Θεωρία μετασχηματισμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία μετασχηματισμών"

Transcript

1 Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί υπό την μορφή ενός πίνακα που ονομάζεται Cold: C old x y x y x y x y Ορίζεται τώρα ένας τελεστής R που είναι η μήτρα μετασχηματισμού και ονομάζεται το καινούργιο μετασχηματισμένο αντικείμενο Cnew. Ένας γεωμετρικός μετασχηματισμός μπορεί τότε να παρασταθεί από τη σχέση: C C R new old Η μήτρα μετασχηματισμού R μπορεί να προκαλέσει μετατόπιση σε συγκεκριμένη θέση, περιστροφή γύρω από σημείο ή άξονα, ανάκλαση, δημιουργία ειδώλου ως προς κάποιο επίπεδο κλπ.

2 Διδιάστατοι Μετασχηματισμοί Κλίμακας Στους διδιάστατους μετασχηματισμούς η κλίμακα ελέγχεται από το μέγεθος των δύο στοιχείων της κύριας διαγωνίου της μήτρας μετασχηματισμού. R R R Για τη συγκεκριμένη περίπτωση παρατηρείται ότι: α) Όταν R R, δημιουργείται μεγέθυνση γύρω από το σημείο αναφοράς ή ομοιόμορφη κλιμάκωση του αντικειμένου. β) Όταν R R, δημιουργείται παραμόρφωση του αντικειμένου ή ανομοιογενής κλιμάκωση. Θα πρέπει να αναφερθεί ότι μόνο το σημείο αναφοράς της κλιμάκωσης παραμένει αμετάβλητο από την όλη διαδικασία. Γιαπαράδειγμα, ανεπιλεγείημήτραr ίσημε: R R και εφαρμοστεί στις κορυφές του αντικειμένου, επιτυγχάνεται η ομοιόμορφη μεγέθυνση κατά δυο φορές του αντικείμενου. Αλλά, αν εφαρμοστεί η παρακάτω μήτρα: λαμβάνεται παραμορφωμένο το σχήμα του αντικειμένου, αφού υπάρχει μεγέθυνση μόνο στην Υ διεύθυνση, που προκαλεί μη ομοιόμορφη κλιμάκωση.

3 3 Θεωρία μετασχηματισμών Παράδειγμα Ευθύγραμμο τμήμα που ορίζεται από τα σημεία(,), (3,) και εφαρμόζεται η μήτρα μετασχηματισμού κλίμακας στο επίπεδο R (,) (,) (3,) y x (,) (,) (6,8) y x (,) (,) (3,8) y x R R 8 6 3, Αν εφαρμοστεί η μήτρα μετασχηματισμού R 8 3 3,

4 Περιστροφή γύρω από την αρχή του συστήματος συντεταγμένων Θεωρείται x-y σύστημα συντεταγμένων. Αν περιστραφούν και οι δυο άξονες ανθωρολογιακά κατά γωνία θ λαμβάνεται ένα νέο σετ αξόνων x και y. Για ένα σημείο Ρ με συντεταγμένες (x,y), η νέα θέση του Ρ προσδιορίζεται από ένα νέο ζεύγος συντεταγμένων(x,y ), μετά την περιστροφή. Ησχέσημεταξύτωνπαλιώνκαιτωννέωνσυντεταγμένωνείναι: x x cosθ y y x sinθ y sinθ cosθ καιμεμορφήπινάκων: x y cosθ sinθ x sinθ cosθ y Εκφράζοντας τις παλιές συντεταγμένες ως συνάρτηση των νέων, παράγεται η παρακάτω έκφραση, που είναι ο αντίστροφος μετασχηματισμός: x y x y x y [ R ] x cosθ sinθ sinθ cosθ y Για την R αποδεικνύεται ότι ισχύει R R T

5 Περιστροφή γύρω από την αρχή του συστήματος συντεταγμένων Η τελική μήτρα μετασχηματισμού, που συνδέει τις παλιές με τις νέες συντεταγμένες, δηλαδή οι πίνακες υπό την μορφή διανύσματος και αντικατασταθεί η μήτρα R με την RT αντίστοιχα στην κάθε περίπτωση, λαμβάνεται: cosθ sinθ sinθ cosθ cosθ sinθ x y x y sinθ cosθ [ x y] [ x y ] [ ] [ ] Περιστροφή σε Διαφορετικές Γωνίες Σεπεριπτώσεις, όπουηπεριστροφήτωναξόνωνx καιy γίνεταισεδυοδιαφορετικέςγωνίεςθ, θ, οιεξισώσεις τωνσυντεταγμένωντωνσημείωνείναι: cosθ sinθ sin cos θ θ cos( θ θ) [ x y ] [ x y] 5

6 Παράδειγμα Σημείο(,) περιστρέφεται στο επίπεδο γωνία θ μοίρες. Οι νέες του συντεταγμένες υπολογίζονται από τη σχέση: x cos y sin ο ο sin cos ο ο.5,866, y (-.86,.3) (,) (,) x 6

7 Σύνθετοι Μετασχηματισμοί Η μήτρα σύνθετων μετασχηματισμών, ορίζεται ως η μήτρα που προκαλεί περισσότερους από ένα μετασχηματισμούς στον πίνακα αναφοράς C. Για παράδειγμα, αν υπάρχει κλιμάκωση και περιστροφή της κλιμακούμενης γεωμετρίας ανθωρολογιακά με γωνία ίση με θ, γύρω από το σημείο αναφοράς, η νέα μήτρα για το C προσδιορίζεται από τη σχέση: C new C old R s R r Όπου Rs και Rr οι μήτρες μετασχηματισμού κλιμάκωσης και περιστροφής αντίστοιχα. Η συνολική μήτρα μετασχηματισμού, που πραγματοποιεί και τις δυο διαδικασίες ταυτόχρονα είναι: R R R s r Οι σύνθετοι μετασχηματισμοί είναι ένα σημαντικό χαρακτηριστικό, σε όσα λογισμικά CAD χρησιμοποιείται, γιατί έχει το πλεονέκτημα της εξοικονόμησης χρόνος και χώρου αποθήκευσης. 7

8 Διδιάστατη Μεταφορά Για να ξεπεραστεί η δυσκολία που προκαλεί η x μήτρα μετασχηματισμού για μεταφορά, λόγω της ανάγκης πολλαπλασιασμούμεέναδιάνυσμα3x, αυξάνεταιοβαθμόςτηςμήτραςαυτήςσε3x3, συνεπώςηr γίνεται: a b R c d x y και η αναπαράσταση κάθε σημείου(x, y) παίρνει την ακόλουθη μορφή(x,y,). Έτσι ικανοποιούνται και οι κανόνες για τον πολλαπλασιασμό δύο πινάκων. Η διαδικασία της μεταφοράς επιτυγχάνεται όταν η R πάρει τη μορφή: R x y Μετασχηματισμοί Κλίμακας Αντίστοιχα, ο συνολικός μετασχηματισμός κλίμακας επιτυγχάνεται όταν η R πάρει τη μορφή: R s ηπαράμετροςs δίνεταιαπότησχέση: s/n όπου n συντελεστής κλιμάκωσης. 8

9 Περιστροφή Γύρω από Τυχαίο Σημείο Εκτός από την περιστροφή γύρω από την αρχή των συντεταγμένων(,) πολλές φορές ζητείται να περιστραφεί κάποιο αντικείμενο γύρω από τυχαίο σημείο στο χώρου. Αν η ανάλυση περιοριστεί σε δυο διαστάσεις, η περιστροφή γύρω από τυχαίο σημείο πραγματοποιείται, εάν πρώτα μετακινηθεί το κέντρο βάρους του αντικειμένου στο επιθυμητό σημείο και στη συνέχεια περιστραφεί γύρω από την αρχή των αξόνων (,). Όταν εκτελεστεί η περιστροφή μεταφέρεται το αντικείμενο στην αρχική του θέση. Αν απαιτείται για παράδειγμα, να περιστραφεί το διάνυσμα θέσης [x,y,] γύρω από το σημείο (m, n) κατά μια γωνίαθπρέπει: * * [ x y ] [ x y ] [ x y ] cosθ sinθ sinθ cosθ m n m n cosθ sinθ sinθ cosθ m( cosθ ) + nsinθ n( cosθ ) msinθ 9

10 Τρισδιάστατοι Μετασχηματισμοί Κλίμακας Μήτρα μετασχηματισμού R s a b c a b c Τρισδιάστατοι Μετασχηματισμοί Μετατόπισης Μήτρα μετασχηματισμού ομοιόμορφη κλιμάκωση, διαφορετικά η κλιμάκωση του αντικειμένου είναι ανομοιόμορφη ή υπάρχει παραμόρφωση R s a b c a, b, c οισυντεταγμένεςτουδιανύσματοςμετατόπισης

11 Τρισδιάστατη Περιστροφή Η τρισδιάστατη περιστροφή ενός αντικειμένου επιτυγχάνεται με τον πίνακα Rr της γενικής μήτρας μετασχηματισμού: R r 3x3 Matrix Ηπεριστροφήγύρωαπότονάξοναx επιτυγχάνεταιμετονυποπίνακα: R x cosθ sinθ sinθ cosθ Ηπεριστροφήγύρωαπότονάξοναyεπιτυγχάνεταιμετονυποπίνακα: R y cosθ sinθ sinθ cosθ cosθ sinθ R Ηπεριστροφήγύρωαπότονάξοναzεπιτυγχάνεταιμετονυποπίνακα: z sinθ cosθ Όταν ο άξονας περιστροφής είναι ένας τυχαίος άξονας στον χώρο, ο τελικός πίνακας περιστροφής προκύπτει από διαδοχικούς μετασχηματισμούς.

12 Τρισδιάστατη Περιστροφή Γύρω από Τυχαίο Σήμειο Οι διαδοχικές περιστροφές γύρω από τους άξονες Χ, Υ, Ζ, μπορούν να εκφραστούν ως μία περιστροφή, γύρω από ένα αυθαίρετο άξονα. Η περιστροφή κατά γωνία γ γύρω από αυτόν τον άξονα δίνεται από την παρακάτω μήτρα μετασχηματισμού: R r R, R, R α β γ α β γ οιπίνακεςπεριστροφήςγύρωαπότουςx,yκαιz άξονεςμεγωνίες Rx Ry Rz x y z στρέψης α,β,γ αντίστοιχα Αυτήηδιαδικασίαέχεικάποιαμειονεκτήματα, πουέχουνσχέσημετονπροσδιορισμότωνσωστώνγωνιώνα,β,γ, καθώς και της σωστής φοράς τους. Η μήτρα μετασχηματισμού Rr σε αυτήν την περίπτωση προσδιορίζεται από την παρακάτω διαδικασία:. Μεταφορά του αντικειμένου, έτσι ώστε η αρχή του συστήματος συντεταγμένων να περνά από τον άξονα περιστροφής.. Περιστροφή του αντικειμένου. 3. Μεταφορά του αντικειμένου στην αρχική του θέση. Αντικαθιστώντας τις τρεις μήτρες μεταφοράς λαμβάνεται: C * C R R R [ RT] T r T x y z [ RT] x y z [ R ] r CC 3 CS 3 + SSC 3 SS 3 CSC 3 CC CS SSC SS + CSC S SC CC C ( cosα ) C ( cosβ ) C 3 ( cosγ) S ( sinα ) S ( sinβ ) S 3 ( sinγ)

13 Τρισδιάστατος Κατοπτρισμός Με τον όρο εννοείται η δημιουργία κατοπτρικού ειδώλου ενός αντικειμένου ως προς ένα ή και περισσότερα επίπεδα. H πιο απλή ανάκλαση δημιουργείται ως προς ένα επίπεδο. Η ανάκλαση στο επίπεδο x-y δίνεται από την μήτρα: R r Όμοιαγιαανάκλασηωςπροςτοεπίπεδοy-z ημήτραδίνεται: R r Επίσηςκαιγιατοεπίπεδοx-z : R r 3

14 Θεωρία μετασχηματισμών (,) (,) (3,) y x (-3,) (-,) Παράδειγμα Σεευθύγραμμοτμήμαπουορίζεταιαπότασημεία(,), (3,), ναβρεθείτοκατοπτρικότουευθύγραμμοτμήμα, ωςπροςτονάξονατωνy. Στη συγκεκριμένη περίπτωση, έχουμε κατοπτρικό σχήμα ως προς το επίπεδο y-z, οπότε εφαρμόζεται η αντίστοιχη μήτρα μετασχηματισμού 3 3, R r

15 Τρισδιάστατη Απεικόνιση Ορθή προβολή Στο λογισμικό CAD γίνεται προσαρμογή της τρισδιάστατης απεικόνισης σε διδιάστατη απεικόνιση, για την προβολή της γεωμετρίας στην οθόνη, η οποία είναι δύο διαστάσεων. Για την πραγματοποίηση της παραπάνω διαδικασίας ακολουθούνται μαθηματικές μέθοδοι, για τη δημιουργία του πίνακα μετασχηματισμού, που επιτυγχάνει την μετατροπή της τρισδιάστατης απεικόνισης ενός αντικειμένου, σε διδιάστατη. Ηπροβολήαπό3D σεd γίνεταιδυνατή, προβάλλονταςπάνωστοεπίπεδοx-y, οπότεz R 3x3 Rotation matrix Όμοιαηπροβολήπάνωστοεπίπεδοz t επιτυγχάνεταιμετονακόλουθοτρόπο: 3x3 Rotation R matrix t H συνολικήμήτραμετασχηματισμούr είναιτογινόμενοτωνδυοπινάκων. Οπρώτοςπεριστρέφειτοαντικείμενο, αν αυτό απαιτείται, και ο δεύτερος προβάλει το αποτέλεσμα πάνω σε ένα διδιάστατο επίπεδο (για την συγκεκριμένη περίπτωση το επίπεδο z t). 5

16 Τρισδιάστατη Απεικόνιση Ορθή προβολή Για προβολή στο επίπεδο y-z R Γιαx καιγιαx r R r Για προβολή στο επίπεδο x-z R Γιαy καιγιαy s R s 6

17 7 Θεωρία μετασχηματισμών Παράδειγμα Έστω ευθεία, η οποία ορίζεται από τα σημεία(,,) και(3,,). Η προβολή της στο επίπεδο x-y υπολογίζεται ως εξής: 3 3, Αν θεωρηθεί ότι το επίπεδο x-y είναι η οθόνη του υπολογιστή και δεν υπάρχει η δυνατότητα τρισδιάστατης απεικόνισης, ο χρήστης κοιτώντας τη γραμμή αυτή, η οποία ορίζεται στον τρισδιάστατο χώρο, θα βλέπει μια γραμμή, η οποία ορίζεται από τα σημεία(,,) και(3,,). 3, 3 3, Η προβολή στο επίπεδο y-z υπολογίζεται ως εξής: Η προβολή στο επίπεδο x-z υπολογίζεται ως εξής:

18 Τρισδιάστατη Απεικόνιση Ισομετρική προβολή Η ισομετρική προβολή παράγεται με ίση προοπτική απεικόνιση και των τριών αξόνων Χ, Υ, Ζ κατά την μεταφορά από 3D σε D. Το λογισμικό CAD επιτυγχάνει τα παραπάνω με τη βοήθεια μιας μήτρας μετασχηματισμού, που παράγει μια τέτοια προβολή, ακολουθώντας τις εξής διαδικασίες:.περιστροφή γύρω από τον άξονα Υ.. ΠεριστροφήγύρωαπότονάξοναΧ. 3.ΠροβολήστοεπίπεδοΖ. Μετασχηματισμός με ίση προοπτική απεικόνιση όλων των αξόνων. 5.Τελικός μετασχηματισμός για την παρουσίαση της ισομετρικής προβολής. Θεωρώντας ένα σημείο στον χώρο P με συντεταγμένες (x y z ), με τη χρήση της παραπάνω μεθόδου θα βρεθεί ηισομετρικήπροβολήτουσημείουp. ΓίνεταιπεριστροφήτουσημείουγύρωαπότουςάξονεςΧκαιΥμε γωνίες θ και φ αντίστοιχα. Οι συντεταγμένες του νέου σημείου δίδονται από: cosφ sinφ cosθ sinθ * * * [ x y z ] [ x y z ] sinφ cosφ sinθ cosθ H σύνθετη μήτρα μετασχηματισμού των περιστροφών είναι: cosφ sinφsinθ sinφcosθ cosθ sinθ R sinφ cosφsinθ cosφsinθ 8

19 Τρισδιάστατη Απεικόνιση Ισομετρική προβολή ΕπειδήγίνεταιπροβολήπάνωστοεπίπεδοΖ, θαπρέπειναεξαιρεθούν όλεςοιπροβολέςτουζ, εξισώνοντας τες με μηδέν. Για να δημιουργηθεί η ισομετρική προβολή, θα πρέπει να είναι ομοιόμορφη η προβολή ως προς τους άξονες. Ένας τρόπος για επιτευχθεί αυτό, είναι να εξισωθούν τα μέτρα των μοναδιαίων διανυσμάτων των Χ καιυαξόνων, καιστησυνέχειαναεξισωθεί ένααπόαυτάμετουςάξονεςυκαιζ. Τομέτροτωνμοναδιαίωνδιανυσμάτων, τωναξόνωνχ, ΥκαιΖμετάτηνπροβολήτους, υπολογίζεταιμετις παρακάτω σχέσεις: * * * ( ) ( ) ( ) n x + y + z + cos sin φ φ sin θ x * * * ( ) ( ) ( ) n x + y + z y * * * ( ) ( ) ( ) cos n x + y + z + sin cos φ φ sin θ z Οπότε sin θ nx ny sin φ sin θ ny nz sin θ sin φ sin θ φ Οι παραπάνω δυο εξισώσεις αποτελούν σύστημα δύο εξισώσεων με δυο αγνώστους. Με τη χρήση τριγωνομετρικώνεξισώσεωνκαιτημέθοδοτηςαντικατάστασηςγίνεταιεπίλυσηωςπροςθκαιφκαιβρίσκεταιότι, για μια δεδομένη 3D γεωμετρία, είναι δυνατός ο υπολογισμός της ισομετρικής της προβολής, πολλαπλασιάζοντας αρχικά με την μήτρα μετασχηματισμού R και θέτοντας στην συνέχεια τις γωνίες θ και φ ίσες με 35.6 και 5 αντίστοιχα. 9

20 Άσκηση Ηάσκησηθαεπιλυθείμεόποιομαθηματικότρόποείναιεπιθυμητό, π.χ. πράξειςμετοχέρι, matlab, excel, κλπ. και θα παραδοθεί σε ηλεκτρονική μορφή μέχρι το επόμενο μάθημα. Μπορεί να αποσταλεί και ηλεκτρονικά μέχρι την ημέρα του επόμενου μαθήματος, πριν από αυτό. ) Δίδεται σημείο στο επίπεδο, του οποίου οι συντεταγμένες προσδιορίζονται από τα πρώτα γράμματα του επωνύμου σας(α->, Β->, Γ->3, κλπ.) και ζητείται να βρεθούν οι συντεταγμένες του, αν αυτό περιστραφεί ως προς σημείο, του οποίου οι συντεταγμένες προσδιορίζονται από τα επόμενα γράμματα του επωνύμου σας. Η γωνία περιστροφής προσδιορίζεται από το πρώτο γράμμα του ονόματος σας. ) Αν τα παραπάνω σημεία ορίζουν ένα ευθύγραμμο τμήμα στο επίπεδο, να προσδιοριστούν οι συντεταγμένες τουκατοπτρικούσχήματος, ωςπροςτουςάξονεςχκαιυ. 3)ΗυπολογιστείηορθήπροβολήσταεπίπεδαΧΥ, ΧΖ, ΥΖ, ευθύγραμμουτμήματος, τοοποίοορίζεταιαπότα παραπάνωσημεία, ανθεωρηθείότιηζσυντεταγμένητουπρώτουσημείουείναι καιτουδεύτερου7. )Δίδεται κύβος πλευράς 5. Το κάτω αριστερό σημείο από την εμπρός πλευρά είναι το πρώτο σημείο της άσκησης. Να υπολογιστούν τα σημεία των κορυφών του, για τη δημιουργία ισομετρικής προβολής.

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

cos ϑ sin ϑ sin ϑ cos ϑ

cos ϑ sin ϑ sin ϑ cos ϑ ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 33 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Νοε 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-33 Νοε 2014 1 / 11 Μετασχηματισμοί του επιπέδου Πολλοί μετασχηματισμοί

Διαβάστε περισσότερα

Κεφάλαιο 3 ο : Αναπαράσταση θέσης

Κεφάλαιο 3 ο : Αναπαράσταση θέσης ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Μάθηµα 3 ο Αναπαράσταση θέσης στο επίπεδο (2 ) και στο χώρο (3 ) Οµογενής Μετασχηµατισµός Κεφάλαιο 3 ο : Αναπαράσταση θέσης Μεταφορά αξόνων σε 2 X Ι Ο Ι Y Ι

Διαβάστε περισσότερα

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων 2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Επανάληψη 3 Συσχετισμένοι 4 Γραμμικοί

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Σύνοψη Το παρόν κεφάλαιο είναι θεμελιώδες για τα συστήματα γραφικών. Αποτελεί τη βάση για την υλοποίηση πολλών πιο πολύπλοκων διαδικασιών όπως ο φωτισμός,

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6. 1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 )

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 ) ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 5 η Παραδείγµατα µηχανισµών στο χώρο (3 ) Παράδειγµα 1 ο : Ροµποτικός βραχίονας RPPRR R: revolute pair P: prismatic pair Βραχίονας Τηλεσκοπικός βραχίονας

Διαβάστε περισσότερα

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Συναφείς µετασχηµατισµοί:

Συναφείς µετασχηµατισµοί: Μετασχηµατισµοί Μετασχηµατισµός: απεικόνιση ενός σηµείου ή διανύσµατος σε άλλο σηµείο ή διάνυσµα Q=T(P), v=r(u) Οµογενείς συντεταγµένες: ενιαίος ορισµός q=f(p) Γενική περίπτωση: υπολογισµός για κάθε σηµείο

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Τεχνικό Σχέδιο - CAD Τρισδιάστατοι Μετασχηματισμοί ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τρισδιάστατη Αλλαγή κλίμακας [ ] [ ] [ ] j e a j e a û ù

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 1. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ

Τμήμα Ηλεκτρολόγων Μηχανικών ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΡΟΠΗΣ ΤΑΧΥΤΗΤΑΣ ΕΠΑΓΩΓΙΚΩΝ ΚΙΝΗΤΗΡΩΝ Αν είναι γνωστή η συμπεριφορά των μαγνητικών πεδίων στη μηχανή, είναι δυνατός ο προσεγγιστικός προσδιορισμός της χαρακτηριστικής ροπής-ταχύτητας του επαγωγικού κινητήρα Όπως είναι γνωστό η επαγόμενη ροπή

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Κεραίες & Ασύρματες Ζεύξεις

Κεραίες & Ασύρματες Ζεύξεις Κεραίες & Ασύρματες Ζεύξεις Εισαγωγή στις ΣΤΟΙΧΕΙΟΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

t : (x, y) x 2 +y 2 y x

t : (x, y) x 2 +y 2 y x Σύνοψη Κεφαλαίου 5: Αντιστροφική Γεωμετρία Αντιστροφή 1. Η ανάκλαση σε μία ευθεία l στο επίπεδο απεικονίζει ένα σημείο A σε ένα σημείο A που απέχει ίση απόσταση από την l αλλά βρίσκεται στην άλλη πλευρά

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Διάνυσμα του Plücker

Διάνυσμα του Plücker ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ ΘΕΩΡΗΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑ: ΕΥΘΕΙΑΚΗ ΓΕΩΜΕΤΡΙΑ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-17 Διδάσκων: Αναπλ. Kαθηγητής Στυλιανός Σταματάκης ΑΣΚΗΣΕΙΣ 1.

Διαβάστε περισσότερα

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του Ροµποτική Ο χειρισµός αντικειµένων και εργαλείων από ένα ροµποτικό βραχίονα σηµαίνει ότι το ροµπότ πρέπει να είναι ικανό να τοποθετεί και να προσανατολίζει κατάλληλα το άκρο του στο χώρο εργασίας π.χ.

Διαβάστε περισσότερα

Γεωμετρικοί μετασχηματιμοί εικόνας

Γεωμετρικοί μετασχηματιμοί εικόνας Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM Ενότητα # 6: Γραφικά Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ -A.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ

Διαβάστε περισσότερα

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής η Μετασχηματισμοί kdemertz@fmenr.duth.gr Μετασχηματισμοί Κατά τον σχηματισμό του εικονικού κόσμου

Διαβάστε περισσότερα

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim 1 ΑΝΑΛΥΣΗ ΙΙ Κατευθυνόμενη Παράγωγος Κατευθυνόμενη Παράγωγος: Ορισμός 1: Εστω f : U R 2 R μία πραγματική συνάρτηση δύο μεταβλητών με U ανοικτό, a = (a, b) U και u = (u, v) μία κατεύθυνση του R 2 (δηλαδή

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών.

και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών. Στις δύο διαστάσεις αφετηρία είναι η σχέση r + r r r A r + q r q Grr (, = ln ln L L (6 από την οποία μπορούμε να προσδιορίσουμε ότι και επομένως R R q = r, L r = L και A = r (7 r + r r r Grr (, = ln rr

Διαβάστε περισσότερα

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης 4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Προοπτική Προβολή Παράλληλη Προβολή Ορθογραφικές Προβολές Πλάγιες Παράλληλες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Σημειώσεις του μαθήματος Μητρωϊκή Στατική

Σημειώσεις του μαθήματος Μητρωϊκή Στατική ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού

Διαβάστε περισσότερα

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 5. - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 opyight ΕΜΠ - Σχολή

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα

Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα Κεφάλαιο 1 Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα Στόχοι 1 ου Κεφαλαίου Τρεις βασικές ποσότητες στη φυσική: μέτρα, χιλιόγραμμα και δευτερόλεπτα Αβεβαιότητα και σημαντικά ψηφία στις μετρήσεις Βαθμωτές

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Θέαση στις 3D

Γραφικά Υπολογιστών: Θέαση στις 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 &3

Μετασχηµατισµοί 2 &3 Μετασχηµατισµοί &3 Περιγράφονται σαν σύνθεση βασικών: µετατόπιση, αλλαγή κλίµακας,περιστροφή, στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 )

Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 ) Μαθηματικός Ορισμός Διδιάστατου Χώρου (R 2 ) Είναι ένα σύνολο σημείων με συντεταγμένες (x,y) Τα x και y έχουν τις εξής ιδιότητες: Το καθένα από αυτά διατρέχει το σύνολο των πραγματικών αριθμών Είναι ανεξάρτητα

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα