε να συπεράνουε ότι το ιξώδες αυξάνεται ε T. Οως έχει βρεθεί πειραατικά ότι το ιξώδες αυξάνει αναλογικά ε την T. ιάφορες άλλες θεωρίες για ονοατοικά αέρια έχουν αναπτυχθεί. Μια τέτοια είναι η θεωρία Chapman-Enskog που δίνει καλύτερα αποτελέσατα. Βασίζεται στην έννοια του Lennard-Jones potential που περιγράφει/διέπει τις διατοικές (interatomic) δυνάεις. (βλέπε Fig..4-3) Για πιο πολλές λεπτοέρειες βλέπε (BSL Transport Phenomena).

12 2 To κύριο ήνυα ποθ εξάγεται είναι ότι, ο ηχανισός της εταφοράς της ορής στα αέρια γίνεται δια έσου οριακών συγκρούσεων. Αύξηση της θεροκρασίας, αυξάνει την κινετική ενέργεια και έτσι τον αριθό συγκρούσεων. Μεγαλύτερος αριθός συγκρούσεων σηαίνει εγαλύτερη αντίσταση για ροή και έτσι εγαλύτερο ιξώδες.

13 3 ΜΟΡΙΑΚΗ ΘΕΩΡΙΑ ΙΞΩ ΟΥΣ ΓΙΑ ΥΓΡΑ MOLECULAR THEORY OF VISCOSITY OF LIQUIDS Ο Eyring υπέθεσε οτι σε ένα καθαρό υγρό σε ισορροπία, τα όρια βρίσκονται σε συνεχή κίνηση. Οως, επειδή ειναι πολύ κοντά εταξύ τους, το καθένα βρίσκεται έσα σε ένα «κλουβι» (cage) που σχηατίζεται από τα άλλα γειτονικά όρια. Το «κλουβι» (cage) παριστάνει (αντιπροσωπεύεται??) από ένα φράγα ενέργειας (energy barrier) ύψους G + o / N, στο οποίο + G ειναι η ελεύθερη οριακή ενέργεια (molar free energy of activation) για διαφυγή (escape) από το «κλουβί» (cage) για να καλύψει ία κενή θέση (adjoine a vacant site) (βλέπε Σχήα.5-). o Τα πηδήατα για διαφυγή (jumps for escapes) είναι α και η συχνότητα τους (frequency),ν, ανά όριο δίνεται από: ΚT + ν ep( Go / RT) h όπου h είναι η σταθερά του Planck. Σε ενα ρευστό ποθ ρέει στην -κατεύθυνση ε κλίση ταχύτητας du /dy, η συχνότητα των οριακών αναδιατάξεων αυξάνει (επειδή το φράγα της δυναική ενέργειας έχει παραορφωθεί) (βλέπε Fig..5-)

14 + + α τ yv G G ± o δ 2 όπου V είναι ο όγκος ενός mole υγρού και ( )( δ τ y V / 2) α 4 ± είναι το έργο πάνω στα όρια (work done on the molecules) για να ανέλθουν στο υψηλότερο σηείο του φράγατος ενέργειας. Η συχνότητα των πηδηάτων προς τα επρός (frequency of the forward jumps) ορίζεται να είναι ν + και των αντιστοίχων προς τα πίσω, ν _. Αυτές οι συχνότητες είναι: ΚT + ν ± ep( Go / RT )ep( ± aτ yv / 2δRT ) h Η ταχύτηρτα (net velocity) ε την οποία όρια στο στρώα A ολισθαίνουν προς τα επρός στο στρώα B είναι: u A u B + Tο προφίλ της ταχύτητας είναι: α( ν ν _) du α ( ν + ν _) dy δ Συνδιάζοντας τις παραπάνω εξισώσεις du dy α ΚT ep( G δ h + o α ΚT ep( G δ h + o / RT ) (ep( + ατ yv / 2δRT ) ep( ατ yv / 2δRT )) / RT ) ( 2sinh( ατ V / 2δRT )) Αυτή η εξίσωση ορίζει η-γραική συπεριφορά την οποία η-νευτωνικά υγρά ακολουθούν. Οως, πορεί να γραικοποιηθεί χρησιποποιώντας 3 5 sinh + ( ) + ( ) +... και κρατώντας όνο τον πρώτο όρο 3! 5! πορούε να γράψουε: δ Nh + ep( Go / RT ) α V + Εχει βρεθεί ότι το G o συσχετίζεται ε την εσωτερική ενέργεια ατοποίησης/εξάτησης (internal energy of vaporization): y

15 5 G o U vap + Χρησιοποιώντας αυτό και α / δ τότε δ Nh ep(0.408 U α V Επίσης, U vap H vap RT όπου T b είναι το σηείο βρασού, τότε δ Nh ep(3.8t α V b b / T ) vap / RT ) Η τελευταία σχέση δείχνει ότι το ιξώδες ειώνεται ε αύξηση της θεροκρασίας εκθετικά το οποίο είναι ια πολλή καλή προσέγγιση ακόη και για σύνθετα υγρά (comple liquids). ΙΞΩ ΕΣ ΓΙΑ ΑΙΩΡΗΜΑΤΑ (SUSPENSIONS) ΚΑΙ ΓΑΛΑΚΤΩΜΑΤΑ (EMULSIONS) H πρώτη έκφραση(??) για το ιξώδες αιωρηάτων προήλθε απο τον Einstein. Θεώρησε ένα αιώρηα σφαιρικών σωατιδίων τόσο αραιό, ώστε η κίνηση ενός σωατιδίου να ην επηρεάζει την κίνηση των άλλων σφαιρικών σωατιδίων και έτσι του όλου αιωρήατος. Υπολόγισε το ιξώδες ενός αιωρήατος σαν: eff φ 2 όπου o είναι το ιξώδες του υγρού του αιωρήατος (suspending medium) και φ είναι το κλάσα όγκου των σφαιρικών σωατιδίων. Για αιωρήατα ε κλάσατα όγκου εγαλύτερο απο 5%, αλληλεπιδράσεις (interactions) γίνονται εφανείς και για αυτές τις περιπτώσεις διαφορες αλλες σχέσεις έχουν αναπτυχθεί. Μια τέτοια ειναι η εξίσωση του Mooney: eff 0 ep 5 2 φ ( φ / φ ) o

16 6 όπου φ o είναι ία επειρική σταθερά περίπου ίση ε 0.74 to Μια άλλη προσέγγιση είναι η «cell theory» που αναπτύχθηκε απο τον Graham, eff φ ψ ( + ψ )( ψ όπου ψ 2[( 3 φ φ ) / 3 φ φ ], και φma είναι το κλάσα όγκου που αντιστοιχεί ma ma πειραατικά στο εγαλύτερο δυνατό «πακετάρισα» (closest packing of the spheres). Για πυκνά αιωρήατα (concentrated suspensions) η σφαιρικών σωατιδίων, η εξίσωση Krieger-Doughrty ισχύει: eff 0 φ φma φ A ma Οι τιές του A και φma εχουν καταχωρηθεί στον πίνακα.6-. Για γαλακτώατα ή αιωρήατα πολύ ικρών σωατιδίων στα οποία υπάρχει εσωτερική ροή (σταγονίδια) (internal circulation), η εξίσωση του Taylor πορεί να χρησιοποιηθεί. 5 eff o + 2 φ 0 o + όπου είναι το ιξώδες της διασκορπισένης φάσης (dispersed phase). Τέλος για αραιά αιωρήατα (dilute suspensions) φορτισένων σωατιδίων (charged spheres) η εξίσωση του Smoluchowski πορεί να χρησιοποιηθεί, 2 eff 5 ( Dζ / 2πR) + φ ok e όπου D είναι η διηλεκτρική σταθερά (dielectric constant) του υγρού, k e είναι η ειδική ηλεκτρική αγωγιότητα του αιωρήατος (specific electrical conductivity), ζ ειναι η ηλεκτροκινετική δυναική (electrokinetic potential) των σωατιδίων, και R είναι η ακτίνα του σωατιδίου. )

17 7 ΣΥΝΑΓΩΓΙΚΗ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ (CONVECTIVE MOMENTUM TRANSPORT) Μέχρι τώρα έχουε συζητήσει οριακή εταφορά ορής (molecular transport of momentum). Οως, η ορή πορεί να εταφερθεί και ε άλλο ηχανισό γνωστό σαν συναγωγική εταφορά ορής (convective transport). Βλέπε Σχήα.7- για εξήγηση. Ο ογκοετρικός ρυθός ροής για έσου της επισκιασένης επιφάνειας στο Σχήα.7-(a) είναι u. Αυτή η ροή εταφέρει ορή ίση ε ρv. Ετσι, ο ρυθός ροής (momentum flu) δια έσου της επισκιασένης επιφάνειας είναι u ρv. Οοια, ο ρυθός ροής ορής δια έσου της επισκιασένης επιφάνειας στο Σχήα.7-(b) είναι u y ρv και στο Σχήα.7-(c) είναι u z ρv. Κάθε ία απο τις τρεις ορές έχει τρείς συνιστώσες, έτσι συνολικά εννέα. Για παράδειγα: ρ u u y ειναι η y-συναγςγική ορή δια έσου επιφάνειας κάθετη στην - κατεύθυνση.

18 8 τ y ειναι ο y-οριακός ρυθός ροής ορής στην -κατεύθυνση. Ολες οι εννέα συνιστώσες πορούν να συνοψισθούν: ρvv i j δ i δ j ρ u i u j Για να υπολογίσουε τη ροή ορής δια έσου επιφάνειας οποιασδήποτε κατεύθυνσης (arbitrary orientation) βλέπε Fig ΣΧΗΜΑ.7-2 (BSL) Ο ρυθός ροής της ορής δια έσου της επιφάνειας είναι: (n. v)ρv ή [n. ρvv ] Οοια ο οριακός ρυθός ορής είναι: [n. π ] pn +[n. τ] Ετσι ο συνολικός ρυθός ροής (combined momentum flu) είναι φπ + ρvvpδ + τ + ρvv Ετσι, φ y είναι ο συνδιασένος ρυθός ροής της ορής στη y-κατεύθυνση (combined flu of the y-momentum) δια έσου τηε επιφάνειας καθετη στην -κατεύθυνση ε οριακο και συναγωγικό ηχανισό (molecular and convective mechanisms).

19 9

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού.

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού. ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Μαγνητικό πεδίο είναι ο χώρος που έχει την ιδιότητα να ασκεί αγνητικές δυνάεις σε κατάλληλο υπόθεα (αγνήτες, ρευατοφόροι αγωγοί ) Το αγνητικό πεδίο το ανιχνεύουε ε την βοήθεια ιας αγνητικής

Διαβάστε περισσότερα

dn T dv T R n nr T S 2

dn T dv T R n nr T S 2 Τήα Χηείας Μάθηα: Φυσικοχηεία Ι Εξετάσεις: Περίοδος εκεβρίου 00- (0) Θέα (0 ονάδες) Α) ( ονάδες) Η θεελιώδης εξίσωση θεροδυναικού συστήατος δίνεται από την σχέση: l l όπου και σταθερές και και τα γνωστά

Διαβάστε περισσότερα

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 9: Ελεύθερα Ηλεκτρόνια σε Μαγνητικό Πεδίο Λιαροκάπης Ευθύιος Άδεια

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 2 η Σειρά ασκήσεων ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 8-9 Ηιαγωγοί και Ηιαγώγιες οές (7 ο Εξάηνο) Απαντήσεις στην η Σειρά ασκήσεων 1. α) Αν υποθέσουε ότι δύο ηιαγώγια υλικά, όπως τα S και G, έχουν περίπου ίδιες

Διαβάστε περισσότερα

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση Εκτίηση Σηείου Εκτίηση Σηείου Εισαγωγή Σε πολλές περιπτώσεις στη στατιστική έχουε συναντήσει προβλήατα για τα οποία απαιτείται να εκτιηθεί ια παράετρος. Η έθοδος που ακολουθεί στις περιπτώσεις αυτές κανείς

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Σακελλάριος 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός.

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός. ΕΡΓΑΣΙΑ (Παράδοση:.) Σηείωση: Οι ασκήσεις είναι βαθολογικά ισοδύναες Άσκηση Να προσδιορίσετε τα όρια: sin( ) I. lim, II. lim sin, III. lim ( ln ) sin z Όπου χρειαστεί να θεωρήσετε γνωστό ότι lim z z Ι.

Διαβάστε περισσότερα

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ)

2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ) ΘΕΜΑ ο Στις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθό της ερώτησης και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση.. Πυκνωτής χωρητικότητας είναι φορτισένος ε φορτίο Q και η τάση στους οπλισούς

Διαβάστε περισσότερα

1) Μη συνεργατική ισορροπία

1) Μη συνεργατική ισορροπία ΠΑΡΑΡΤΗΜΑ: ΔΙΕΘΕΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΣΥΜΩΝΙΕΣ ΩΣ ΕΝΑ ΠΑΙΓΝΙΟ «ΔΙΛΛΗΜΑΟ ΤΟΥ ΦΥΛΑΚΙΣΜΕΝΟΥ» Υποθέτουε ότι υπάρχουν Ν χώρες, όπου N={,, }, η κάθε ία από τις οποίες παράγει αγαθά και εκπέπει e τόνους διοξειδίου

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x =

Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x = Αν είναι "εκ προοιίου φανερό" ότι η παραπάνω διαδικασία είναι συνεπής προς τον υπολογισό της Παραγράφου ΣΤ το προηγούενο παράδειγα επελέγη ε στόχο την επίδειξη αυτής της συνέπειας Η ΑΣΚΗΣΕΙΣ Σε ένα πίνακα

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Νευτώνια και μη Νευτώνια ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 15 Απριλίου 2019 1 Καταστατικές εξισώσεις Νευτώνιου ρευστού Νευτώνια ή Νευτωνικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ Τήα Επιστήης και Τεχνολογίας Υλικών Πανεπιστήιο Κρήτης Γιώργος Κιοσέογλου ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ 4. ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ ΤΟΥ ΠΑΡΑΜΑΓΝΗΤΙΣΜΟΥ Τα κύρια συπεράσατα της κλασσικής θεωρίας τροποποιούνται

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη

Διαβάστε περισσότερα

ΑΕΡΙΑ ΚΑΤ ΚΑ Α Τ ΣΤ ΑΣΗ

ΑΕΡΙΑ ΚΑΤ ΚΑ Α Τ ΣΤ ΑΣΗ ΑΕΡΙΑ ΚΑΤΑΣΤΑΣΗ H αποστολή Pthfid Pathfinder το 1997 με το μικρό όχημα της ("Sojourner") ") ήταν δραστήρια στην Αρειανή επιφάνεια για αρκετούς μήνες, επιστρέφοντας μια μεγάλη συλλογή στοιχείων για το Αρειανό

Διαβάστε περισσότερα

Μάθημα 3 ο. Στοιχεία Θεωρίας Ελαστικών Κυμάτων

Μάθημα 3 ο. Στοιχεία Θεωρίας Ελαστικών Κυμάτων Μάθηα ο Στοιχεία Θεωρίας Ελαστικών Κυάτων Εξίσωση της Κίνησης Εξίσωση του Κύατος Εξίσωση Διανυσατικού Κύατος Στάσια Κύατα Ελαστικά Κύατα Χώρου Επιφανειακά Κύατα ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΕΙΣΜΟΛΟΓΙΑ Μάθηα ο: Στοιχεία

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ (THERMAL CONDUCTIVITY) ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΓΙΑ ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ (THERMAL CONDUCTIVITY) ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΓΙΑ ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ ΚΕΦΑΛΑΙΟ Ο ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ (HERMAL CONDUCIIY) ΚΑΙ ΟΙ ΜΗΧΑΝΙΣΜΟΙ ΓΙΑ ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ Είναι γνωστό οτι µερικά υλικά µεταφέρουν ενέργεια πιο εύκολα από άλλα (µέταλλα σε σχέση µε το ξύλο). Η φυσική

Διαβάστε περισσότερα

Μαγνητική ροπή. SI: Am 2

Μαγνητική ροπή. SI: Am 2 Μαγνητική ροπή Ι Ι Ι I S SI: Μαγνητική ροπή Η αγνητική διπολική ροπή είναι ια βασική ποσότητα για τον αγνητισό (όπως είναι το φορτίο για τον ηλεκτρισό) γιατί καθορίζει: (α) το αγνητοστατικό πεδίο που παράγει

Διαβάστε περισσότερα

ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ

ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ ΧΙΙ. ΑΠΟ ΚΟΙΝΟΥ ΑΣΦΑΛΙΣΕΙΣ Α. ΑΣΦΑΛΙΣΕΙΣ ΕΠΙ ΠΟΛΛΩΝ ΚΕΦΑΛΩΝ Ορισένες φορές ένα ασφαλιστήριο καλύπτει περισσότερες από ία ζωές. Ένα προφανές παράδειγα είναι η ασφάλιση θανάτου για δύο συζύγους, καθένας

Διαβάστε περισσότερα

2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣ

2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣ 2-2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣ 2.. ΙΞΩ ΕΣ Το ιξώδες αποτελεί εκείνη την ιδιότητα του ρευστού που αντιπροσωπεύει αντίσταση στη ροή. Πιο συγκεκριµένα, κάποιος πιο τεχνικός ορισµός θα αναφερόταν

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σεπτέβριος 016 ΘΕΜΑ A Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθό της πρότασης και, δίπλα, το γράα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR.

ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR. Μάθηα 3 ο, Οκτωβρίο 008 (9:00-:00). ΑΤΟΜΟ Υ ΡΟΓΟΝΟΥ. ΜΟΝΤΕΛΟ BOHR. Φάσα το δρογόνο (93) Γραικό φάσα Boh: εξήγησε την ακτινοβολία το ατόο Η. Ruthfod: πρήνας σγκεντρωένος σε ικρή περιοχή (D~0-5 ) Απόσπαση

Διαβάστε περισσότερα

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2 Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόος του Νεύτωνα για σύστηα εταβλητής άζας Όταν εξετάζουε ένα υλικό σύστηα εταβλητής άζας, δηλαδή ένα σύστη α που ανταλλάσσει άζα ε το περιβάλλον του, τότε πρέπει να είαστε πολύ προσεκτικοί

Διαβάστε περισσότερα

ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών

ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Ρεολογική συμπεριφορά ρευστών Υλική σχέση Νευτωνικά και μη νευτωνικά ρευστά Τανυστής ιξώδους Τάσης και ρυθμού παραμόρφωσης

Διαβάστε περισσότερα

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων

λ n-1 λ n Σχήµα 1 - Γράφος µεταβάσεων διαδικασίας γεννήσεων- θανάτων Κεφάαιο 4. Απά οντέα συστηάτων αναονής Στο κεφάαιο αυτό παρουσιάζουε απά οντέα αναονής (συστήατα ε ένα σταθό εξυπηρέτησης) ενώ τα οντέα δικτύων αναονής θα εξεταστούν σε επόενο κεφάαιο. 4. Μοντέα αναονής

Διαβάστε περισσότερα

. Ο καθαρός ειδικός ρυθμός αναπαραγωγής εκφράζεται από την ακόλουθη εξίσωση για θερμοκρασίες άνω της άριστης τιμής:

. Ο καθαρός ειδικός ρυθμός αναπαραγωγής εκφράζεται από την ακόλουθη εξίσωση για θερμοκρασίες άνω της άριστης τιμής: . Ο καθαρός ειδικός ρυθός αναπαραγωγής εκφράζεται από την ακόλουθη εξίσωση για θεροκρασίες άνω της άριστης τιής: dn ' ' ( k )N R d Σε υψηλές θεροκρασίες, ο ρυθός θερικού θανάτου (theral death rate) είναι

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΥΝΤΕΛΕΣΤΗΣ ΙΞΩΔΟΥΣ Κατά την κίνηση των υγρών, εκτός από την υδροστατική πίεση που ενεργεί κάθετα σε όλη την επιφάνεια, έχουμε και

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεάτων επανάληψης 1. ίνεται ισόπλευρο τρίγωνο πλευράς α. Στις πλευρές,, παίρνουε σηεία, Ε, Ζ αντίστοιχα τέτοια ώστε Ε Ζ 1 α Να υπολογίσετε συναρτήσει του α το εβαδόν Του τριγώνου Ζ Του τριγώνου

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006 Τήα Επιστήης και Τεχολογίας Υλικώ Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηα ασκήσεω //006 Μελέτη οοδιάστατου στοιχειακού στερεού ε δύο τροχιακά αά άτοο ε χρήση υβριδικώ ατοικώ τροχιακώ Θεωρούε δύο τροχιακά

Διαβάστε περισσότερα

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 6: Διαμαγνητισμός και Παραμαγνητισμός. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροσένων Μαθηατικών και Φυσικών Επιστηών Εθνικό Μετσόβιο Πολυτεχνείο ιηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Κεφάλαιο 6: ιααγνητισός και Παρααγνητισός Λιαροκάπης Ευθύιος Άδεια Χρήσης

Διαβάστε περισσότερα

ορ 2 mg k ( ) ln 2 m = =5.66s τ=5.66

ορ 2 mg k ( ) ln 2 m = =5.66s τ=5.66 Ασκήσεις eclss ΑΣΚ4Α Κατά την πτώση ενός σώατος από πολύ εγάλο ύψος η ταχύτητά του λόγω τριβής φτάνει την ορική ταχύτητα ορ 8/s, όπου η δύναη τριβής είναι ανάλογη της ταχύτη- τας. Να βρείτε το χρόνο τ

Διαβάστε περισσότερα

ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ

ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Ρεολογική συμπεριφορά ρευστών Υλική σχέση Νευτωνικά και μη νευτωνικά ρευστά Τανυστής ιξώδους Τάσης και ρυθμού

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET02: ΜΕΓΕΘΟΣ ΑΓΟΡΑΣ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει το ύψος του Ακαθάριστου Εγχώριου Προϊόντος (ΑΕΠ) ανά Περιφέρεια και Νοό και εκφράζει το έγεθος της αγοράς, η οποία δυνητικά ενοποιείται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ & Η/Υ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ρ. Α. ΜΑΓΟΥΛΑΣ Επικ. Καθηγητης Σ.Ν.. 13 I ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Συστήατα συντεταγένων

Διαβάστε περισσότερα

p = p n, (2) website:

p = p n, (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό

Διαβάστε περισσότερα

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι:

1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι: 1. Μαγνητικό Πεδίο Κινούενου Φορτίου Το αγνητικό εδίο Β σηειακού φορτίου q ου κινείται ε ταχύτητα v είναι: qv u 4 qvsinφ 4 Το Β είναι ανάλογο του q και του 1/ όως και το Ε. Το Β δεν είναι ακτινικό, είναι

Διαβάστε περισσότερα

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33 ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε

Διαβάστε περισσότερα

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»

Διαβάστε περισσότερα

ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ

ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ VΙ TO ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ V ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΒΑΣΙΚΕΣ ΕΝΕΡΓΕΙΑΚΕΣ ΣΧΕΣΕΙΣ ΤΟΥ ΠΕ ΙΟΥ VΙ. Πυκνότητα ενέργειας του ηλεκτρικού πεδίου σε γραικό και ισότροπο έσο we εe VΙ. Πυκνότητα ενέργειας του

Διαβάστε περισσότερα

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Η έρευνα χρηµατοδοτείται από τη ΓΓΕΤ, στο πλαίσιο του προγράµµατος ΠΕΝΕ 03Ε 588. Φίλιππος Σοφός Υποψήφιος διδάκτωρ Επιβλέποντες:

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι 4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ Ρεολογία Επιστήµη που εξετάζει την ροή και την παραµόρφωση των υλικών κάτω από την άσκηση πίεσης. Η µεταφορά των υγρών στην βιοµηχανία τροφίµων συνδέεται άµεσα

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα

Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS

Διαβάστε περισσότερα

Μέτρηση του χρόνου ζωής του µιονίου

Μέτρηση του χρόνου ζωής του µιονίου ΕΡΓΑΣΤΗΡΙΟ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ II Χ. Πετρίδου,. Σαψωνίδης Μέτρηση του χρόνου ζωής του ιονίου Σκοπός Το ιόνιο είναι το δεύτερο ελαφρύτερο λεπτόνιο στο standard Model ε ια άζα περίπου 106 MeV. Έχει spin ½

Διαβάστε περισσότερα

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως

Διαβάστε περισσότερα

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια,

Διαβάστε περισσότερα

δακτυλίου ανοίγματος 1.8 mm και διαμέτρου 254 mm. Ποιος είναι ο ρυθμός διατμητικής παραμόρφωσης στα τοιχώματα

δακτυλίου ανοίγματος 1.8 mm και διαμέτρου 254 mm. Ποιος είναι ο ρυθμός διατμητικής παραμόρφωσης στα τοιχώματα Επεξεργασία Πολυμερών - η σειρά ασκήσεων: Ρεολογία/Ρεομετρία Πολυμερών. Σε εργαστήριο πραγματοποιούνται οι ακόλουθες μετρήσεις του ιξώδους με τη χρήση τριχοειδούς ιξωδομέτρου στους ο C: (s ) 5.5 8.3 55

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Μοντέλο υλικού σώματος 2. Ορισμοί μάζα γραμμομόριο 3. Η κατάσταση ενός υλικού 4. Τα βασικά γνωρίσματα των καταστάσεων 5. Το μοντέλο του ιδανικού

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

1 ε και στη διαφορική µορφή. και για τη περίπτωση που δεν υπάρχουν ελεύθερα φορτία και ρεύµατα, όπως στο κενό

1 ε και στη διαφορική µορφή. και για τη περίπτωση που δεν υπάρχουν ελεύθερα φορτία και ρεύµατα, όπως στο κενό Εξισώσεις Mawll Οι σχέσεις του Mawll έσα από ολοκληρώατα πορούν να γραφούν σαν dl b ds b dl j+ε ds ( ) C S C S zz d S zzz b S b dv V a f S S d dv ρdv ε και στη διαφορική ορφή b ( b) ( j+ε ) a bf ( ) ρ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 7-8 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθεσία παράδοσης 6//7 Άσκηση Α) Οι δυνάεις που δρουν σε κάθε άζα φαίνονται στο Σχήα. Αναλύοντας σε ορθογώνιο σύστηα αξόνων (διακεκοένες

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

Φαινόμενα Μεταφοράς Μάζας θερμότητας

Φαινόμενα Μεταφοράς Μάζας θερμότητας Φαινόμενα Μεταφοράς Μάζας θερμότητας 2 η Διάλεξη Μηχανισμοί μετάδοσης θερμότητας Εμμανουήλ Σουλιώτης Τμήμα Μηχανικών Περιβάλλοντος Πανεπιστήμιο Δυτικής Μακεδονίας Ακαδημαϊκό Έτος 2018-2019 Μαθησιακοί στόχοι

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΙΞΩ ΟΕΛΑΣΤΙΚΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 3 Ο 3. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΙΞΩ ΟΕΛΑΣΤΙΚΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 3 Ο 3. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΙΞΩ ΟΕΛΑΣΤΙΚΟΤΗΤΑ Εχοντας συζητήσει τις περιπτώσεις των καθαρά ελαστικών και ιξώδων σωµάτων, µπορούµε να εξετάσουµε τώρα πιο πολύπλοκες περιπτώσεις. Περιπτώσεις που

Διαβάστε περισσότερα

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια

Στην Στατιστική Φυσική και στην Θερµοδυναµική αποδεικνύεται ότι δύο συστήµατα που δεν είναι θερµικά µονωµένα, σε ισορροπία έχουν την ίδια ΦΥΣ 347: Υπολογιστική Φυσική Eβδοάδα 3 3. Μέθοδος etropols onte Carlo. Oι έθοδοι τύπου etropols onte Carlo εφαρόζονται για την ελέτη κλασσικών και κβαντικών συστηάτων (ε Ν>> βαθούς ελευθερίας σε ισορροπία.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + ba

ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + ba W mass Μπαλωενάκης Στέλιος ΑΕΜ 1417 W mass 1 ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + bar ) W

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS) ΒΕΣ 6 Προσαροστικά Συστήατα στις Τηλεπικοινωνίες Προσαροστικοί Αλγόριθοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθου Least Mean Square (LMS) Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo

Διαβάστε περισσότερα

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Θεοχαροπούλου Ηλιάνα 1, Μπακιρτζή Δέσποινα 2, Οικονόμου Ευαγγελία, Σαμαρά Κατερίνα 3, Τζάμου Βασιλική 4 1 ο Πρότυπο Πειραματικό Λύκειο Θεσ/νίκης «Μανόλης

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της

Διαβάστε περισσότερα

Σφαιρικές συντεταγμένες (r, θ, φ).

Σφαιρικές συντεταγμένες (r, θ, φ). T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

Υποδείγατα αγορών ιας περιόδου

Υποδείγατα αγορών ιας περιόδου Κεφάλαιο 2 Υποδείγατα αγορών ιας περιόδου 2.1 Εισαγωγή Θα αρχίσουε τώρα να κάνουε υποθέσεις για τη δυναική των πρωτογενών προϊόντων και θα ερευνήσουε αν ε αυτές τις επιπλέον υποθέσεις πορούε να εξαγάγουε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 Μετρήσεις ταχύτητας ροής αέρα με τη βοήθεια σωλήνα Prandtl και απεικόνιση του πεδίου

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 6-- ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθό καθειάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση. ) Η ταχύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t

(9.1) (9.2) B E = t (9.3) (9.4) (9.5) J = t ΣΗΜΕΙΩΣΕΙΣ Λ. Περιβολαροπουλος ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL Σκοπός Το κεφάλαιο αυτό έχει τέσσερις βασικούς στόχους. Πρώτον, τη ελέτη των εξισώσεων του Maxwell στην τελική τους ορφή, όπου περιλαβάνεται και

Διαβάστε περισσότερα

] 2 ΑΣΚΗΣΕΙΣ. Υπόδειξη α. Πιθανότητα ανάκλασης: R=1-T 2 Τελικά R = όταν α c R 1 (ολική ανάκλαση) β. Θα πρέπει: de

] 2 ΑΣΚΗΣΕΙΣ. Υπόδειξη α. Πιθανότητα ανάκλασης: R=1-T 2 Τελικά R = όταν α c R 1 (ολική ανάκλαση) β. Θα πρέπει: de ΑΣΚΗΣΕΙΣ 3.1 Φαινόενο σήραγγας α. Θεωρείστε το φαινόενο σήραγγας δια έσου ενός φράγατος δυναικής ενέργειας ύψους V 0 και πλάτους α, σαν αυτό της εικόνας 3.16. Ποια είναι η πιθανότητα να ανακλαστεί το ηλεκτρόνιο;

Διαβάστε περισσότερα

οποίο ανήκει και π ο γνωστός αριθµός.

οποίο ανήκει και π ο γνωστός αριθµός. 1 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙ Μήκος τόξου : Το ήκος ενός τόξου ο δίνεται από τον τύπο = πρ όπου ρ η ακτίνα του κύκλου στον οποίο ανήκει και π ο γνωστός αριθός.. Το ακτίνιο (rad): Ονοάζουε τόξο ενός ακτινίου (rad)

Διαβάστε περισσότερα

Κεφάλαιο 9 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Ρευστα σε Ηρεμια {Υδροστατική Πίεση, Μέτρηση της Πίεσης, Αρχή του Pascal} Ανωση {Άνωση, Αρχή του Αρχιμήδη}

Κεφάλαιο 9 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Ρευστα σε Ηρεμια {Υδροστατική Πίεση, Μέτρηση της Πίεσης, Αρχή του Pascal} Ανωση {Άνωση, Αρχή του Αρχιμήδη} Κεφάλαιο 9 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστα σε Ηρεμια {Υδροστατική Πίεση, Μέτρηση της Πίεσης, Αρχή του Pascal} Ανωση {Άνωση, Αρχή του Αρχιμήδη} Ιδανικα Ρευστα σε Κινηση {Εξίσωση της Συνέχειας, Εξίσωση του Bernoulli}

Διαβάστε περισσότερα

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance) Ενότητα 7: Ανάλυση ιασποράς ε έναν παράγοντα Oe wy yss of Vrce Σε αυτή την ενότητα θα εξετάσουε ένα ειδικό πρόβληα γραικής παλινδρόησης το ο- ποίο εφανίζεται αρκετά συχνά στις εφαρογές. Συγκεκριένα θέλουε

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 1: Στοιχεία Διανυσματικού Λογισμού Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα