HY118- ιακριτά Μαθηµατικά
|
|
- Αγάπη Λαμπρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HY118- ιακριτά Μαθηµατικά Τρίτη, 16/02/2016 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/16/
2 Προηγούµενη φορά ιαδικαστικά θέµατα ΗΥ118 Εισαγωγή στα ιακριτά Μαθηµατικά Εισαγωγή στο ΗΥ118 Επισκόπηση ερευνητικών ενδιαφερόντων Θυµίζω: Username: cs118 Password: _dm16_ 2/16/
3 Προτασιακός Λογισµός 2/16/
4 Βάσεις της Μαθηµατικής Λογικής Η Μαθηµατική Λογική είναι ένα εργαλείο που µας βοηθά να χειριστούµεσύνθετεςπροτάσεις. Περιλαµβάνει: Μία τυπική γλώσσαγια να τις εκφράζουµε. Μία µεθοδολογίαγια να αποφασίζουµε σχετικά µε το αν είναι αληθείς ή ψευδείς. Αποτελεί το θεµέλιο της έκφρασης τυπικών αποδείξεων σε όλους τους κλάδους των µαθηµατικών! 2/16/
5 Θα µιλήσουµε για δύο συστήµατα λογικής: 1. Προτασιακός λογισµός 2. Κατηγορηµατικός λογισµός (επεκτείνει τον 1. ) Πολλοί άλλοι λογισµοί υπάρχουν, αλλά µοιάζουν µε τους δύο παραπάνω 2/16/
6 Προτασιακός λογισµός ΟΠροτασιακός λογισµόςείναι η λογική των σύνθετων προτάσεων οι οποίες δηµιουργούνται από απλούστερες, χρησιµοποιώντας λογικές πράξεις. Μερικές άµεσες εφαρµογές στους υπολογιστές: Σχεδιασµός ψηφιακών κυκλωµάτων. Έκφραση συνθηκών σε προγράµµατα. Ερωτήσεις σε βάσεις δεδοµένων και µηχανές αναζήτησης. George Boole ( ) Χρύσιππος ( π.Χ.) 2/16/
7 Προτάσεις Μίαπρότασηείναι απλά µίαδήλωσηµε κάποια οριστική σηµασία και η οποία µπορεί να είναι είτεαληθής (T) είτεψευδής (F) εν είναι ποτέκαι τα δύο, ούτεκάπου ανάµεσα Ωστόσο, η τιµή αληθείας της δεν είναι απαραίτητο να µας είναι γνωστή 2/16/
8 Παραδείγµατα προτάσεων Μου αρέσει η rock µουσική Ο γάιδαρος πετάει Εχθές έβρεξε στη Νέα Υόρκη Η Αθήνα είναι η πρωτεύουσα της Ελλάδας, και = 2.7 2x 2 = x 2 + x 2 Αλλά οι ακόλουθες ΕΝ ΕΙΝΑΙ προτάσεις: Ποιός είναι εκεί; (ερωτηµατική) Φέρε µου ένα ποτήρι νερό (προστακτική) x := x+1 (προστακτική) (ένας αριθµητικός όρος) 2/16/
9 Προτάσεις στον προτασιακό λογισµό Ατοµικές: p, q, r, (πχ p = Ονοµάζοµαι Αντώνης Αργυρός ) Σύνθετες: χτίζονται από τις ατοµικές προτάσεις χρησιµοποιώντας λογικούς τελεστές (π.χ., Ονοµάζοµαι Αντώνης Αργυρός ΚΑΙ είµαι σαράντα οκτώ ετών ) 2/16/
10 Προτάσεις στον προτασιακό λογισµό Η λογική προσφέρει ορισµούςγι αυτούς τους τελεστές Εποµένως, καθορίζει το νόηµα των σύνθετων προτάσεων που δηµιουργούνται µε τη χρήση των τελεστών. 2/16/
11 Τελεστές Έναςτελεστήςσυνδυάζει nτο πλήθος εκφράσειςσε µία µεγαλύτερη έκφραση π.χ., + στις αριθµητικές εκφράσεις Οι µοναδιαίοι τελεστές έχουν 1 όρισµα (π.χ., 3) Οι δυαδικοί τελεστές έχουν 2 ορίσµατα (π.χ., 3+4) Οι προτασιακοί τελεστές (Boolean operators) συνδέουν ένα πλήθος λογικών προτάσεων και όχι αριθµητικές εκφράσεις. 2/16/
12 Μερικοί προτασιακοί τελεστές Ονοµα Συντοµ. Τύπος Σύµβολο Άρνηση NOT Μον. Σύζευξη (ΚΑΙ) AND υαδ. ιάζευξη (Ή) OR υαδ. Αποκλειστική διάζευξη XOR υαδ. «αν... τότε...» IMPLIES υαδ. «αν και µόνο αν» IFF υαδ. 2/16/
13 Λογική άρνηση Ο µοναδιαίος τελεστής άρνησης (NOT) µετασχηµατίζει µία πρόταση στην άρνησή της. Π.χ.Εάν p = Είµαι κοντός. τότε p = εν είµαι κοντός. Οπίνακας αληθείαςγια την NOT: p p T F F T T : True; F : False : σηµαίνει ορίζεται ως Όρισµα Αποτέλεσµα 2/16/
14 Λογική σύζευξη Ο δυαδικός τελεστής σύζευξης (AND) Π.χ.Έστω p= Έφαγα µπριζόλα για µεσηµεριανό. q= Έφαγα σαλάτα για βραδυνό Τότε p q= Έφαγα µπριζόλα για µεσηµεριανό και έφαγα σαλάτα για βραδυνό. 2/16/
15 Ορισµός της λογικής σύζευξης µέσω πίνακα αληθείας Στήλες ορισµάτων Αποτέλεσµα p q p q F F F F T F T F F T T T 2/16/
16 Λογική διάζευξη Ο δυαδικός τελεστής διάζευξης (OR). p= Το αυτοκίνητό µου έχει χαλασµένη µηχανή. q= Το αυτοκίνητό µου δεν έχει βενζίνη. p q= Το αυτοκίνητό µου έχει χαλασµένη µηχανή ή το αυτοκίνητό µου δεν έχει βενζίνη. Εννοώντας και/ή στα ελληνικά. 2/16/
17 Πίνακας αλήθειας της διάζευξης Η p qεννοεί ότι η pείναι αληθής, ή η qείναι αληθής ή και τα δύο. Οι τελεστές και µαζί, είναι ικανοί να εκφράσουν κάθε πίνακα αληθείας p q p q F F F F T T T F T T T T ιαφορά µε την AND 2/16/
18 Μερικές βασικές ιδέες: ιαφορετικοί τύποι προτάσεων Συνειδητοποίηση ότι κάποιες προτάσεις έχουν διαφορετική εµφάνιση αλλά εκφράζουν την ίδια πληροφορία 2/16/
19 Ταυτολογίες Μίαταυτολογίαείναι µία σύνθετη πρόταση η οποία είναι αληθήςανεξάρτητα από τις τιµές αληθείας των ατοµικών προτάσεων. Π.χ. p ( p) Ποιός είναι ο πίνακας αληθείας; 2/16/
20 Ταυτολογίες p ( p) p p p ( p) F T T T F T Κάθε γραµµή του πίνακα αληθείας δίνει T. 2/16/
21 Αντιφάσεις Μία αντίφαση είναι µία σύνθετη πρόταση που είναι ψευδήςανεξάρτητα από τις τιµές αληθείας των ατοµικών προτάσεων. Π.χ., p ( p) Ποιός είναι ο πίνακας αληθείας; 2/16/
22 Αντιφάσεις p ( p) p p p ( p) F T F T F F Κάθε γραµµή του πίνακα αληθείας δίνει F 2/16/
23 Τι αποµένει πέραν των ταυτολογιών και των αντιφάσεων Προφανώς, υπάρχουν προτάσεις που δεν είναι ούτε ταυτολογίες ούτε αντιφάσεις...κάποιες γραµµές του πίνακα αληθείας δίνουν T, άλλες δίνουν F 2/16/
24 Λογική ισοδυναµία προτάσεων ύο συντακτικά διαφορετικέςσύνθετες προτάσεις µπορεί να είναι σηµασιολογικά ταυτόσηµες (δηλ., να έχουν το ίδιο νόηµα). Τέτοιες προτάσεις τις ονοµάζουµελογικά ισοδύναµες. 2/16/
25 Λογική ισοδυναµία προτάσεων ύο σύνθετες προτάσεις pκαι qείναιλογικά ισοδύναµες, και το συµβολίζουµε µε p q: Αν και µόνο αν οποιαδήποτε εκχώρηση τιµών στις επιµέρους προτάσεις που απαρτίζουν τις p και q καταλήγει σε ταυτολογία δηλαδή αν και µόνο αν οι p και q έχουν τις ίδιες τιµές αληθείας σε όλες τις γραµµές των πινάκων αληθείας τους 2/16/
26 Απόδειξη ισοδυναµίας µέσω των πινάκων αληθείας Π.χ.: Αποδείξτε ότι p q ( p q). p q p q p q p q ( p q) F F F T T T F F T T T F F T T F T F T F T T T T F F F T 2/16/
27 Η λογική ως «στενογραφία» της Έστω p = Είµαι έξυπνος, q = Είµαι καλός, r = Είµαι όµορφος p = r p = r p q = φυσικής γλώσσας εν είµαι έξυπνος. Είµαι όµορφος και δεν είµαι έξυπνος. εν είµαι όµορφος, ή είµαι καλός, ή είµαι έξυπνος 2/16/
28 «Φωλιασµένες»λογικές προτάσεις Χρήση παρενθέσεων για την οµαδοποήση υποεκφράσεων: Είµαι έξυπνος και είµαι καλός ή είµαι όµορφος Έίµαι έξυπνος και είµαι καλός ή είµαι όµορφος p q r Η πρόταση p (q r) σηµαίνει: Είµαιέξυπνος,...καιείµαικαλόςήόµορφος Η πρόταση (p q) r σηµαίνει: Είµαιέξυπνοςκαικαλός,...ήείµαιόµορφος Οι παραπάνω δύο προτάσεις έχουν διαφορετικό νόηµα! Εποµένως, η p q r είναι διφορούµενη! 2/16/
29 Συµβάσεις σε σχέση µε την προτεραιότητα των τελεστών Κατά σύµβαση, ο τελεστής έχει προτεραιότητα έναντι των τελεστών και. Η f gσηµαίνει ( f) g, και όχι (f g) Κατά σύµβαση, ο τελεστής έχει προτεραιότητα έναντι του τελεστή. Η f g h σηµαίνει (f g) h, και όχι f (g h) Όπου χρειάζεται να επιβάλουµε την προτεραιότητα που επιθυµούµε, το κάνουµε χρησιµοποιώντας παρενθέσεις 2/16/
30 Ερώτηµα Μπορούµε να γράψουµε p 1 p 2 p 3 χωρίς ασάφεια; 2/16/
31 Απάντηση Εάν οι προτάσεις (p 1 p 2 ) p 3 και p 1 (p 2 p 3 )είναι ισοδύναµες, τότε ναι! Πρέπει δηλαδή να δούµε κατά πόσον ισχύει (p 1 p 2 ) p 3 p 1 (p 2 p 3 ) Πως µπορούµε να το αποδείξουµε αυτό; 2/16/
32 Μπορούµε να γράψουµε p 1 p 2 p 3 χωρίς ασάφεια;;; p 1 p 2 p 3 (p 1 p 2 ) (p 1 p 2 ) p 3 (p 2 p 3 ) p 1 (p 2 p 3 ) F F F F F F F F F T F F F F F T F F F F F F T T F F T F T F F F F F F T F T F F F F T T F T F F F T T T T T T T 2/16/
33 Ερώτηµα Ισχύει ότι (p 1 p 2 ) p 3 = p 1 ( p 2 p 3 ); Η ΠΑΡΑΠΑΝΩ ΕΚΦΡΑΣΗ ΕΝ ΕΧΕΙ ΝΟΗΜΑ (δεν έχουµε ορίσει την ισότητα προτάσεων µόνο τη λογική ισοδυναµία! ) Αυτό που όντως ισχύει είναι ότι (p 1 p 2 ) p 3 p 1 ( p 2 p 3 ) 2/16/
34 Ερώτηµα 1. Θεωρείστε τη σύζευξη p 1 p 2 p n, nτο πλήθος προτάσεων. Πόσες γραµµές έχει ο πίνακας αληθείας της; 2x2x2x x2 (nπαράγοντες) Εποµένως,το πλήθος των γραµµών του πίνακα αληθείας είναι 2 n όπου nτο πλήθος των προτάσεων 2/16/
35 Ας εισάγουµε κάποιους ακόµα τελεστές Αποκλειστική διάζευξη (XOR, σύµβολο ) «εάν... τότε» (IMPLIES, σύµβολο ) «αν και µόνο αν» (IFF, σύµβολο ) 2/16/
36 Η αποκλειστική διάζευξη υαδικός τελεστής αποκλειστικής διάζευξης (XOR). p = Θα πάρω 10 σε αυτό το µάθηµα q = Θα παρατήσω αυτό το µάθηµα p q = Ή θα πάρω 10 σε αυτό το µάθηµα ή θα παρατήσω αυτό το µάθηµα (...αλλά όχι και τα δύο!) 2/16/
37 Πίνακας αληθείας αποκλειστικής διάζευξης Η p qείναι αληθής όποτε µόνο µία από τις p, qείναι αληθής, αλλά όχι και οι δύο! Αποκλειστική διάζευξη, επειδή αποκλείειτο ενδεχόµενο και το pκαιτο qνα είναι αληθή. Οι τελεστές και µαζί, ΕΝ είναι ικανοί να εκφράσουν κάθε πίνακα αληθείας p q p q F F F F T T T F T T T F ιαφορά από τον OR. 2/16/
38 Η φυσική γλώσσα είναι διφορούµενη... Το Ελληνικό ή µπορεί να είναι διφορούµενο p q F F F T T F p "ή" q Χρειαζόµαστε τα συµφραζόµενα για γνωρίζουµε εάν προκειται για την OR ή την XOR! 2/16/ F T T T T?
39 Η φυσική γλώσσα είναι διφορούµενη... Χρειαζόµαστε τα συµφραζόµενα για γνωρίζουµε εάν σε µία πρόταση το ακριβές νόηµα αποδίδεται από την OR ή την XOR! p = Μου αρέσουν τα θρίλερ q = Μου αρέσει η επιστηµονική φαντασία r= Μου αρέσουν τα θρίλερ ή η επιστηµονική φαντασία r p q...ή... r p q; 2/16/
40 Έλεγχος της κατανόησης των δύο διαζεύξεων 1. Ας υποθέσουµε ότι η p q είναι αληθής. Προκύπτει από αυτό ότι και η p qείναι αληθής; OXI: δέστε τι συµβαίνει για p=t, q=t 2/16/
41 Έλεγχος της κατανόησης των δύο διαζεύξεων 2. Ας υποθέσουµε ότι η p q είναι αληθής. Προκύπτει από αυτό ότι και η p q είναι αληθής; ΝΑΙ: Ελέγξτε τις δύο περιπτώσεις που κάνουν την p qαληθή: a) p=t, q=f (η p q είναι Τ) b) p=f, q=t (η p q είναι Τ) 2/16/
42 Ο τελεστής «εάν...τότε» υπόθεση συµπέρασµα Η πρόταση p q σηµαίνει εάν pτότε q. Π.χ.,.έστω p = Μελετώ πολύ q = Θα πάρω καλό βαθµό. p q = Εάν µελετώ πολύ, τότεθα πάρω καλό βαθµό. 2/16/
43 Πίνακας αληθείας «εάν...τότε» Η p q είναι ψευδήςµόνοόταν p -αληθήςαλλά q ψευδής µε άλλα λόγια η p q είναι ψευδήςµόνοόταν µία αληθής υπόθεση οδηγεί σε ένα ψευδές συµπέρασµα Η p q δεν λέειότι η pείναι η αιτίατης q! Η p q δεν απαιτείηpή η qνα είναι αληθής! Π.χ.: Η πρόταση (1=0) ο γάιδαρος πετάει είναι αληθής! p q p q F F T F T T T F F T T T Το µόνο False 2/16/
44 «εάν...τότε» µεταξύ προτάσεων Εάναυτό το µάθηµα είναι το ΗΥ118, τότεο ήλιος ανέτειλε σήµερα το πρωί. True ή False; Εάνη Παρασκευή είναι µέρα της εβδοµάδας, τότεείµαι πιγκουίνος. True or False ; Εάν 1+1=6, τότεδιδάσκω ιακριτά Μαθηµατικά. True or False ; Εάντο φεγγάρι είναι από τυρί, τότεείµαι πλουσιότερος από τον Bill Gates. True or False ; 2/16/
45 Γιατί αυτά µοιάζουν «λάθος»; Θυµηθείτε Εάν [µελετώ πολύ] τότε [θα πάρω καλό βαθµό] Στην καθοµιλουµένη, υπάρχει µία σχέση αιτίας αποτελέσµατος µεταξύ των δύο προτάσεων. Ο τελεστής όµως, δεν δηλώνει τέτοιου είδους σχέση! 2/16/
46 Πίνακας αληθείας «εάν...τότε» Ας υποθεσουµε ότι η q είναι T. Τί ξέρουµε για την αλήθεια της p q ; Είναι αληθής! p q p q F F T F T T T F F T T T 2/16/
47 Πίνακας αληθείας «εάν...τότε» Ας υποθεσουµε ότι η p είναι F. Τι ξέρουµε για την αλήθεια της p q; Είναι αληθής! p q p q F F T F T T T F F T T T 2/16/
48 «εάν...τότε» Αποδείξτε ότι (p q) ( p q) p q p q p p q F F T T T F T T T T T F F F F T T T F T 2/16/
49 Θυµηθείτε Προηγουµένως είδαµε ότι αν η p qείναι αληθής τότε προκύπτει ότι και η p qείναι αληθής. Αυτό µπορούµε να το γράψουµε αυτό ως: p q p q Η παραπάνω πρόταση είναι ταυτολογία: ο,τιτιµές αληθείας και να έχουν οι p,q, η σύνθετη πρόταση είναι αληθής 2/16/
50 Ελληνικές εκφράσεις που δηλώνουν p q Εάν pτότε q Η p συνεπάγεται την q Εάν p, q Όποτε p, q Οποτεδήποτε p, q qεάν p q οποτεδήποτε p q προκύπτει από p H pαρκεί για να ισχύει η q Μια αναγκαία συνθήκη για την pείναι η q Η q είναι αναγκαία για την p Μια επαρκής συνθήκη για την qείναι η p 2/16/
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/02/2017 Προτασιακός Λογισµός Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen
HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/4/2016
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...
HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016
Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός
HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,
HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Συναρτήσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/10/2016
Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)
Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα
HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/16/2016
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ
ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ
Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική
ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q
Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων
a = 10; a = k; int a,b,c; a = b = c = 10;
C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
οµές Επιλογής Εντολές if και switch
οµές Επιλογής Εντολές if και switch οµή Ελέγχου Control Structure Ένας συνδυασµός ατοµικών εντολών σε µία λογική µονάδα, όπου υπάρχει µόνο ένα σηµείο εισόδου και ένα σηµείο εξόδου. οµή Ελέγχου για Επιλογή
Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2
A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/30/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1
ΗΥ-150. Προγραµµατισµός. Εντολές Ελέγχου Ροής
ΗΥ-150 Εντολές Ελέγχου Ροής Σειριακή εκτέλεση εντολών Όλα τα προγράµµατα «γράφονται» χρησιµοποιώντας 3 είδη εντολών: Σειριακές εντολές (sequential built in C) Εντολές απόφασης (if, if/else, switch) Περιλαµβάνει
Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,
Στοιχεία προτασιακής λογικής
Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο
Πρόταση. Αληθείς Προτάσεις
Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
23 ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 2ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος I/O 24 Βασική βιβλιοθήκη συναρτήσεων εισόδου/εξόδου #include Η συνάρτηση εξόδου printf printf("συμβολοσειρά
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Ανάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε
Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2019 1 η Σειρά Ασκήσεων (Προτασιακός Λογισμός) Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου Σημείωση: Όλες οι απαντήσεις πρέπει να είναι τεκμηριωμένες
ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο η Σειρά Ασκήσεων
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2017 1 η Σειρά Ασκήσεων Παράδοση: Τρίτη, 28/2/2017 μέχρι το τέλος του φροντιστηρίου Σημείωση: Οι απαντήσεις πρέπει να είναι τεκμηριωμένες Άσκηση 1.1 [1 μονάδα]
ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις
HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
Κεφάλαιο 4: Συνθήκες Έλεγχου (if-else, switch) και Λογικοί τελεστές / παραστάσεις. (Διάλεξη 8)
Κεφάλαιο 4: Συνθήκες Έλεγχου (if-else, switch) και Λογικοί τελεστές / παραστάσεις (Διάλεξη 8) 8-1 Τι θα δούμε σήμερα Η εντολή if else Η εντολή if else ιf - -else H εντολή switch Λογικές παραστάσεις Σχεσιακοί
Κεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή Έλεγχος συνθηκών - if Ας μελετήσουμε το πρόβλημα του υπολογισμού του ελάχιστου
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ
MYY204 Διακριτά Μαθηματικά Μθ άii Προτασιακή Λογική ιδακτικές Σημειώσεις EPP : Παράγραφοι 1.1 1.2 Rosen: Παράγραφοι 1.1 1.3 1 η +2 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά
Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 11
ΗΜΥ Εισαγωγή στην Τεχνολογία ιάλεξη 11 13 Οκτωβρίου, 6 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,
HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού
Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Γνώση γλώσσας από τη σκοπιά Του συντακτικού (syntax) Περιγραφή με γραμματικές