Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα"

Transcript

1 Κεφάλαιο 1 Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα

2 Στόχοι 1 ου Κεφαλαίου Τρεις βασικές ποσότητες στη φυσική: μέτρα, χιλιόγραμμα και δευτερόλεπτα Αβεβαιότητα και σημαντικά ψηφία στις μετρήσεις Βαθμωτές και διανυσματικές ποσότητες διανυσματικό άθροισμα Συνιστώσες διανυσμάτων και χρήση τους για την άθροιση διανυσμάτων Μοναδιαία διανύσματα και χρήση τους Γινόμενο διανυσμάτων βαθμωτό και διανυσματικό γινόμενο

3 Πρότυπα και μονάδες Μήκος, χρόνος και μάζα είναι οι τρεις θεμελιώδεις ποσότητες της φυσικής. Το Διεθνές σύστημα ή SI είναι το σύστημα μονάδων που χρησιμοποιείται ευρέως σήμερα. Στο σύστημα SI το μήκος μετριέται σε μέτρα, ο χρόνος σε δευτερόλεπτα και η μάζα σε χιλιόγραμμα.

4 Προθέματα μονάδων

5 Προθέματα μονάδων Ο πίνακας δείχνει κάποιες μεγαλύτερες και μικρότερες μονάδες μήκους, μάζας και χρόνου. Το Βρετανικό σύστημα μονάδων Οι βρετανικές μονάδες ορίζονται με βάση τις αντίστοιχες μονάδες στο SI ως εξής: Μήκος: 1 ίντσα= 1 in=2,54 cm. Δύναμη: 1 λίβρα-δύναμης (pond force)=4, newton

6 Συμφωνία μονάδων και μετατροπές Οι εξισώσεις πρέπει να είναι πάντοτε συνεπείς ως προς τις διαστάσεις. Δύο όροι μπορούν να προστεθούν ή να εξισωθούν μόνο αν έχουν τις ίδιες διαστάσεις. (Προσθέτουμε μήλα με μήλα όχι μήλα με αυτοκίνητα). Στους υπολογισμούς κάνουμε πολλαπλασιασμούς και διαιρέσεις με τις μονάδες. Αν π.χ. η απόσταση d μετριέται σε μέτρα τότε και το γινόμενο d=υt πρέπει να εκφράζεται σε μέτρα. Παράδειγμα μετατροπής μονάδων ταχύτητας: Στις 15 Οκτωβρίου 1997 ο Andy Green με το αεριωθούμενο αυτοκίνητο Thrust SSC πέτυχε ρεκόρ επίγειας ταχύτητας 1228,0 Km/h, που αποτελεί επίσημο παγκόσμιο ρεκόρ επίγειας ταχύτητας. Εκφράστε αυτή την ταχύτητα σε m/s. 1228,0 km h = h 103 m/h = 341,11 m/s 3600 s

7 Μετατροπή μονάδων όγκου Το μεγαλύτερο επεξεργασμένο διαμάντι του κόσμου είναι το Αστέρι της Αφρικής (πάνω στο Βρετανική Βασιλικό Σκήπτρο που φυλάσσεται στον Πύργο του Λονδίνου). Έχει όγκο 1,84 κυβικές ίντσες. Ποιος είναι ο όγκος του σε κυβικά εκατοστά; Σε κυβικά μέτρα; 1,84 in 3 = 1,84 in 3 2,54 cm 3 1 in 1 cm=10-2 m και = 1,84 2,54 3 in3 cm 3 = 30,2 cm3 1 in3 30,2 cm 3 = 30,2 cm 3 1 cm 10 2 m = 30, cm3 m 3 cm 3 = 30, m 3 3

8 Αβεβαιότητα και σημαντικά ψηφία Η αβεβαιότητα ή το σφάλμα μιας μέτρησης υποδεικνύεται με το πλήθος των σημαντικών ψηφίων στην μετρημένη τιμή. Όταν πολλαπλασιάζουμε ή διαιρούμε αριθμούς, τα σημαντικά ψηφία του αποτελέσματος δεν είναι περισσότερα από εκείνα που έχει ο παράγοντας με το μικρότερο αριθμό σημαντικών ψηφίων. Παράδειγμα: 0,745 2,2 = 0,42 3,885 1, , = 5, Όταν προσθέτουμε ή αφαιρούμε αριθμούς σημασία έχει η θέση της υποδιαστολής και όχι ο αριθμός των σημαντικών ψηφίων. Τα ψηφία καθορίζονται από τον αριθμό με τη μικρότερη αβεβαιότητα (δηλ. τα λιγότερα ψηφία δεξιά της υποδιαστολής). Παράδειγμα: 27, ,2 11,74 = 53,6 Ένα μικρό επί τοις εκατό σφάλμα προκάλεσε το θεαματικό σφάλμα της εικόνας.

9 Παράδειγμα: Σημαντικά ψηφία στο πολλαπλασιασμό. Η ενέργεια ηρεμίας Ε ηλεκτρονίου με μάζα ηρεμίας m δίνεται από την εξίσωση ηρεμίας του Einstein E 0 = mc 2 όπου c η ταχύτητα του φωτός στο κενό. Βρείτε την ενέργεια Ε 0 για ένα αντικείμενο με m=9, kg (μάζα ηρεμίας του ηλεκτρονίου με τρία σημαντικά ψηφία). Η μονάδα της E 0 στο SI είναι το joule. 1J=1Kg.m 2 /s E 0 = 9, , m/s 2 = 9,11 2, kg. m2 = 8, kg. m 2 /s 2 Η τιμή της m έχει δοθεί με τρία σημαντικά ψηφία, επομένως μπορούμε να στρογγυλέψουμε το αποτέλεσμα σε E 0 = 8,19 kg. m2 s 2 = J s 2

10 Βαθμωτές και διανυσματικές ποσότητες Όταν μια φυσική ποσότητα περιγράφεται από έναν αριθμό ονομάζεται βαθμωτή. Μια διανυσματική ποσότητα έχει μέτρο και κατεύθυνση. Η μετατόπιση είναι ένα παράδειγμα διανυσματικής ποσότητας. Στο βιβλίο τα διανύσματα συμβολίζονται μ ένα γράμμα με παχιά πλάγια γράμματα: Α. Όταν τα γράφουμε βάζουμε πάνω στο γράμμα ένα βελάκι: Α. Το μέτρο του διανύσματος Α γράφεται ως Α ή Α.

11 Διανυσματικό άθροισμα Διανυσματικό άθροισμα ή συνισταμένη C δύο διανυσμάτων Α και Β.

12 Παράδειγμα πρόσθεσης διανυσμάτων. Μια σκιέρ διάνυσε 1,00 km βόρεια και μετά 2,00 km ανατολικά σε οριζόντια χιονοδρομική πίστα. Α) Πόσο μακριά βρέθηκε από το σημείο που ξεκίνησε και προς ποια κατεύθυνση; Β) Ποιο είναι το μέτρο και η κατεύθυνση της συνισταμένης των μετατοπίσεων της; 2 km Α) Τα διανύσματα σχηματίζουν ορθή γωνία. Από το Πυθαγόρειο θεώρημα: 1 km φ 1,00 km 2 + 2,00 km 2 = 2,24 km Η κατεύθυνση είναι η γωνία φ. tanφ = απεναντι πλευρα = 2 km = προσκειμενη πλευρα 1 km 63,4o B) Το μέτρο και η κατεύθυνση της συνισταμένης μετατόπισης είναι 2,24 km. Για την κατεύθυνση μπορούμε να πούμε αν κοιτάμε το βορρά είναι 63,4 ο ανατολικά του βορρά. Αν κοιτάμε την ανατολή θα πούμε ότι είναι 26,6 ο βόρεια της ανατολής.

13 Συνιστώσες διανυσμάτων Η πρόσθεση διανυσμάτων γραφικά, χρησιμοποιώντας διάγραμμα έχει περιορισμένη ακρίβεια και ο υπολογισμός με ορθογώνια τρίγωνα εφαρμόζεται μόνο όταν τα διανύσματα είναι κάθετα. Μια πιο γενική μέθοδος πρόσθεσης διανυσμάτων είναι η μέθοδος των συνιστωσών. Κάθε διάνυσμα στο επίπεδο x-y μπορεί να παρασταθεί με το διανυσματικό άθροισμα των διανυσματικών συνιστωσών Α x και Α y : Α = A x + A y. Το μέτρο των συνιστωσών Α x και Α y δίνεται από τις σχέσεις: A x = Acos θ και Α y Αsin θ, όπου Α το μέτρο του διανύσματος.

14 Παράδειγμα: Πώς βρίσκουμε συνιστώσες. Α) Ποιες είναι οι συνιστώσες κατά τους άξονες x και y του διανύσματος D στο σχήμα (α); Το μέτρο του διανύσματος είναι D=3,00 m και η γωνία είναι α=45 ο. Β) Ποιες είναι οι συνιστώσες κατά τους άξονες x και y του διανύσματος E στο σχήμα (β); Το μέτρο του διανύσματος είναι Ε=4,50 m και η γωνία είναι β=37,0 ο. A) B) D x = Dcosα = 3,00 m cos 45 o = +2,1 m D y = Dsinα = 3,00 m sin 45 o = 2,1 m E x = Esinβ = 4,50 m sin37,0 o = +2,71 m E y = Ecosβ = 4,50 m cos37,0 o = +3,59 m

15 διανυσμάτων R στον z είναι: R z = A z + B z + C z +. Χρήση των Συνιστωσών για την άθροιση διανυσμάτων Μπορούμε να χρησιμοποιήσουμε τις συνιστώσες ενός διανύσματος για να βρούμε το μέτρο και την κατεύθυνση: A = A x 2 + A y 2 και tanθ = Α y A x Το διάνυσμα R είναι το διανυσματικό άθροισμα ( η συνισταμένη) των A και B. Η συνιστώσα x του διανύσματος R, ισούται με το άθροισμα των συνιστωσών x των Α και Β. Με την ίδια σχέση συνδέονται και οι συνιστώσες y: R x = A x + B x, R y = A y + B y Για μεγαλύτερο αριθμό διανυσμάτων έχουμε: Έστω R το διανυσματικό άθροισμα των A,B,C,D,E τότε οι συνιστώσες του R είναι: R A B C, R A B C x x x x y y y y Σε τρεις διαστάσεις το μέτρο ενός διανύσματος A είναι: A = A x 2 + A y 2 + A z 2. Ενώ η συνιστώσα του αθροίσματος

16 Παράδειγμα: Πρόσθεση διανυσμάτων με συνιστώσες. Τρεις παίκτες στον τελικό γύρο ενός διαγωνισμού οδηγούνται στο κέντρο μεγάλου επίπεδου γηπέδου. Δίνουν στον καθένα από ένα μέτρο, μια πυξίδα, έναν υπολογιστή τσέπης, ένα φτυάρι και τις ακόλουθες τρεις μετατοπίσεις (με διαφορετική σειρά στον καθένα): 72,4 m, 32 o ανατολικά του βορρά 57,3 m, 36 o νότια της δύσης 17,8 m ακριβώς νότια. Οι τρεις μετατοπίσεις οδηγούν στο σημείο που είναι θαμμένα τα κλειδιά μιας καινούργιας Πόρσε. Οι δύο διαγωνιζόμενοι αρχίζουν αμέσως να μετράνε, αλλά ο νικητής πρώτα υπολογίζει προς τα πού να πάει. Τι υπολογίζει; Οι γωνίες μετριούνται από τον άξονα x προς τον y: 90,0 ο -32,0 ο =58 ο, 180 ο +36,0 ο =216,0 ο, 270 ο. A x = Acosθ Α = 72,4 m cos58 o = 38,37m A y = Acosθ Β = 72,4 m sin58 o = 61,40 m Απόσταση Γωνία Συνιστώσα x Συνιστώσα y R = A=72,4 m 58,0 o 38,37 m 61,40 m B=57,3 m 216,0 o -46,36 m -33,68 m C=17,8 m 270,0 o 0,00 m -17,80 m R x =-7,99 m 7,99 m 2 + 9,92 m 2 = 12,7m R y =9,92 m θ = arctan 9,92 m 7,99 m = 129 o = 39 o δυτικά του βορρά. Επομένως ο νικητής βρίσκει την συνισταμένη R και τη γωνία θ. Οι χαμένοι προσπαθούν να μετρήσουν τρεις γωνίες και τρεις αποστάσεις.

17 Παράδειγμα: Διάνυσμα σε τρεις διαστάσεις. Ένα αεροπλάνο, αφού απογειωθεί, πετάει 10,4 km δυτικά, 8,7 km βόρεια και παίρνει ύψος 2,1 km. Πόσο μακριά βρίσκεται από το σημείο απογέιωσης; Βρίσκουμε το μέτρο της συνισταμένης: A = 10,4 km 2 + 8,7 km 2 + 2,1 km 2 = 13,7 km.

18 Μοναδιαία διανύσματα Ένα μοναδιαίο διάνυσμα είναι ένα διάνυσμα, που έχει μέτρο καθαρό αριθμό ίσο με τη μονάδα. Σ ένα σύστημα συντεταγμένων x-y μπορούμε να ορίσουμε ένα μοναδιαίο διάνυσμα i που έχει την κατεύθυνση του θετικού άξονα x και ένα μοναδιαίο διάνυσμα j που έχει την κατεύθυνση του θετικού άξονα y. Έτσι οι διανυσματικές συνιστώσες A x και A y ενός διανύσματος A μπορούν να εκφραστούν ως: A x = A x i, A y = A y j και A = A x i + A y j Για δύο διανύσματα A και Β που βρίσκονται στο ίδιο επίπεδο A = A x i + A y j και B = B x i + B y j το διανυσματικό τους άθροισμα είναι: R = A + B = A x i + A y j + B x i + B y j = = A x + B x i + A y + B y j = R x i + R y j Αν τα διανύσματα δεν βρίσκονται όλα στο επίπεδο, χρειαζόμαστε μια τρίτη συνιστώσα στον άξονα z. R = A x + B x i + A y + B y j + A z + B z z = R x i + R y j + R z z

19 Παράδειγμα: Χρήση των μοναδιαίων διανυσμάτων. Αν δίνονται οι δύο μετατοπίσεις D = 6i + 3j k m και E = 4i 5j + 8k m Βρείτε το μέτρο της μετατόπισης F=2D-E. F = 2 6i + 3j k m 4i 5j + 8k m = 8i + 11j 10k m F = 8 m m m 2 = 17 m.

20 Γινόμενα διανυσμάτων Το βαθμωτό γινόμενο ή εσωτερικό γινόμενο δύο διανυσμάτων A και B συμβολίζεται με το γινόμενο A B. Ισχύει: A B = ABcosφ = A B cosφ Το φ παίρνει τιμές από 0 ο 180 ο. a) Για να ορίσουμε το βαθμωτό γινόμενο δύο διανυσμάτων A, B τα σχεδιάζουμε με κοινή αρχή. b) Η συνιστώσα του B στην κατεύθυνση του A είναι Bcosφ και το γινόμενο αυτής της συνιστώσας με το μέτρο του A είναι A B. c) Το γινόμενο της συνιστώσας του Α στην κατεύθυνση του Β με το μέτρο του Β είναι επίσης A B.

21 a) Όταν η γωνία φ είναι μεταξύ 0 ο -90 ο το A B είναι θετικό. b) Αν φ είναι μεταξύ 90 ο -180 ο το A B είναι αρνητικό. c) Για κάθετα διανύσματα, φ=90 ο το γινόμενο A B είναι μηδέν. Στη Φυσική για παράδειγμα το έργο W μιας σταθερής δύναμης F που εφαρμόζεται σ ένα σώμα και το μετατοπίζει σε απόσταση s, εκφράζεται με το βαθμωτό γινόμενο: W = F s. Αν γνωρίζουμε τις συνιστώσες των A και B στους τρεις άξονες μπορούμε να υπολογίσουμε το βαθμωτό γινόμενο A B. Ισχύει: i i = j j = k k = 1 1 cos0 = 1 i j = i k = j k = 1 1 cos90 o = 0

22 A B = A x i + A y j + A z k B x i + B y i + B z k = A x i B x i + A y j B x i + A z k B x i +A x i B y j + A y j B y j + A z k B y j +A x i B z k + A y j B z k + A z k B z k = A x B x + A y B y + A z B z Το διανυσματικό γινόμενο δύο διανυσμάτων Α και Β ή εξωτερικό γινόμενο συμβολίζεται με A B. Ισχύει: A B = ABsinφ

23 Ισχύει για τα μοναδιαία διανύσματα: i i = j j = k k = 0 Επίσης: i j = j i = k j k = k j = i k i = i k = j Το εξωτερικό γινόμενο A B σαν συνάρτηση των συνιστωσών τους είναι: A B = A x i + A y j + A z k B x i + B y i + B z k = A x i B x i + A x i B y j + A x i B z k +A y j B x i + A y j B y j + A y j B z k +A z k B x i + A z k B y j + A z k B z k = A y B z A z B y i + A z B x A x B z j + A x B y A y B x k A B = i j k A x A y A z B x B y B z

24 Παράδειγμα: Υπολογισμός βαθμωτού γινομένου. Να βρείτε το βαθμωτό γινόμενο A B των δύο διανυσμάτων στο πιο κάτω σχήμα. Τα μέτρα των δύο διανυσμάτων είναι Α=4,00 και Β=5,00. Υπάρχουν δύο τρόποι εύρεσης του βαθμωτού γινομένου: Α) A B = ABcosφ = 4,00 5,00 cos77,0 ο = 4,50 Β) πολλαπλασιάζοντας τις συνιστώσες των δύο διανυσμάτων: Τα δύο διανύσματα βρίσκοντοι στο επίπεδο x-y, επομένως: A x = 4,00 cos53,0 o = 2,407 A y = 4,00 sin53,0 o = 3,195 B x = 5,00 cos130,0 o = 3,214 B y = 5,00 cos130,0 o = 3,830 A B = A x B x + A y B y = 4,50

25 Παράδειγμα: Εύρεση γωνιών με το βαθμωτό γινόμενο. Βρείτε τη γωνία μεταξύ των δύο διανυσμάτων A = 2i + 3j + k και B = 4i + 2j k cosφ = A xb x + A y B y + A z B z AB A B = A x B x + A y B y + A z B z = = 3 A = A x 2 + A y 2 + Az 2 = = 14 B = B x 2 + B y 2 + Bz 2 = = 21 cosφ = = 0,175 φ = 100ο.

26 Παράδειγμα: Υπολογισμός διανυσματικού γινομένου. Το διάνυσμα Α έχει μέτρο 6 μονάδες κα βρίσκεται στην κατεύθυνση του άξονα +x. Το διάνυσμα Β έχει μέτρο 4 μονάδες, βρίσκεται στο επίπεδο xy και σχηματίζει γωνία 30 ο με τον άξονα +x. Βρείτε το διανυσματικό γινόμενο A B. Δύο τρόποι για την επίλυση: Α) ABsinφ = 6 4 sin30 o = 12 B) Βρίσκουμε τις συνιστώσες και επιλύουμε τον πίνακα: C = A B = i j k A x A y A z = A y B z A z B y i + A z B x A x B z j + A x B y A y B x k B x B y B z A x =6, A y =0 B x =4cos30 ο =2 3, B y =4sin30 ο =2 C x = = 0 C y = = 0 C z = = 12. Tο εξωτερικό γινόμενο έχει τη διεύθυνσή του στον άξονα z.

27 1. Πρόβλημα: Πρότυπα και μονάδες-συμφωνία μονάδων και μετατροπές. Το Φθινόπωρο του 2002, μια ομάδα επιστημόνων στο Εθνικό Εργαστήριο του Λος Άλαμος βρήκε ότι η κρίσιμη μάζα του ποσειδωνίου -237 είναι περίπου 60 kg. Η κρίσιμη μάζα ενός σχάσιμου υλικού είναι η ελάχιστη ποσότητα που πρέπει να έρθει κοντά ώστε να ξεκινήσει μια αλυσιδωτή αντίδραση. Το στοιχείο αυτό έχει πυκνότητα 19,5 g/cm 3. Ποια θα ήταν η ακτίνα μιας σφαίρας από αυτό το υλικό όταν έχει την κρίσιμη μάζα; 2. Πρόβλημα: Διανύσματα και πρόσθεση διανυσμάτων. Μια σπηλαιολόγος εξερευνά ένα σπήλαιο. Ακολουθεί στοά μήκους 180 μέτρων προς τα δυτικά, μετά διανύει 210 m σε διεύθυνση 45 ο ανατολικά του νότου και μετά 280 m σε 30 ο ανατολικά του βορρά. Μετά από μια τέταρτη μετατόπιση, που δεν τη μέτρησε, βρέθηκε πίσω στο σημείο απ όπου ξεκίνησε. Κάνετε ένα διάγραμμα υπό κλίμακα και προσδιορίστε την τέταρτη μετατόπιση, κατά μέτρο και κατεύθυνση. 3. Πρόβλημα: Διανύσματα και πρόσθεση διανυσμάτων. Κάποιος καθηγητής Φυσικής, που έχασε το δρόμο του, οδηγεί 3,25 km βόρεια, μετά 4,75 km δυτικά και τέλος 1,50 km νότια. Βρείτε το μέτρο και την κατεύθυνση της συνισταμένης της μετατόπισης χρησιμοποιώντας τη μέθοδο των συνιστωσών. 4. Πρόβλημα: Μοναδιαία διανύσματα. Α)Είναι το διάνυσμα i + j + k μοναδιαίο διάνυσμα; Αιτιολογείστε την απάντησή σας. Β) Μπορεί ένα διάνυσμα να έχει μέτρο μεγαλύτερο της μονάδας; Μπορεί κάποιες συνιστώσες του να είναι αρνητικές; Να αιτιολογήσετε την απάντησή σας σε κάθε περίπτωση. C) Αν A = a 3,0i + 4,0j, όπου η α είναι μια σταθερά, να καθορίσετε την τιμή του α που κάνει το διάνυσμα Α μοναδιαίο.

28 5. Πρόβλημα: Γινόμενα διανυσμάτων. Βρείτε τη γωνία μεταξύ των διανυσμάτων για κάθε ένα από τα παρακάτω ζεύγη: Α) A = 2,00i + 6,00j και B = 2,00i 3,00j B) A = 3,00i + 5,00j και B = 10,00i + 6,00j C) A = 4,00i + 2,00j και B = 7,00i + 14,00j Για τα δύο διανύσματα της εικόνας βρείτε: α) το μέγεθος και τη διεύθυνση του εξωτερικού γινομένου A B, β) κάντε το ίδιο για το B A.

29 Ένα πλοίο φεύγει από το νησί Γκουάμ και πλέει 285 km και στις 40 ο βόρεια της δύσης. Προς τα πού πρέπει τώρα να κατευθυνθεί και πόσο μακριά πρέπει να ταξιδέψει ώστε η συνισταμένη μετατόπιση του να είναι 115 km απευθείας ανατολικά της Γκουάμ;

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη ΦΥΣΙΚΗ Η Φυσική είναι πειραματική επιστήμη Μέσα από το πείραμα ψάχνουμε κανονικότητες και αρχές (θεωρίες, νόμοι) ΕρώτημαΠείραμαΑποτέλεσμαΘεωρία Νόμος Φυσική 1 ΦΥΣΙΚΗ Φυσική 2 ΦΥΣΙΚΗ Η Φυσική χρησιμοποιεί

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά).

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά). Διανύσματα Βαθμωτή Ποσότητα: αυτή που μπορεί να οριστεί πλήρως με έναν αριθμό και μια μονάδα. Ο αριθμός και η μονάδα συνιστούν το μέτρο της βαθμωτής ποσότητας. Διάνυσμα: είναι η ποσότητα που έχει (α) μέτρο,

Διαβάστε περισσότερα

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T. Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; ιανυσµατικό µέγεθος Μέτρο ιεύθυνση Φορά A Μετατόπιση Τελική θέση Αρχική θέση Σύµβολο µέτρου διανύσµατος A ύο διανύσµατα είναι ίσα αν έχουν ίδιο µέτρο

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Ε Ι Σ Α Γ Ω Γ Η 1. Φ υ σ ι κ ά μ ε γ έ θ η Η Φυσική είναι η θεμελιώδης επιστήμη που εξετάζει τα φυσικά φαινόμενα που συντελούνται στο σύμπαν. Παραδείγματα φυσικών φαινομένων είναι οι κινήσεις των πλανητών,

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 3 Κίνηση σε και 3 διαστάσεις, Διανύσµατα Copyright 009 Pearson ducation, Inc. Περιεχόµενα 3 Διανύσµατα και Βαθµωτές ποσότητες Πράξεις Διανυσµάτων Γραφικές Παραστάσεις Μοναδιαία διανύσµατα Κινηµατική

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Σύνοψη Πειραματικός προσδιορισμός της δύναμης, η οποία εξισορροπεί δύο ομοεπίπεδες δυνάμεις και σύγκρισή της με τη συνισταμένη τους που υπολογίζεται αριθμητικά

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Από την θεωρία της Τριγωνοµετρίας είναι γνωστοί δύο νόµοι: ο νόµος του ηµιτόνων και ο νόµος του συνηµιτόνων, οι οποίοι ισχύουν για τυχαίο τρίγωνο. Έστω ένα τυχαίο

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

φυσική κεφ.3 ΔΥΝΑΜΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου

φυσική κεφ.3 ΔΥΝΑΜΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου φυσική κεφ.3 ΔΥΝΑΜΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου Η δύναμη προκαλεί μεταβολή στην ταχύτητα του υλικού σημείου στο οποίο ασκείται. Π.χ. η ρακέτα ασκεί δύναμη στο μπαλάκι και του αλλάζει την ταχύτητα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h.

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h. ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16- - 2011 ΘΕΜΑ 1 0 Για τις ερωτήσεις 1-5, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 011-01 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... Ημερομηνία: 3/05/01 Διάρκεια: ώρες Ονοματεπώνυμο:... Τμήμα:... ΟΔΗΓΙΕΣ:

Διαβάστε περισσότερα

β) 8m/s 2 δ) 4m/s 2 (Μονάδες 5)

β) 8m/s 2 δ) 4m/s 2 (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ/Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: // ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις Α.- Α.4 και δίπλα το γράµµα

Διαβάστε περισσότερα

W = F s..συνϕ (1) W = F. s' (2)

W = F s..συνϕ (1) W = F. s' (2) 1. Αναφορά παραδειγμάτων. ΠΑΡΟΥΣΙΑΣΗ ΣΤΟ ΠΕΚ ΘΕΣΣΑΛΙΑΣ ΜΑΙΟΣ 1997 ΕΡΓΟ - ΕΝΕΡΓΕΙΑ. α). Γρύλος που σηκώνει το αυτοκίνητο (1. Η δύναμη συνδέεται με τον δρόμο;. Τι προκύπτει για το γινόμενο δύναμης-δρόμου;

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών Επιπρόσθετα για την δύναμη Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973 Επιλογή μόνον για την εκπαίδευση των φοιτητών Εικόνα : Τα πόδια της κοπέλας σπρώχνουν κάτω καθώς πατάει πάνω

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΜΗΧΑΝΟΛΟΓΙΑ - ΣΤΕΡΕΟΣΤΑΤΙΚΗ. 2. Στερεοστατική. 2.1 Ισοδύναμα συστήματα δυνάμεων Δύναμη

ΓΕΝΙΚΗ ΜΗΧΑΝΟΛΟΓΙΑ - ΣΤΕΡΕΟΣΤΑΤΙΚΗ. 2. Στερεοστατική. 2.1 Ισοδύναμα συστήματα δυνάμεων Δύναμη 2. Στερεοστατική 2.1 Ισοδύναμα συστήματα δυνάμεων 2.1.1 Δύναμη Στο πλαίσιο της καθημερινής ζωής κάνουμε διάφορες ενέργειες που προκαλούν διάφορα αποτελέσματα. Όταν για παράδειγμα λέμε ότι κάποιος σπρώχνει

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΟ ΣΧΟΛΕΙΟ ΕΡΓΟ ΣΤΑΘΕΡΗΣ ΔΥΝΑΜΗΣ & ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΕΝΑ ΣΩΜΑ ΣΕ ΕΝΑ ΑΛΛΟ ΚΑΘΗΓΗΤΗΣ :

ΕΡΓΑΣΙΑ ΣΤΟ ΣΧΟΛΕΙΟ ΕΡΓΟ ΣΤΑΘΕΡΗΣ ΔΥΝΑΜΗΣ & ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΕΝΑ ΣΩΜΑ ΣΕ ΕΝΑ ΑΛΛΟ ΚΑΘΗΓΗΤΗΣ : ΕΡΓΑΣΙΑ ΣΤΟ ΣΧΟΛΕΙΟ ΕΡΓΟ ΣΤΑΘΕΡΗΣ ΔΥΝΑΜΗΣ & ΜΕΤΑΦΟΡΑ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΕΝΑ ΣΩΜΑ ΣΕ ΕΝΑ ΑΛΛΟ ΚΑΘΗΓΗΤΗΣ : Σελίδα 1 από 6 Ονοματεπώνυμο μαθητή :.. Τάξη / Τμήμα: Ημερομηνία : Κατά τον Ηράκλειτο «το Πύρ» { ενέργεια

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΕΦΑΛΑΙΟ 1 Ο. 1) Τα θεµελιώδη µεγέθη: Το µήκος, ο χρόνος και η µάζα

ΦΥΣΙΚΗ ΚΕΦΑΛΑΙΟ 1 Ο. 1) Τα θεµελιώδη µεγέθη: Το µήκος, ο χρόνος και η µάζα ΦΥΣΙΚΗ ΚΕΦΑΛΑΙΟ 1 Ο 1) Τα θεµελιώδη µεγέθη: Το µήκος, ο χρόνος και η µάζα Μερικά φυσικά µεγέθη προκύπτουν άµεσα από τη διαίσθησή µας. εν ορίζονται µε τη βοήθεια άλλων µεγεθών. Αυτά τα φυσικά µεγέθη ονοµάζονται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ Στην σύνθεση δυνάµεων (δηλαδή πρόσθεση δυνάµεων), ενεργούµε µε τέτοιον τρόπο ώστε από πολλές δυνάµεις, οι οποίες ενεργούν σε ένα υλικό σηµείο ή σώµα,

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή.

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή. Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή. Η διανυσματική ποσότητα έχει διεύθυνση, φορά και μέτρο. Δύο διανυσματικές ποσότητες

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Θέση. Χρόνος. Ταχύτητα. Επιτάχυνση

Θέση. Χρόνος. Ταχύτητα. Επιτάχυνση 3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec. Ημερομηνία Παράδοσης: 6//006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου

Διαβάστε περισσότερα

2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων

2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2.1 Όπως είναι γνωστό, όταν σε κάποιο σώμα ενεργούν δυνάμεις, ένα από τα αποτελέσματά τους μπορεί να είναι να αλλάξει η κατάσταση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης 1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την

Διαβάστε περισσότερα

ΣΧΕΤΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ. Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή.

ΣΧΕΤΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ. Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή. Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή. Η ανάλυση της κίνησης μας έχει σχέση με ένα σύστημα αναφοράς Η ανάλυση της κίνησης μας εξαρτάται από την ταχύτητα του παρατηρητή. Η

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η επιτάχυνση

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Φ υ σ ι κ ή. Μηχανική ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Επίκουρος Καθηγητής Τμήμα Μηχανολογίας

Φ υ σ ι κ ή. Μηχανική ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Επίκουρος Καθηγητής Τμήμα Μηχανολογίας ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Φ υ σ ι κ ή Μηχανική Κωνσταντίνος Κλεΐδης Δρ. Φυσικής Επίκουρος Καθηγητής Τμήμα Μηχανολογίας Χρήστος Βοζίκης Δρ. Φυσικής Επιστημονικός

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΣΚΗΣΕΙΣ ΕΡΓΟΥ 7. Σε σώµα ασκείται µια δύναµη F 1 = 20 N πλάγια µε γωνία φ = 30 ενώ υπάρχει τριβή Τ = 5 N. Να βρείτε για µετατόπιση του σώµατος κατά χ = 5 m ί) το έργο κάθε δύναµης, ii) εάν το σώµα κερδίζει

Διαβάστε περισσότερα

Καλώς ήλθατε. Καλό ξεκίνημα.

Καλώς ήλθατε. Καλό ξεκίνημα. Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα