Normal μοντέλο με γνωστή διασπορά, και άγνωστο μέσο
|
|
- Ἀμιναδάβ Δελή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Normal μοντέλο με γνωστή διασπορά, και άγνωστο μέσο Εδώ έχουμε να εκτιμήσουμε τη locato παράμετρο του ormal μοντέλου για γνωστό precso τ σ π x ϑ = N x ϑτ, Θα δείξουμε = δηλαδή η κατανομή δειγματοληψίας είναι ( ( ότι η συζυγής κατανομή είναι Normal Αναπαριστούμε πρώτα τη π ( της EF τ τ τ τ τ π ϑ ϑ ϑ τϑ π π ( x = exp ( x = exp x exp exp( x έτσι έχουμε τ τ τ h( x = exp x, g( ϑ exp ϑ, c( ϑ τϑ, t( x x π = = = H πιθανοφάνεια είναι τ τ π ϑ ϑ = π ( x = exp ( x, με Var ( x / ( x ϑ x ϑ τ τ = exp = = π / τ exp exp exp τϑ = π σ = ϑ = τ, τ = x x ϑ ( τϑ τ ϑ σ exp ϑ exp ( τϑx N ϑ x, = N ϑ x,, τ με suff = t x = t x = x τ d π NCP ( ϑ exp ϑ exp ( τϑ N ϑ, d τ d x ϑ σαν μέλος Θέτουμε λοιπόν c π ϑ = N ϑ m, c exp ϑ cmϑ και η posteror γίνεται: c τ π ( ϑ x exp ϑ cmϑ exp ϑ τϑ x Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v
2 mc τ x = exp ( c τ ϑ ( cm τ x ϑ N ϑ, c τ c τ Ο εκτιμητής ως προς τετραγωνική συνάρτηση απώλειας είναι: ˆ mc τ x c c ϑbayes = ( ϑ x = = m x c τ c τ c τ Normal model με συνολική απουσία a-pror πεποιθήσεων Το posteror precso για μεγάλο είναι τ c= = >> = Var x Var x Var Var x ( ϑ ( ϑ ( ϑ ( ϑ σ Το posteror mea για μεγάλο γίνεται mc τ x c τ >> ( ϑ x = x, δηλαδή ˆ ϑ Bayes >> ˆ ϑmle Έτσι για posteror >> έχουμε [ ϑ ] σ x ~ N x, Δηλαδή οριακά η pror δεν επηρεάζει τη νωρίζουμε άλλωστε ότι εφόσον x ϑ~ N( ϑσ, = σ x ϑ ~ N ϑ, Θυμηθείτε ότι: d θα έχουμε και = ( = = x, ~, ~, µ σ N µ σ αx N α µ ασ Η προηγούμενη posteror μπορεί να προκύψει και όταν c Σε αυτήν την περίπτωση οι a-pror πεποιθήσεις έχουν πολύ μικρή βαρύτητα εφόσον c Var ( ϑ Πιο αναλυτικά όταν c έχουμε exp π ϑ ϑm, δηλαδή η pror γίνεται π ( ϑ (flat pror δες επόμενο κεφάλαιο και π ( ϑ = cost Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v
3 που δίνει π ( ϑ d ϑ = και η pror είναι μη ολοκληρώσιμη Λέμε τότε ότι έχουμε μια mproper pror Οι εκτίμηση με την χρήση mproper pror είναι αποδεκτή εάν η αντίστοιχη posteror ολοκληρώσιμη (proper posteror, δηλαδή π ( ϑ x d ϑ = Στο προηγούμενο σχήμα η π ( ϑ N ϑ, ( 3 = είναι «κοντά» σε flat pror, δηλαδή ισομήκη διαστήματα του ϑ να είναι περίπου ισοπίθανα ια π mp ϑ η posteror γίνεται τ τ π ( ϑ x exp ϑ exp( τϑx = exp ( ϑ xϑ τ τ τx σ = exp ( ϑ xϑ x x = exp ( ϑx exp N ϑ x, Το ίδιο αποτέλεσμα παίρνουμε κατ ευθείαν από την παρατήρηση ότι π ( x ϑ ϑ N x, σ ( x N x, σ ϑ π ϑ ϑ Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 3
4 pror π mp ( ϑ ( = (, lkelhood π x ϑ N x ϑσ = σ posteror π ( ϑ x = N ϑ x, Παρατηρούμε ότι στην περίπτωση του flat pror π ( ϑ για ϑ, θα έχουμε mc τ x E( ϑ x = lm = x και η posteror δίνει την ίδια εκτίμηση όπως και η κλασσική c τ c στατιστική Αριθμητικό παράδειγμα O H Cavedsh τον 8 ο αιώνα έκανε = 3 μετρήσεις για την πυκνότητα ϑ της γης με x = 548, ενώ θεώρησε τη σ γνωστή Var ( x ϑ = = 4 Δηλαδή είχε 5 d δειγματοληπτική κατανομή x ϑ ~ N ϑ,, 3 Από προηγούμενα 5 πειράματα η a-pror πληροφορία ήταν ϑ ~ N 54, Σύμφωνα με τα προηγούμενα έχουμε m= 54, c=, τ = 5, = 3 [ ϑ x] ~ N , 675 Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 4
5 Pror και posteror predctves ια μια παρατήρηση x ϑ~ N( ϑτ, και pror ϑ ~ N( mc, έχουμε (, (, π x = N xϑτ N ϑmc dϑ cτ c exp τ m exp ( x = ϑ ϑ dϑ π c τ exp c τ exp c τ = m x ϑ ( mc x τ ϑ d ϑ π ( mc xτ ( c exp exp exp ϑ cτ c τ c τ mc xτ = m x dϑ π τ c τ ( mc xτ cτ c τ π = exp m x exp π c τ c τ c τ c exp τ c x m N x m, τ = = π ( c τ c τ cτ (, τ = N xmc Έχουμε λοιπόν ότι: ( x = N( x, N( m, c d = N( x m, c π ϑτ ϑ ϑ τ δηλαδή η μίξη της οικογένειας N( x ϑτ, με μέτρο μίξης Π = (,, dϑ N ϑ mc dϑ είναι και πάλι ormal με μέσο, το μέσο του μέτρου μίξης και διασπορά το άθροισμα των διασπορών Έστω τώρα ότι έχουμε δει τις πρώτες παρατηρήσεις x και θεωρούμε μελλοντική x ~, ϑ N ϑτ Το posteror predctve είναι: (uoserved παρατήρηση Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 5
6 mc τ x π ( x x = π ( x ϑ π ( ϑ x dϑ = N x ϑ, N ϑ, dϑ τ c τ c τ Θ mc τ x = N x, c τ τ c τ Normal ormal μοντέλο με άγνωστή διασπορά, και γνωστό μέσο Εδώ έχουμε να εκτιμήσουμε τη scale παράμετρο του ormal μοντέλου για γνωστό locato Η κατανομή δειγματοληψίας για παρατηρήσεις είναι: ( x ϑ d ~ N( µϑ, d ~ ( x ϑ N( µϑ, (για εκτίμηση του precso (για εκτίμηση της διασποράς ια το μοντέλο (: έχουμε δειγματοληπτική κατανομή ϑ ϑ ( x exp π ϑ = x µ π, ϑ h x =, g ϑ = ϑ, c ϑ =, t x = x µ π / και EF παραμέτρους: Η πιθανοφάνεια θα είναι ϑ / ϑ S π ( x ϑ ϑ exp S Ga ϑ,, όπου Suff = t x = S = x µ Ο συζυγής pror είναι d d / ϑ d πncp ( ϑ g ( ϑ exp{ c ( ϑ } = ϑ exp Ga ϑ, Θέτοντας λοιπόν pror π ( ϑ Ga ( ϑ a, =, η posteror γίνεται Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 6
7 / ϑ a S π ( ϑ x ϑ exp( ϑ ϑ exp S Ga ϑ a, Ο εκτιμητής κατά Bayes ως προς τετραγωνική συνάρτηση απώλειας είναι a ˆ ( a ϑbayes = ϑ x = = S S S S ˆ = ϑ ϑ MLE S S Παρατηρούμε ότι σε αυτήν την περίπτωση, το ποσοστό της κλασικής εκτίμησης ϑˆmle, μέσα στην εκτίμηση κατά Bayes ˆBayes δηλαδή από τις παρατηρήσεις x ϑ, είναι συνάρτηση της t Suff x Εξαρτάται ια την pror predctve και μία παρατήρηση x, τέτοια ώστε π( x ϑ N( x µϑ, Ga ( ϑ a, π ϑ = έχουμε: a ϑ ϑ a ϑ = (, (, = exp ( ϑ> ϑ= ( a = και π x N x µϑ Ga ϑ a dϑ x µ ϑ e dϑ π a = x d ( a π ϑ= ( a a / ϑ exp µ ϑ ϑ ( a ( a ( a / a / a / / ( a / = ( x µ = ( xµ a / a / ( a ( a / / / = ( x µ a /, όπου ( / = π Λέμε ότι η τμ x ακολουθεί την studet με μέσο µ, scale λ που είναι ανάλογο του precso και ν βαθμούς ελευθερίας, όταν x ~ St ( µλ,, ν με πυκνότητα: Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 7
8 v v / λ λ ( µλ,, ν = ( x µ St x v v v λ v Συγκρίνοντας τις δύο τελευταίες κατανομές, έχουμε ότι = και a = v a Αναγνωρίζουμε λοιπόν ότι η pror predctve π ( x είναι studet με μέσο µ, λ = και ν = a, ή ότι π ( x = St x µ,,a a ια την μέση τιμή και διασπορά της τμ x έχουμε: ( x = x ϑ = µ = µ ( ( ( (, x = x ϑ x ϑ = µ ϑ = ϑ Ga ϑ a dϑ ( a a = =, a >, a ή ως προς τις αρχικές παραμέτρους λ και ν ϑ> a ν ( x = = =, ν = a> a a ( a λν και λ ( x Η posteror predctve για future (uoserved oservato y μετά την παρατήρηση της x είναι S S ( (,,, π y x = N y µϑ Ga ϑ a dϑ = St y µ, a ϑ> a με ( y x = ( y ϑ x = µ x = µ και ( y x S =, a > a Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 8
9 Θυμηθείτε ότι επειδή η τμ ( y x προέρχεται από μίξη έχουμε ( = ( = ( ( y x yπ y x dy y π y ϑ π ϑ x dϑdy y y ϑ = yπ ( y ϑ d y π( ϑ x dϑ = ( y ϑ π( ϑ x dϑ = ( ( y ϑ x ϑ y ϑ Άσκηση ( Λέμε ότι η τμ x ~ St µλ,, ν ακολουθεί την studet με μέσο µ, λ (ανάλογο του precso και ν βαθμούς ελευθερίας, όταν v v / λ λ ( µλ,, ν = ( x µ St x Να αποδειχτούν τα παρακάτω: v v v (studet characterzato I ια γνωστά µ και λ έχουμε: ν ν ϑ ~ Ga, x ϑ ~ N µ, λϑ Margally x ~ St ( µλ,, ν, δηλαδή η studet γεννιέται από τη μίξη της οικογένειας κατανομών N x µ, ως προς το gamma λϑ ν ν Π dϑ = Ga ϑ dϑ μέτρο, Η ormal N( x µλ, είναι studet με βαθμό ελευθερίας k 3 ια τις ροπές της studet έχουμε: είναι studet με βαθμούς ελευθερίας και η Cauchy defed k < ν x = k = odd ν k = eve ν Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 9
10 4 (Studet Characterzato II εάν x και y ανεξάρτητες τμ με x~ N (, και ν y ~ ν = Ga,, τότε z ~ St (,, ν βαθμούς ελευθερίας Θέτοντας x = δηλαδή stadard studet με ν y / ν z u µ λ = παίρνουμε u ~ St ( µλ,, ν [Θα δείξουμε μόνο το ] Θέλουμε να δείξουμε ότι lm St ( x µλ,, ν N ( x µλ, ν = Αρχίζοντας από την ασυμπτοτική προσέγγιση του Strlg που ισχύει για κάθε θετικό «μεγάλο» πραγματικό ν έχουμε ν ν ν / ν ν / ν ν πν ν e ν π ν e π ν e, που δίνει ( ν / ν / / = e ν ν ν όταν ν ν Αντικαθιστώντας όπου ν το ν / παίρνουμε / ν ν όταν ν, έτσι ν λ λ ( x µ lm St ( x µ, λν, lm = ν ν ν πν ν ν / ν / ν λ λ ( x µ = lm lm N x, / = π ν ν ν ν ν ια την Cauchy έχουμε: ( µλ Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v
11 / λ St ( x µλ,, = ( λ λ ( x µ = π λ µ ( x Θέτοντας β = λ παίρνουμε St ( x β µλ,, = = Ca x µβ, ( x π β µ ια το μοντέλο ( έχουμε δειγματοληπτική κατανομή:, exp π x ϑ = N x µϑ = x µ πϑ ϑ h x =, g ϑ = ϑ, c ϑ =, t x = x µ π ϑ / και EF παραμέτρους: Λέμε ότι το ~ Ig ( a, ϑ ακολουθεί την verse gamma με παραμέτρους a και, όταν ϑ ~ Ga ( a, Εύκολα δείχνεται ότι ισχύει Η πιθανοφάνεια είναι Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v a ( a ϑ Ig ϑ a, = ϑ e, ϑ > ( a ϑ / S π x ϑ ϑ exp S Ig ϑ,, ϑ με επαρκή στατιστική Ο συζυγής pror είναι Suff = t x = S = x µ d d / d πncp ( ϑ g ( ϑ exp c ( ϑ = ϑ exp Ig ϑ, ϑ Θέτοντας pror (, ( a π ϑ = Ig ϑ a ϑ e ϑ, η posteror είναι: ( a / S S ϑ π ϑ x ϑ e ϑ exp Ig ϑ a, ϑ Δεν είναι δύσκολα να δούμε ότι ( ϑ =, a > και ˆMLE ϑ = S έτσι a
12 S a a = ϑ x = = a a a a ˆ BAYES S ϑ Δηλαδή με την επαναπαραμετροποίηση ϑ ϕ = ϑ = varace το ποσοστό της κλασικής εκτίμησης ϑ ˆMLE δείγματος x στην εκτίμηση κατά Bayes ˆBAYES ϑ είναι ανεξάρτητο του ια την pror predctve έχουμε: (, (, μετασχηματισμό ϕ = ϑ παίρνουμε: π x = N x µϑ Ig ϑ a dϑ Κάνοντας τον ϑ> { } x N x, Ig a, d N x, Ga a, d = = π µϕ ϕ ϕ ϕ µϕ ϕ ϕ ϕ= ϕ> ( a ( a / / / = ( x µ = St x µ,,a a / a Ομοίως για την posteror predctve έχουμε: S π ( y x = N ( y µϑ, Ig ϑ a, dϑ ϑ> S S (,,, = N x µϕ Ga ϕ a dϕ = St y µ, a ϕ > a Άσκηση Να αποδειχτούν τα παρακάτω: Εάν d ν ν z ~ N(, ν τότε z = z ~, ν = Ga = δηλαδή το z ακολουθεί την ch squared με ν βαθμούς ελευθερίας Εάν x ~ Ga ( a, τότε το y x ~ Ig ( a, = ακολουθεί verse gamma με Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v
13 a ( a y Ig ( y a, = y e, y > ( a k = όταν a k k ( y ( a k ( k > και Var ( y = ( a ( a όταν a > 3 Εάν y ~ Ig ( a, τότε z s y ~ Ig ( a, s = 4 Η scaled verse ch squared κατανομή με v βαθμούς ελευθερίας και rate σ ορίζεται σαν v vσ Iv ( v, σ = ( v, σ = Ig,, δηλαδή είναι η s = vσ scaled verse gamma κατανομή για a = v /, και vσ = / Δείξτε ότι ( ϑ v, σ ϑ exp ϑ v d ~, Εάν z N και θέσουμε y = T( z = z π ( y π ( z Jac T ( z = Y Z y= z d d (, (, = N y y N y y dy dy ( / ( / = N y = e = y e = Ga y y > y/ / y/,,, y / π y Όπου ( / = π επειδή / u u / x u = x e dx e ( udu e du = = u u = e du π e du π N ( u, du π = = = π Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 3
14 Όμως d z ~ Ga, ν, δίνει ~ ν ν z, χν = Ga = p q ( p y y = Ga y p, q y = y e, y > π (, ( p q p k k k q y y = y Ig y p q dy = y e dy p ( p y p p k q p p y p k qu pk qu q q du q = e dy = u e = u e du ( p y ( p u ( p k ( pk v q ( pk e dv ( p p q = v = pk p q δηλαδή για όλα τα k και επειδή q, όταν p > k, p > για τα οποία ισχύει ( p k < Εάν p > k, και ( p τ = ( p τ ( p τ = = ( p( p ( p τ ( p = ( p ( p έχουμε, τ k ( y ( p k k k ( k k k k k q pk q pk q pk q = = = = p pk pk pk Έτσι q( p q ( y = =, p > ( p p και Var ( y q =, p > ( p ( p 3 z sy, s = > και y ~ (, IG p q, τότε έχουμε: q s f( z pqs s IG( s z pq s e z p z p p sq z,, =, =, > p p ( sq ( sq ( p z = z e, που δίνει z s y ~ Ig ( p, sq ( p = 4 Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v
15 4 Παίρνοντας υπ όψιν ότι (, v vσ ( v, σ = Ig,, έχουμε p ( sq ( p ( sq ( p z = και ότι Ig z p sq z e v v v vσ vσ vσ ( ϑ v, σ = ϑ exp ϑ exp ( v / ϑ ϑ Με τον νέο συμβολισμό το μοντέλο (, exp π x ϑ = N x µϑ = x µ πϑ ϑ ϑ / S π ( x ϑ ϑ exp S Ig ϑ, ϑ ˆ a a ϑbayes = ( ϑ x = S a a a ( a S ϑ π ϑ ϑ e Ig ϑ a,, π ϑ x = Ig ϑ a, a a,,, (, π x = St x µ a π y x = St y µ, a S επαναδιατυπώνεται στην πιο stadard μορφή για v vσ a =, = v vσ π ( ϑ = ( ϑ v, σ = Ig ϑ, Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 5
16 v σ S v v σ S π ϑ x = ϑ v, = Ig ϑ, v v σ ˆ vσ v v ϑbayes = ( ϑ x = ( S v v v ( x St ( x, (, v, y x St y,, v π = µσ π = µσ Επίσης η αναπαράσταση (characterzato της studet σαν μίξη, τώρα γίνεται προφανείς, εφόσον από την εξίσωση π ( x = N ( x µϑ, Ga ( ϑ a, dϑ = St x µ,,a a, ϑ> και θέτοντας v vσ a=, = έχουμε v vσ π µϑ ϑ ϑ µσ ϑ> ( x = N ( x, Ga, d = St ( x,, v αλλά Ga ( ϑασβ, dϑ Ga ( σϑαβ, d ( σϑ ϕ > =, που δίνει για ϕ= σϑ, ( v v π x = N x µσϕ, Ga ϕ, dϕ = St ( x µσ,, v Απουσία a-pror πεποιθήσεων Εάν θεωρήσουμε ότι η pror δίνει πληροφορία ισοδύναμη με ν «pror παρατηρήσεις» η συνολική απουσία a-pror πεποιθήσεων ισοδυναμεί με αποδοχή της cojugate pror π ( ϑ = Ivχ ( ϑ, σ ή αλλιώς την «zero pror ϑ dϑ oservato» a-pror κατανομή, που είναι mproper εφόσον = Τότε ϑ / S S S π ( ϑ x { ϑ } ϑ exp = ϑ exp ϑ,, ϑ ϑ που δίνει Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 6
17 ( ϑ x S S ϑˆ MLE = = Άσκηση ( x = N ( x, ( (, d = St x,, v Δείξτε ότι π µϑ ϑν σ ϑ µσ Πράγματι v vσ π ( x = N( x µϑ, ( ϑν, σ dϑ = N( x µϑ, Ig ϑ, dϑ v v σ v σ ( xµ exp v = dϑ ( v / π ϑ ϑ θέτοντας u = παίρνουμε ϑ v v σ v σ ( xµ exp v π ( x = u u u du ( v / π v v σ v σ ( xµ u exp v = u du ( v / π vσ xµ θέτοντας τ = u παίρνουμε π ( x v v v σ τ τ dτ e = ( v / π vσ ( x µ vσ ( x µ v v v v σ τ = ( v / π vσ ( xµ τ e dτ Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 7
18 v v v vσ = v / π vσ ( xµ v v = ( vσ ( vσ ( x µ = v v v σ π σ πv v v v x µ ( µσ,, v = St x Σ Ι Χατζησπύρος Σημειώσεις Bayesa Statstcs 3 (v 8
( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )
Ορίζουμε την πληροφορία κατά Fsher ( σαν το ποσό της πληροφορίας που περιέχει η παρατήρηση για την παράμετρο Συμβολίζοντας με S( την λογαριθμική παράγωγο της πιθανοφάνειας ως προς την παράμετρο (score
Διαβάστε περισσότεραΟρίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )
Διαβάστε περισσότεραΕδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.
Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την
Διαβάστε περισσότεραΕδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.
Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την
Διαβάστε περισσότεραδειγματοληψίας ανήκει στην EF όταν μπορεί να τεθεί στην μορφή: = και σταθερά i j j i δειγματοληψίας, δεν θα πρέπει να εξαρτάται από την παράμετρο ϑ.
Στην πολυμετβλητή περίπτωση d ϑ ϑ ϑ d Θ το μοντέλο δειγμτοληψίς νήκει στην EF ότν μπορεί ν τεθεί στην μορφή: π ( x ϑ) h( x) exp{ c( ϑ) t( x) } ( ) όπου ( ϑ) ( ϑ) ( ϑ) c c c d το διάνυσμ των φυσικών πρμέτρων
Διαβάστε περισσότεραconditional posterior distributions είναι standard δηλαδή ξέρουμε να κάνουμε δειγματοληψία από τις κατανομές π ( µτ,x) (, x) (, x) ( )
Δειγματοληψία από την posteror π ( τ, x - Gbbs saplg Υποθέτουμε ότι η posteror έχει μορφή π ( τ, x π ( τ x π ( x και τα δύο full codtoal posteror dstrbutos είναι stadard δηλαδή ξέρουμε να κάνουμε δειγματοληψία
Διαβάστε περισσότεραx π 1 i n Το παραμετρικό μοντέλο πιθανότητας (η
Η Στατιστική συμπερασματολογία (statstcal ferece είναι η επιστήμη που σκοπό έχει την εξαγωγή συμπερασμάτων για τις παραμέτρους ενός πληθυσμού, δηλαδή την εκτίμηση των παραμέτρων του, μελετώντας δείγμα
Διαβάστε περισσότεραΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Διαβάστε περισσότεραΕκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.
ΦΡΟΝΤΙΣΤΗΡΙΟ Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με ~ Posso ( ), Να εξάγετε α) τη συνάστηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Διαβάστε περισσότεραΟρίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f
Διαβάστε περισσότεραX = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας
Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΔιάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης
Διαβάστε περισσότερα3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8
ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8 Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με Beroull ( p ), p, Να εξάγετε α) τη συνάρτηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
Διαβάστε περισσότεραΆσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Διαβάστε περισσότεραΘεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Διαβάστε περισσότεραΟρισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }
Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΟρισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }
Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το
Διαβάστε περισσότερα( ) ( ) + N( ) σ γνωστό και διακριτό prior. π ϑ = = = Παράδειγμα. 1. Να βρεθεί το marginal probability density του y (the prior predictive)
Παράδειγμα ( ϑσ ) amplg dsrbuo: y ϑ~ N, ϑ ~ όου = ( ϑ = ) με σ γνωστό και διακριτό pror. Να βρεθεί το margal probably desy του y (he pror predcve). Να εριγραφεί το samplg scheme αό την pror predcve. 3.
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 13 Μαρτίου 2017 1/31 Βασικοί ορισμοί. Ορισμός 1: Τυχαίο δείγμα. Τυχαίο δείγμα μεγέθους n από
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται
Διαβάστε περισσότεραΑναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης
Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά
Διαβάστε περισσότεραX = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και
Διαβάστε περισσότεραΠανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Διαβάστε περισσότεραΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει
Διαβάστε περισσότερα3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 6 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων κανονικές τυχαίες μεταβλητές Εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση I
Απλή Γραμμική Παλινδρόμηση I. Εισαγωγή Έστω ότι θέλουμε να ερευνήσουμε εμπειρικά τη σχέση που υπάρχει ανάμεσα στις δαπάνες κατανάλωσης και στο διαθέσιμο εισόδημα, των οικογενειών. Σύμφωνα με την Κεϋνσιανή
Διαβάστε περισσότεραf(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)
Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΙΑ ΣΥΝΤΟΜΗ ΑΝΑΣΚΟΠΗΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΙΑ ΣΥΝΤΟΜΗ ΑΝΑΣΚΟΠΗΣΗ ΓΕΩΡΓΙΟΣ ΤΖΑΒΕΛΑΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ Ακαδημαϊκό έτος 03-4 Τι είναι
Διαβάστε περισσότεραΣημερινό μάθημα: Εκτιμήτριες συναρτήσεις, σημειακή εκτίμηση παραμέτρων και γραμμική παλινδρόμηση Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή
Πιθανότητες και Αρχές Στατιστικής (10η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 48 Σημερινό
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ (0-6-005) ΟΜΑΔΑ Α ( 40% ) ) Έστω μια τυχαία μεταβλητή Χ και ένα δείγμα x, x,, x n. Θεωρούμε την τιμή k = n i= ( x && x) i.να διευκρινιστεί
Διαβάστε περισσότεραTMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III
0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού
Διαβάστε περισσότερα{ } } ( ) (, ) (, ) (, ) ( x) ( ) ( ) ( ) Άσκηση 21. Άσκηση 22. π π π. Δείξτε ότι εάν xi x. για i = 1, 2 τότε έχουμε ότι οι τ.μ u = x1+ x2.
Άσκηση Δείξτε ότι εάν ~ G (, b v για, τότε έχουμε ότι οι τ.μ u και είναι ανεξάρτητες και u ~ G (, b, v ~ Be(, Η από κοινού των και είναι (, π e e e ( b b b. Ορίζουμε τον ένα-προς-ένα μετασχηματισμό T u
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται
Διαβάστε περισσότερα1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
Διαβάστε περισσότεραΑπλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Διαβάστε περισσότεραΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη
Διαβάστε περισσότερα( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn
Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem Leberg Levy Εάν ~ f (, με [ ] µ, Var [ ] σ < και S τότε η τμ S ( S S µ συγκίνει ως προς κατανομή (coverges strbuto στη Var S σ ( N ( 0,, δηαδή N( 0, ή ισοδύναμα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Διαβάστε περισσότερα4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διαβάστε περισσότεραΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ
ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ Είναι τεχνικές που έχουν σκοπό: τον εντοπισμό χαρακτηριστικών των οποίων οι αριθμητικές τιμές επιτυγχάνουν
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΠεριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή
Διαβάστε περισσότεραP(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
Διαβάστε περισσότεραX 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )
Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΤυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Διαβάστε περισσότεραΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο
Διαβάστε περισσότεραPr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
Διαβάστε περισσότεραA(θ) = n log θ B(x ) = 0. T (x ) = x i. Γ(n)θ n =
ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ Ι : ΕΚΤΙΜΗΤΙΚΗ» Πέµπτη 24 Ιουνίου 24 Εξεταστική περίοδος Ιουνίου 24 ΘΕΜΑΤΑ. Θεωρώντας ως κριτήριο το µέσο τετραγωνικό σφάλµα : (α ( µονάδες Εστω, 2 δύο εκτιµητές τού g(θ.
Διαβάστε περισσότερα= lim. e 1. e 2. = lim. 2t 3
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ, 6/06/017 Θέμα 1. Δίνεται η συνάρτηση f : R R με f(0, 0) = 0 και f(x, y) = x3 + y 3 x + y αν (x, y) (0, 0). (i) Δείξτε ότι η f είναι συνεχής στο (0, 0). (ii) Αν u
Διαβάστε περισσότεραΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ
ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Να κατανοηθεί η έννοια της εκτίµησης σηµείου και της εκτίµησης διαστήµατος. Επίσης να κατανοηθεί η έννοια της δειγµατικής κατανοµής παραµέτρου και να υπολογισθούν µε χρήση της Κεντρικού
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας
Διαβάστε περισσότεραΕισαγωγή στη θεωρία ακραίων τιμών
Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΓια την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0
5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή
Διαβάστε περισσότεραΜέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΜέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
Διαβάστε περισσότεραΜέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Διαβάστε περισσότεραS T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014
Διαβάστε περισσότεραΔομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης
Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ
ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
Διαβάστε περισσότεραΚατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος
Κατανομές Απώλειας Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Απαγορεύεται η αναδημοσίευση, η αναπαραγωγή, ολική ή περιληπτική του περιεχομένου αυτού με οποιονδήποτε τρόπο χωρίς προηγούμενη γραπτή άδεια του
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΚεφάλαιο 3 Εισαγωγικές έννοιες στατιστικής
Κεφάλαιο 3 Εισαγωγικές έννοιες στατιστικής Η στατιστική είναι εφαρμοσμένος κλάδος της πιθανοθεωρίας ο οποίος ασχολείται με πραγματικά προβλήματα, επιδιώκοντας την εξαγωγή συμπερασμάτων βασισμένων σε παρατηρήσεις.
Διαβάστε περισσότεραΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ATTERN RECOGNITION Τυπικές περιοχές εφαρμογής Μηχανική όραση Machne vson Αναγνώριση χαρακτήρων Character recognton OCR Ιατρική διάγνωση
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότερα