Εισαγωγή στο MATLAB. (συνέχεια)
|
|
- Γερασιμος Πάρις Παπαστεφάνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή στο MATLAB (συνέχεια)
2 6. Διαγράμματα
3 Εντολές clf Διαγράφει το ενεργό σχήμα. Εισαγωγή στο MATLAB: Δ13-3 figure(h) Καθιστά το h ως το ενεργό παράθυρο και το εμφανίζει στην οθόνη μπροστά από όλα τα άλλα παράθυρα. plot(xvalues, yvalues, color_linestyle_marketstyle ) Δημιουργεί ένα 2 D διάγραμμα με συντεταγμένες x και y που καθορίζονται από τα διανύσματα xvalues και yvalues. Προαιρετικά μπορούν να καθοριστούν το χρώμα και το είδος της γραμμής του διαγράμματος όπως και ο τρόπος απεικόνισης των σημείων του διαγράμματος. Χρώμα (color) Γραμμή (linestyle) b. g o r : x c. + m * y k Σημεία (marketstyle)
4 Εντολές subplot (m,n,p) ή subplot (mnp) Εισαγωγή στο MATLAB: Δ13-4 Χωρίζει το παράθυρο των σχημάτων σε mxn υποπαράθυρα και τοποθετεί το επόμενο διάγραμμα που θα σχεδιαστεί στο p υποπαράθυρο. Τα υποπαράθυρα μετρώνται κατά μήκος της πρώτης γραμμής, ακολούθως της δεύτερης κ.ο.κ. title(ʹtextʹ,ʹproperty1ʹ,propertyvalue1,ʹproperty2ʹ,propertyvalue2,...) Καθορίζει τον τίτλο του διαγράμματος και προαιρετικά δίνει τιμές στις ιδιότητες του. xlabel(ʹtextʹ,ʹproperty1ʹ,propertyvalue1,ʹproperty2ʹ,propertyvalue2,...) Καθορίζει το όνομα του άξονα x και προαιρετικά δίνει τιμές στις ιδιότητες του. ylabel(ʹtextʹ,ʹproperty1ʹ,propertyvalue1,ʹproperty2ʹ,propertyvalue2,...) Καθορίζει το όνομα του άξονα y και προαιρετικά δίνει τιμές στις ιδιότητες του. text(x,y,ʹstringʹ) Προσθέτει το κείμενο string στη θέση (x,y) του διαγράμματος. axis([xmin xmax ymin ymax]) Αλλάζει τα όρια των αξόνων με βάσει τις νέες τιμές xmin και xmax για τον άξονα x και ymin και ymax για τον άξονα y.
5 Εντολές Εισαγωγή στο MATLAB: Δ13-5 semilogx Ο άξονας x σχεδιάζεται σε λογαριθμική κλίμακα με βάση το 10. semilogy Ο άξονας y σχεδιάζεται σε λογαριθμική κλίμακα με βάση το 10. loglog Οι άξονες x και y σχεδιάζονται σε λογαριθμική κλίμακα με βάση το 10. grid on Προσθέτει τον κύριο κάνναβο στους ενεργούς άξονες. grid off Αφαιρεί τον κύριο και το δευτερεύον κάνναβο των ενεργών αξόνων. legend( string1, string2, string3,...) Τοποθετεί πινακάκι επεξηγήσεων στο ενεργό διάγραμμα χρησιμοποιώντας περιγραφές σε μορφή string που αφορούν κάθε διάγραμμα.
6 Παράδειγμα 2D Εισαγωγή στο MATLAB: Δ13-6 Σύνταξη:
7 Παράδειγμα 2D Εισαγωγή στο MATLAB: Δ13-7 Title Legend Ylabel Grid Xlabel
8 Παράδειγμα subplot Εισαγωγή στο MATLAB: Δ13-8 Σύνταξη: subplot (rows, cols, index)
9 Παράδειγμα 3D Σύνταξη: Εισαγωγή στο MATLAB: Δ13-9
10 Παραδείγματα 3D Εισαγωγή στο MATLAB:Δ13-10 Contourf plot3 waterfall Contour3 mesh surf
11 Παραδείγματα διαγραμμάτων Εισαγωγή στο MATLAB:Δ13-11 bar bar3h hist area pie3 rose
12 7. Εφαρμογές
13 Γραμμική Άλγεβρα (Linear Algebra) Εισαγωγή στο MATLAB:Δ13-13 Επίλυση γραμμικού συστήματος εξισώσεων (Solving a linear system) {x} Διάνυσμα το οποίο περιέχει τους αγνώστους [A] Πίνακας ο οποίος περιέχει τους συντελεστές των αγνώστων που αντιστοιχούν στο διάνυσμα {x} {b} Διάνυσμα το οποίο περιέχει τις σταθερές των δεξιών πλευρών των εξισώσεων x=a\b Επιλύνει το γραμμικό σύστημα διαφορικών εξισώσεων [A]{x}={b} (Αριστερή διαίρεση) Υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων (Eigenvalues and eigenvectors) Το πρόβλημα ιδιοτιμών έχει τη μορφή: A v= λ v Για την επίλυση του πρέπει να βρεθούν τα λ και v. V Πίνακας οι στήλες του οποίου αντιστοιχούν στα ιδιοδυανύσματα του Α D Πίνακας τα στοιχεία της διαγωνίου του οποίου αντιστοιχούν στις ιδιοτιμές του Α [V,D]=eig(A) Υπολογίζει τα ιδιοδυανύσματα και τις ιδιοτιμές του πίνακα Α έτσι ώστε Α*V = V*D.
14 Ανάλυση Δεδομένων και Στατιστική Εισαγωγή στο MATLAB:Δ13-14 Εντολή Λειτουργία Εντολής mean(x) Για διανύσματα δίνει το μέσο όρο των στοιχείων του Χ. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τους μέσους όρους των στοιχείων κάθε στήλης. mean(x,dim) Δίνει τους μέσους όρους των στοιχείων κατά μήκος της διάστασης dim (dim=1 στήλες, dim=2 γραμμές). median(x) Για διανύσματα δίνει το διάμεσο των στοιχείων του Χ. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τους διάμεσους των στοιχείων κάθε στήλης. median(x,dim) Δίνει τους διάμεσους των στοιχείων κατά μήκος της διάστασης dim (dim=1 στήλες, dim=2 γραμμές). std(x) Για διανύσματα δίνει την τυπική απόκλιση των στοιχείων του Χ. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τις τυπικές αποκλίσεις των στοιχείων κάθε στήλης. var(x) Για διανύσματα δίνει τη διασπορά των στοιχείων του Χ. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τις διασπορές των στοιχείων κάθε στήλης.
15 Ανάλυση Δεδομένων και Στατιστική Εισαγωγή στο MATLAB:Δ13-15 Εντολή Λειτουργία Εντολής min(x) Για διανύσματα δίνει τo στοιχείο του Χ με τη μικρότερη τιμή. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τα στοιχεία κάθε στήλης με τη μικρότερη τιμή. max(x) Για διανύσματα δίνει τo στοιχείο του Χ με τη μεγαλύτερη τιμή. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τα στοιχεία κάθε στήλης με τη μεγαλύτερη τιμή. sum(x) Για διανύσματα δίνει το άθροισμα των στοιχείων του Χ. Για πίνακες δίνει ένα διάνυσμα που αποτελείται από τα αθροίσματα των στοιχείων κάθε στήλης. sum(x,dim) Δίνει το άθροισμα των στοιχείων κατά μήκος της διάστασης dim του πίνακα Χ (dim=1 στήλες, dim=2 γραμμές). trapz(x) Υπολογίζει το ολοκλήρωμα των στοιχείων του Χ (εμβαδόν κάτω από την καμπύλη που ορίζεται από τα στοιχεία) χρησιμοποιώντας τον κανόνα του τραπεζίου. cumtrapz(x) Υπολογίζει το αθροιστικό ολοκλήρωμα των στοιχείων του Χ.
16 Συνήθεις Διαφορικές Εξισώσεις (ODE) Εισαγωγή στο MATLAB:Δ13-16 Διαφορικές Εξισώσεις 1ης Τάξης (Single first order differential equations) Εντολή [t,y] = ode45(ʹyprimeʹ,[t0,tf],y0); Λειτουργία Εντολής Επιλύνει τη διαφορική εξίσωση y =yprime(t,y), με αρχικές συνθήκες y(t0)=y0, στο διάστημα t0 t tf. H yprime ορίζεται σε μια συνάρτηση M file η οποία αποθηκεύεται ως yprime.m Παράδειγμα [t,y]=ode45(ʹexample1ʹ,[0,2*pi],3); όπου example1.m είναι ένα M file το οποίο περιέχει τον ορισμό της διαφορικής εξίσωσης example1 function dy= example1(t,y) dy=cos(t)/(2*(y 1)) ;
17 Συνήθεις Διαφορικές Εξισώσεις (ODE) Εισαγωγή στο MATLAB:Δ13-17 Σύστημα Διαφορικών Εξισώσεων 1ης Τάξης (System of first order differential equations) Εντολή Λειτουργία Εντολής [t,y] = ode45(ʹyprimeʹ,[t0 tf],[y1 y2]); Επιλύνει το σύστημα διαφορικών εξισώσεων y1 =yprime(t,y) και y2 =yprime(t,y), με αρχικές συνθήκες y1(t0)=y1 και y2(t0)=y2, στο διάστημα t0 t tf. H yprime ορίζεται σε μια συνάρτηση M file η οποία αποθηκεύεται ως yprime.m Παράδειγμα [t,y]=ode45(ʹexample2ʹ,[0 20],[2 0]); όπου example2.m είναι ένα M file το οποίο περιέχει τον ορισμό του συστήματος διαφορικών εξισώσεων example2 function dy= example2(t,y); dy=zeros(2,1); dy(1)=y(2) y(1)^2; dy(2)= y(1) 2*y(1)* y(2);
18 Συνήθεις Διαφορικές Εξισώσεις (ODE) Εισαγωγή στο MATLAB:Δ13-18 Διαφορικές Εξισώσεις 2ης Τάξης (Second order differential equations) Για την επίλυση μιας διαφορικής εξίσωσης 2ης τάξης, y =f(t,y,y ), είναι αναγκαίο αυτή να αντικατασταθεί από μια ισοδύναμη διαφορική εξίσωση 1ης τάξης θέτοντας y1=y και y2=y. Έτσι y=(y1,y2) είναι η λύση του συστήματος διαφορικών εξισώσεων 1ης τάξης: y1 =y2, y2 =f(t,y1,y2). Εντολή [t,y] = ode45( y, [t0 tf], [t1 t2]) ; Λειτουργία Εντολής Επιλύνει το σύστημα διαφορικών εξισώσεων y1 =yprime(t,y), με αρχικές συνθήκες y(t0)=y0, στο διάστημα t0 t tf. H yprime ορίζεται σε μια συνάρτηση M file η οποία αποθηκεύεται ως yprime.m
19 Συνήθεις Διαφορικές Εξισώσεις (ODE) Εισαγωγή στο MATLAB:Δ13-19 Διαφορικές Εξισώσεις 2ης Τάξης (Second order differential equations) Παράδειγμα [t,y]=ode45(ʹexample3ʹ,[0 10],[0 1]); όπου example3.m είναι ένα M file το οποίο περιέχει τον ορισμό του συστήματος διαφορικών εξισώσεων example3 function dy= example3(t,y); dy=zeros(2,1); dy(1)=y(2); dy(2)= y(1)*y(2) y(1);
20 Εισαγωγή στο MATLAB:Δ13-20 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών Παράδειγμα Να υπολογιστεί η απόκριση μονοβάθμιου συστήματος σε ελεύθερη ταλάντωση και να δημιουργηθούν τα διαγράμματα απόκρισης συναρτήσει του χρόνου. Στοιχεία που απαιτούνται για τη σύνταξη του προγράμματος Ο χρήστης καλείται να δώσει: τα χαρακτηριστικά του ταλαντωτή: μάζα δυσκαμψία λόγος απόσβεσης τις αρχικές συνθήκες: αρχική μετατόπιση αρχική ταχύτητα και στοιχεία που αφορούν τους υπολογισμούς: χρονικό βήμα υπολογισμών τελικός χρόνος υπολογισμών. Με βάση τις αρχικές συνθήκες υπολογίζεται η απόκριση του συστήματος χωρίς απόσβεση σε ελεύθερη ταλάντωση με χαρακτηριστικά που έχει καθορίσει ο χρήστης. Η μετατόπιση του συστήματος σχεδιάζεται συναρτήσει του χρόνου.
21 Εισαγωγή στο MATLAB:Δ13-21 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών Παράδειγμα( ) Καλείται συνάρτηση (τόσο για το λόγο απόσβεσης που καθορίζει ο χρήστης όσο και για κρίσιμη απόσβεση) η οποία: ελέγχει κατά πόσο η απόσβεση είναι υποκρίσιμη, κρίσιμη ή υπερκρίσιμη χρησιμοποιώντας τις ανάλογες σχέσεις υπολογίζει την απόκριση του συστήματος με απόσβεση σε ελεύθερη ταλάντωση και σχεδιάζει το διάγραμμα της μετατόπισης συναρτήσει του χρόνου. Τελικά, δημιουργείται ένα διάγραμμα (plot) το οποίο έχει δυο υποδιαγράμματα (subplot): Στο πρώτο υποδιάγραμμα σχεδιάζεται η μετατόπιση του συστήματος χωρίς απόσβεση σε ελεύθερη ταλάντωση. Στο δεύτερο υποδιάγραμμα σχεδιάζεται η μετατόπιση του συστήματος με απόσβεση για δύο περιπτώσεις: (α) για λόγο απόσβεσης που έχει καθορίσει ο χρήστης και (β) για λόγο απόσβεσης ζ = 1 (κρίσιμη απόσβεση).
22 Εισαγωγή στο MATLAB:Δ13-22 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών %Script file: sdof_freevibration %Purpose: Calculation of the response of the single-degree-of-freedom system %in free vibration and plot of response of the system against time %Variables: %m: Mass of the system in kg %k: Stiffness f the systemin N/m %z_fraction: Damping ratio of the system as a percent %z: Damping ratio of the system as a number %init_displ: Initial displacement in m %init_vel: Initial velocity in m/sec %dt: Time-step of the calculations in sec %t_final: Final time for the calculations in sec %cyclic_freq: Cyclic frequency of the undamped system %period: Period of the system %u: Response of the system %t: Vector of time %i: Length of vector t clear clf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('\nfree Vibration') fprintf('\n ') %The user gives the characteristics of the system fprintf('\ncharacteristics of the system\n') m=input('\ngive the mass in kg: '); k=input('\ngive the stiffness in N/m: '); z_fraction=input('\ngive the damping ratio as a %: '); z=z_fraction/100;
23 Εισαγωγή στο MATLAB:Δ13-23 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών init_displ=input('\ngive the initial displacement in m: '); init_vel=input('\ngive the initial velocity in m/sec: '); dt=input('\ngive the time-step in sec: '); t_final=input('\ngive the final time for the calculations in sec: '); %Cyclic frequency of the system cyclic_freq=sqrt(k/m); %Period of the system period=2*pi/cyclic_freq; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Undamped Vibration %Vector of time t=0:dt:t_final; %Calculation of the response of the undamped system for each time-step for i=1:length(t) u(i)=init_displ*cos(cyclic_freq*t(i))+init_vel/cyclic_freq*sin(cyclic_freq*t(i)); end %Plot of the response of the undamped system against time subplot(2,1,1) title('u-t Plot for Free Undamped Vibration') xlabel('t (sec)') ylabel('u (m)') grid on hold on plot(t,u) hold on
24 Εισαγωγή στο MATLAB:Δ13-24 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Damped Vibration %Plot of the response of the damped system against time subplot(2,1,2) title('u-t Plot for Free Damped Vibration') xlabel('t (sec)') ylabel('u (m)') grid on hold on %Call the fuction sdof_damped sdof_damped(t,1,cyclic_freq,init_displ,init_vel) %Critically damped system sdof_damped(t,z,cyclic_freq,init_displ,init_vel) %Damped system
25 Εισαγωγή στο MATLAB:Δ13-25 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών function sdof_damped(t,z,wn,u0,v0) %sdof_damped calculates the free-vibration response of a damped SDOF system %Purpose: Calculates and plots the free-vibration response of a damped SDOF %system depending on the amount of damping in the system %Variables: %wn:cyclic frequency of the undamped system %wd:cyclic frequency of the damped system %period: Period of the system %z: Damping ratio of the structure as a number %u0: Initial displacement in m %v0: Initial velocity in m/sec %u: Response of the system %t: Vector of time %t_final: Final time for the calculations in sec %i: Length of vector t %c1,c1: Variables for easiest calculation of the response %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if z<1 %Underdamped System for i=1:length(t) wd=wn*sqrt(1-z^2); u(i)=exp(-z*wn*t(i))*(u0*cos(wd*t(i))+(v0+z*wn*u0)/wd*sin(wd*t(i))); end plot(t,u,'-g') legend('critically Damped System', 'Underdamped System') hold on
26 Εισαγωγή στο MATLAB:Δ13-26 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών elseif z==1 %Critically Damped System for i=1:length(t) u(i)=exp(-wn*t(i))*(u0+(v0+wn*u0)*t(i)); end plot(t,u,'--r') legend('critically Damped System') hold on else %Overdamped System for i=1:length(t) c1=(u0*wn*(z+sqrt(z^2-1))+v0)/(2*wn*sqrt(z^2-1)); c2=(-u0*wn*(z-sqrt(z^2-1))-v0)/(2*wn*sqrt(z^2-1)); u(i)=c1*exp((-z+sqrt(z^2-1))*wn*t(i))+c2*exp((-z-sqrt(z^2-1))*wn*t(i)); end plot(t,u,'-.m') legend('critically Damped System','Overdamped System') hold on end
27 Εισαγωγή στο MATLAB:Δ13-27 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών >> sdof_freevibration Free Vibration Characteristics of the structure Give the mass in kg: 100 Give the stiffness in N/m: 8800 Give the damping ratio as a %: 10 Give the initial displacement in m: 0.5 Give the initial velocity in m/sec: 0.5 Give the time step in sec: 0.02 Give the final time for the calculation in sec: 5
28 Εισαγωγή στο MATLAB:Δ13-28 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών >> sdof_freevibration Free Vibration Characteristics of the structure Give the mass in kg: 100 Give the stiffness in N/m: 8800 Give the damping ratio as a %: 100 Give the initial displacement in m: 0.5 Give the initial velocity in m/sec: 0.5 Give the time step in sec: 0.02 Give the final time for the calculation in sec: 5
29 Εισαγωγή στο MATLAB:Δ13-29 Εφαρμογή στη Δυναμική Ανάλυση των Κατασκευών >> sdof_freevibration Free Vibration Characteristics of the structure Give the mass in kg: 100 Give the stiffness in N/m: 8800 Give the damping ratio as a %: 200 Give the initial displacement in m: 0.5 Give the initial velocity in m/sec: 0.5 Give the time step in sec: 0.02 Give the final time for the calculation in sec: 5
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Επίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Επίλυση δικτύων διανομής
ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών
Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Στοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Εισαγωγή στο MATLAB. Στη συγγραφή των σημειώσεων συνέβαλαν οι μεταπτυχιακές φοιτήτριες Ελισάβετ Πισιάρα και Σπυρούλα Οδυσσέως
Εισαγωγή στο MATLAB Στη συγγραφή των σημειώσεων συνέβαλαν οι μεταπτυχιακές φοιτήτριες Ελισάβετ Πισιάρα και Σπυρούλα Οδυσσέως Περιεχόμενα Εισαγωγή στο MATLAB: Δ12-2 Εισαγωγή Μεταβλητές (Variables) Πίνακες
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος
Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης
Ψηφιακή Εικόνα. Σημερινό μάθημα!
Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
14 Φεβρουαρίου 2014, Βόλος
ιαφορικές Εξισώσεις Εισαγωγή Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 14 Φεβρουαρίου 2014, Βόλος ιαδικαστικά Θέματα Ο τελικός βαθμός προτείνω να υπολογισθεί
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ 01-013 Μπίλιας Κων/νος Φυσικός
Συναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό
ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Περιγραφή Περιγράμματος
Περιγραφή Περιγράμματος Σήμερα! Περιγραφή Περιγράμματος Κώδικας Αλύσσου (chain code) Πολυγωνική γραμμή Υπογραφή (signature) περιγράμματος Μετασχηματισμός Fourier περιγράμματος 1 Περιγραφή Περιγράμματος
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική
Οι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Αλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ / ΕΤΥ : Μεταπτυχιακό Μάθημα 4η Ενότητα: Γραμμικά Συστήματα Εξισωσεων και Pivots Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr) Τμήμα Μηχανικών
Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Κατασκευή της κίνησης Brown και απλές ιδιότητες
5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)
Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018
ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >
Σχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Αλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)
τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές
Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση
Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε
{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2
12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει
Ο Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss
Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή
ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27
ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull
Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος
Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος Είτε είμαστε άνθρωποι είτε είμαστε αστρική σκόνη, όλοι μαζί χορεύουμε στη μελωδία ενός αόρατου ερμηνευτή. A. Einstein
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
Η εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading
Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε
Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία
Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας
ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού
Διανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών
Σημειώσεις Μαθηματικών Μεθόδων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Φεβρουαρίου 08 Κεφάλαιο Το Μιγαδικό Εκθετικό Είναι γνωστό ότι η εκθετική συνάρτηση e x έχει το ανάπτυγμα
2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες
20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης
Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο
Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση.
Αναγνώριση Προτύπων Η κατάρα της διαστατικότητας Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Η κατάρα της διαστατικότητας
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Περιγραφή Περιοχής. Σήμερα!
Περιγραφή Περιοχής Σήμερα! Υφή (texture) Ιστόγραμμα & Ροπές Ιστογράμματος Πίνακες συνεμφάνισης Φασματική περιγραφή Ροπές (moments) Στροφορμή (angular momentum) 1 Υφή (texture) Ο ορισμός της έννοιας της
Γραφικές παραστάσεις (2ο μέρος)
Γραφικές παραστάσεις (2ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB χρησιμοποιώντας την εντολή plot με πίνακες. Επίσης, θα δείτε επιπλέον εντολές
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ
Καταθλιπτικοί αγωγοί και αντλιοστάσια
Αστικά Υδραυλικά Έργα Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τυπικές φυγοκεντρικές αντλίες Εξαγωγή Άξονας
Επιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες
CSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων
Ερμηνευτικό Λεξικό Λ-501
Ερμηνευτικό Λεξικό Α Αθροισμα γραμμής: [row sum] Το άθροισμα των στοιχείων μιας γραμμής μιας μήτρας. Αθροισμα στήλης [column sum]: Το άθροισμα των στοιχείων μιας στήλης μιας μήτρας. Ακραίο ή συνοριακό
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες
ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ
ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.
Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων
Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης
Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε
Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και
Εφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες
Αναγνώριση Προτύπων 1
Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος
Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Εκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑΣ ADOBE PHOTOSHOP CS ΑΝΑΣΤΑΣΙΟΣ Β. ΣΥΜΕΩΝΙ ΗΣ
21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται
Η κατανομή του Euler επί των αυτοαντίστροφων στοιχείων της
Ε Κ Π Α Τ Μ Η κατανομή του Euler επί των αυτοαντίστροφων στοιχείων της υπεροκταεδρικής ομάδας Μ Ε Μουστάκας Βασίλης - Διονύσης : Χ Α. Α Αθήνα Ιούνιος 07 Στον πρώτο μου δάσκαλο, μαθηματικό Γιάννη Καρρά.
ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983
20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου.
Π Π Σ Τ Π Ε Τ Ψ Σ Δομές Δεδομένων 2016-2017 2η Εργασία Χρήστος Δουλκερίδης Ορέστης Τελέλης 1 Περιγραφή Η ομαδοποίηση εγγράφων (document clustering) με βάση τα περιεχόμενά τους είναι ένα πολύ ενδιαφέρον
Ανελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Συναρτήσεις ΙΙ. Σημερινό μάθημα
Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις
Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται