ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
|
|
- Νατάσα Πανταζής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1
2 ΔΕΚΑΤΟ ΜΑΘΗΜΑ Συνεχίζουμε την λύση της άσκησης Μέχρι τώρα έχουμε αποδείξει ότι για κάθε διαμέριση του [, b] υπάρχει μια αντίστοιχη διαμέριση του [, B] ώστε να ισχύουν οι σχέσεις Σf;, b; + Σf 1 ;, B; = Bb, 1 Σf;, b; + Σf 1 ;, B; = Bb. Αυτές είναι οι σχέσεις 5, 6 του προηγούμενου μαθήματος. Τώρα θεωρούμε τυχόν ɛ > 0. Από το κριτήριο ολοκληρωσιμότητας για την f συνεπάγεται ότι υπάρχει κάποια διαμέριση του [, b] ώστε 0 Σf;, b; Σf;, b; < ɛ. 3 Εξισώνοντας τα δεξιά μέλη των ισοτήτων 1, και χρησιμοποιώντας την 3, βρίσκουμε εύκολα ότι Θυμόμαστε και τις γνωστές σχέσεις 0 Σf 1 ;, B; Σf 1 ;, B; < ɛ. 4 Σf;, b; Σf 1 ;, B; Από τις 3, 5 βρίσκουμε ότι και από τις 4, 6 ότι 0 Αφαιρώντας τις 7, 8, βρίσκουμε οπότε η 1 δίνει ɛ < f + 0 Σf 1 ;, B; f 1 f + f Σf;, b;, 5 f 1 Σf 1 ;, B;. 6 f Σf;, b; < ɛ 7 f 1 < ɛ. 8 Σf;, b; + Σf 1 ;, B; < ɛ, f 1 Bb < ɛ. Επειδή αυτό ισχύει για κάθε ɛ > 0, συνεπάγεται ότι f + f 1 = Bb. Άσκηση Έστω f, g συνεχείς στο [, b] και f = g. Αποδείξτε ότι υπάρχει ξ, b ώστε fξ = gξ.
3 Λύση: Ορίζουμε την συνάρτηση Η h είναι συνεχής στο [, b] και h = f g. h = 0. Αρκεί να αποδείξουμε ότι υπάρχει ξ, b ώστε hξ = 0. Υποθέτουμε για να καταλήξουμε σε άτοπο ότι ισχύει hx 0 για κάθε x, b. Επειδή η h είναι συνεχής στο, b, συνεπάγεται ότι είτε ισχύει hx > 0 για κάθε x, b είτε ισχύει hx > 0 για κάθε x, b. Θεωρούμε την πρώτη περίπτωση. Αυτά που ακολουθούν είναι παρόμοια και στην δεύτερη περίπτωση. Επειδή η h είναι συνεχής στα, b και επειδή ισχύει hx > 0 για κάθε x, b, συνεπάγεται h = lim hx 0, x + hb = lim hx 0. x b Άρα ισχύει hx 0 για κάθε x [.b]. Επομένως, επειδή h = 0, συνεπάγεται ότι ισχύει hx = 0 για κάθε x [, b] στο οποίο η h είναι συνεχής. Αυτό είναι άτοπο, διότι η h είναι συνεχής στο [, b] και έχουμε ότι ισχύει hx > 0 για κάθε x, b. Άρα υπάρχει ξ, b ώστε hξ = 0 και, επομένως, fξ = gξ. Τώρα θα δούμε τον ορισμό του ολοκληρώματος που έδωσε ο Riem. Έστω f φραγμένη στο διάστημα [, b] και διαμέριση = {x 0, x 1..., x 1, x } του [, b], οπότε = x 0 < x 1 <... < x 1 < x = b. Θεωρούμε και μια αντίστοιχη αλλά τυχούσα επιλογή ενδιάμεσων σημείων Ξ = {ξ 1,..., ξ }, όπου κάθε ξ k είναι ένα αυθαίρετο σημείο του αντίστοιχου υποδιαστήματος [x k 1, x k ]. Είναι σαφές ότι υπάρχουν άπειρες επιλογές Ξ ενδιάμεσων σημείων για την ίδια διαμέριση του [, b]. Τέλος, για κάθε τέτοια διαμέριση του [, b] και για κάθε αντίστοιχη τέτοια επιλογή Ξ ενδιάμεσων σημείων σχηματίζουμε το λεγόμενο άθροισμα Riem Σf;, b;, Ξ = fξ k x k x k 1 = fξ 1 x 1 x fξ x x 1. Επειδή η τιμή fξ k είναι στοιχείο του συνόλου τιμών {fx x k 1 x x k }, ισχύει l k fξ k u k για κάθε k = 1,...,, οπότε l k x k x k 1 fξ k x k x k 1 u k x k x k 1 και άρα Σf;, b; Σf;, b;, Ξ Σf;, b;. Δηλαδή, όταν πρόκειται για την ίδια διαμέριση, ένα άθροισμα Riem είναι ανάμεσα στο κάτω άθροισμα Drboux και στο άνω άθροισμα Drboux. 3
4 Ονομάζουμε πλάτος της διαμέρισης και το συμβολίζουμε w το μεγαλύτερο από τα μήκη των υποδιαστημάτων που ορίζει η. Δηλαδή, w = mx{x k x k 1 1 k }. Ο ορισμός του ολοκληρώματος που έδωσε ο Riem έχει ως εξής: ΟΡΙΣΜΟΣ. Έστω f φραγμένη στο [, b]. Η f χαρακτηρίζεται Riem ολοκληρώσιμη στο [, b] αν υπάρχει κάποιος αριθμός I με την εξής ιδιότητα: για κάθε ɛ > 0 υπάρχει δ > 0 ώστε για κάθε διαμέριση του [, b] με w < δ και κάθε επιλογή Ξ ενδιάμεσων σημείων για την να ισχύει Σf;, b;, Ξ I < ɛ. Αν η f είναι ολοκληρώσιμη στο [, b], τότε ο αριθμός I ονομάζεται Riem ολοκλήρωμα της f στο [, b] και συμβολίζεται f = I. Αποδεικνύεται ότι ο ορισμός του ολοκληρώματος που έδωσε ο Drboux, τον οποίο είδαμε εξ αρχής, και ο ορισμός που έδωσε ο Riem είναι ισοδύναμοι. Δηλαδή, αν μια συνάρτηση είναι ολοκληρώσιμη σύμφωνα με τον έναν ορισμό, τότε είναι ολοκληρώσιμη σύμφωνα και με τον άλλον ορισμό και οι τιμές των αντίστοιχων ολοκληρωμάτων της ταυτίζονται. Αυτό είναι το περιεχόμενο του θεωρήματος 6.3 στο βιβλίο και η απόδειξή του είναι, ίσως, η δυσκολότερη όλου του βιβλίου! ΠΡΟΤΑΣΗ. Έστω f ολοκληρώσιμη στο [, b]. Θεωρούμε μια οποιαδήποτε ακολουθία διαμερίσεων του [, b] και αντίστοιχη ακολουθία επιλογών Ξ ενδιάμεσων σημείων. Δηλαδή κάθε Ξ είναι επιλογή ενδιάμεσων σημείων για την αντίσοιχη. Αν w 0, τότε Σf;, b;, Ξ Απόδειξη. Έστω ɛ > 0. Επειδή η f είναι ολοκληρώσιμη στο [, b] σύμφωνα με τον ορισμό του Riem, υπάρχει δ > 0 ώστε για κάθε διαμέριση του [, b] με w < δ και κάθε επιλογή Ξ ενδιάμεσων σημείων για την να ισχύει Σf;, b;, Ξ f. f < ɛ. Τώρα, επειδή w 0, ισχύει τελικά w < δ και, επομένως, ισχύει τελικά Άρα Σf;, b;, Ξ f. Σf;, b;, Ξ f < ɛ. Μια όχι τόσο αυστηρή αλλά πολύ συνηθισμένη και παραστατική διατύπωση της τελευταίας πρότασης είναι η εξής. Αν η f είναι ολοκληρώσιμη στο [, b], τα αθροίσματα Riem της f συγκλίνουν στο 4
5 ολοκλήρωμά της όταν το πλάτος των αντίστοιχων διαμερίσεων τείνει στο 0. Υπάρχει και το ανάλογο σύμβολο: lim Σf;, b;, Ξ = w 0 Σύμφωνα με την τελευταία πρόταση, αν γνωρίζουμε ότι μια συγκεκριμένη συνάρτηση f είναι ολοκληρώσιμη στο [, b], μπορούμε να υπολογίσουμε το ολοκλήρωμά της θεωρώντας μια ακολουθία διαμερίσεων του [, b] ώστε w 0 και, για κάθε, μια οποιαδήποτε επιλογή Ξ ενδιάμεσων σημείων γι αυτήν. Υπολογίζουμε τα αθροίσματα Σf;, b;, Ξ και, τέλος, υπολογίζουμε το ολοκλήρωμα μέσω του ορίου Σf;, b;, Ξ f. Η μοναδική μας φροντίδα είναι να βρούμε κατάλληλες και αντίστοιχες Ξ ώστε να υπολογίζονται εύκολα τα Σf;, b;, Ξ. Στην συνέχεια θα δούμε μερικά παραδείγματα για να καταλάβουμε καλύτερα την μέθοδο υπολογισμού του ολοκληρώματος μέσω των αθροισμάτων Riem. Παράδειγμα. Έστω η συνάρτηση x στο διάστημα [, b]. Για κάθε θεωρούμε τη διαμέριση = {x 0,..., x } του [, b] σε ισομήκη υποδιαστήματα. Δηλαδή, έστω x k = + k b f. για k = 0,...,. Τότε για κάθε k έχουμε ότι x k x k 1 = b, οπότε w = b 0. Για κάθε παίρνουμε ως επιλογή Ξ ενδιάμεσων σημείων τα δεξιά άκρα των υποδιαστημάτων που ορίζει η. Δηλαδή, Υπολογίζουμε Σx;, b;, Ξ = ξ k = x k = + k b για k = 1,...,. ξ k x k x k 1 = b = b + b + b = b + b = b + b + 1 = b + b + 1. Επειδή w 0, από την τελευταία πρόταση συνεπάγεται ότι οπότε x dx = + k b + + b lim Σx;, b;, Ξ, + x dx = lim b + b + 1 = b + + b = b. 5
ΑΝΑΛΥΣΗ 2 ΣΕ 37 ΜΑΘΗΜΑΤΑ
ΑΝΑΛΥΣΗ 2 ΣΕ 37 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Έστω [, b] ένα κλειστό διάστημα με < b. Διαμέριση του [, b] είναι ένα οποιοδήποτε πεπερασμένο υποσύνολο του [, b] το οποίο περιέχει τουλάχιστον
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΚΤΟ ΜΑΘΗΜΑ ΘΕΩΡΗΜΑ. Αν η f είναι συνεχής στο [, b], τότε είναι ομοιόμορφα συνεχής στο [, b]. Απόδειξη. Έστω ότι η f δεν είναι ομοιόμορφα συνεχής στο [, b]. Τότε υπάρχει κάποιο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΕΒΔΟΜΟ ΜΑΘΗΜΑ Θα γυρίσουμε πίσω για να κάνουμε μια απόδειξη που είχαμε παραλείψει σε κάποιο προηγούμενο παράδειγμα. Παράδειγμα. Έστω ξ [, b] και η συνάρτηση { 0, αν x [, b],
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ Χρησιμοποιούμε τα σύμβολα f και f() d για να συμβολίσουμε όλα μαζί τα αόριστα ολοκληρώματα της f σε ένα διάστημα I. Δηλαδή, γράφουμε f = f + c ή f() d =
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δέκατου φυλλαδίου ασκήσεων. 2 x dx = 02 ( 2) 2
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δέκατου φυλλαδίου ασκήσεων.. Υπολογίστε το x αν x < 0 4 fx) dx όταν fx) = αν 0 x 3/x αν < x 4 Λύση: Η f ταυτίζεται στο [, 0] με την συνεχή συνάρτηση
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΕΝΑΤΟ ΜΑΘΗΜΑ Άσκηση 6.2.4. Έστω f φραγμένη στο [, b] και δυο ακολουθίες διαμερίσεων του [, b], η ( ) και η ( ), έτσι ώστε Σ(f;, b; ) Σ(f;, b; ) 0. Αποδείξτε ότι η f είναι
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 12-12-13 Μ. Παπαδημητράκης. 1 Ας δούμε ένα παράδειγμα υπολογισμού ορίου με χρήση της συνέχειας της σύνθεσης συνεχών συναρτήσεων. Παράδειγμα. Θέλουμε να υπολογίσουμε το όριο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Παράδειγμα. Θεωρούμε για κάθε την συνάρτηση με πεδίο ορισμού [0, + ) και με τύπο (x) = x για κάθε x [0, + ). + x Έχουμε δει ότι 0 στο [0, + ). Τώρα, για
ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε
Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση
ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε
ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 14-1-14 Μ. Παπαδημητράκης. 1 Τις διάφορες απλές ιδιότητες των παραγώγων θα τις θεωρήσω γνωστές από πιο στοιχειώδη μαθήματα απειροστικού λογισμού και από το λύκειο. Τώρα
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ Άσκηση 0... Θεωρήστε τη σειρά συναρτήσεων sin( ). Αποδείξτε ότι η σειρά συγκλίνει σε κάποια συνάρτηση s κατά σημείο στο R και ομοιόμορφα στο [ a, a]
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα
5 Σύγκλιση σε τοπολογικούς χώρους
121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.
f(x) f(c) x 1 c x 2 c
Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 5--3 Μ. Παπαδημητράκης. Είδαμε στο προηγούμενο μάθημα ότι για να έχει νόημα το όριο f(x) x ξ πρέπει το ξ να είναι σε κατάλληλη θέση σε σχέση με το πεδίο ορισμού A της συνάρτησης
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Θέμα Α) Να δείξετε ότι αν f μια συνάρτηση ορισμένη σε διάστημα Δ και F μια παράγουσα της f στο Δ τότε: α) όλες οι συναρτήσεις της μορφής G(χ) = F ( ) +c, c είναι παράγουσες
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στο R Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Το μέτρο Lebesgue.. Μήκη διαστημάτων..................................2
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ιαµέριση (Partition) ορισµένη στο διάστηµα I = [a, b]
ιαµέριση (Prtition) ορισµένη στο διάστηµα I = [, b] P = {x 0,x 1,x 2,...,x n } = x 0
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν
Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.
Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+
f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)
Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων
ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy
ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 8-11-13 Μ. Παπαδημητράκης. 1 Το Θεώρημα των Bolzano και Weierstrass συμπληρώνεται με την εξής Πρόταση (.16 του βιβλίου). ΠΡΟΤΑΣΗ. [α] Κάθε όχι άνω φραγμένη ακολουθία έχει
ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική
> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).
η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C
h(x, y) = card ({ 1 i n : x i y i
Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι, αν
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.
Pragmatikèc Sunart seic miac Metablht c
Aˆlush Prgmtikèc Surt seic mic Metblht c Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Στη Μαρία και στα παιδιά μας, Μυρτώ και Δημήτρη. 3 4 Proktrktikˆ. Το αντικείμενο αυτών των σημειώσεων
sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.
ΑΣΚΗΣΕΙΣ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι, Φυλλάδιο 3 Λύσεις Ασκήσεων. Να υπολογίσετε τα παρακάτω όρια. sia) i) ποιες συνθήκες πρέπει να ισχύουν για τα a, β ώστε να έχει νόημα το όριο;) 0 siβ) si5 ) si4) cos cos
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ
Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.
f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής
Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός
S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3...,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 017-18 ΜΕΜ31-ΤΟΠΟΛΟΓΙΑ 1, 3Η ΔΙΑΛΕΞΗ ΣΥΝΤΟΜΗ ΕΠΑΝΑΛΗΨΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΟΥ R ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Ανοικτα και κλειστα συνολα του R Το σύνολο R των πραγματικών
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Ανασκόπηση-Μάθημα 14 Όρια και Συνέχεια συναρτήσεων στο R 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 14 Όρια και Συνέχεια συναρτήσεων στο R 2 Στο δέκατο τέταρτο μάθημα (30/10/2018), ασχοληθήκαμε
0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ
Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών
Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.
ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Εξετάστε ως προς τη σύγκλιση τη σειρά si. Λύση: Παρατηρούμε ότι si 0 άρα η σειρά δεν συγκλίνει. Συγκεκριμένα
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, 9-10-13 Μ. Παπαδημητράκης. 1 ΠΡΟΤΑΣΗ. Αν ισχύει y n για άπειρους n και x R και y n y R, τότε x y. Απόδειξη. Υποθέτουμε (για άτοπο) ότι y < x. Γνωρίζουμε ότι υπάρχει κάποιος αρκετά
lim (f(x + 1) f(x)) = 0.
Ανάλυση Ι και Εφαρμογές 4ο Τεστ (Σειρά Α) 17-19 Δεκεμβρίου 2018 Ονοματεπώνυμο:.................................................................. Αριθμός Μητρώου:...............................................................
i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),
Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Άσκηση 11.1.2. (i) Είναι η συνάρτηση d : R R R με τύπο d(x, y) = (x y) 2 μετρική στο R; (ii) Ίδια ερώτηση για την d : R R R με τύπο d(x, y) = x y
ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση
ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση Αφορμή γι αυτή τη σύντομη εργασία έδωσε μια ημερίδα διδασκαλίας των Μαθηματικών, η οποία οργανώθηκε από το Σχολικό Σύμβουλο
Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.
Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει
ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)
Έστω συνάρτηση f: [α, β] R παραγωγίσιμη. Τότε η παράγωγος συνάρτηση f (x) παίρνει όλες τις τιμές μεταξύ των f (α) και f (β). Έστω f (α) < λ < f (β). Πρέπει να δείξουμε ότι υπάρχει x 0 ώστε f (x 0 ) = λ.
Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )
Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση
ΑΝΑΛΥΣΗ 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ, 1-11-13 Μ. Παπαδημητράκης. 1 Άσκηση 2.2.7. Έστω ϵ 0 > 0. Αποδείξτε ότι x n x αν και μόνο αν για κάθε ϵ με 0 < ϵ ϵ 0 ισχύει τελικά x n N x ϵ). Λύση: Έχουμε να αποδείξουμε την
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
APEIROSTIKOS LOGISMOS I
APEIROSTIKOS LOGISOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Αποδείξτε με τον ορισμό ότι:. lim ( ) = +,. lim =,. lim ln( + ) = ln, + 4. lim + =. Λύση:. Θεωρούμε αυθαίρετο
Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς
Ολοκλήρωμα πραγματικής συνάρτησης
ΚΕΦΑΛΑΙΟ 7 Ολοκλήρωμα πραγματικής συνάρτησης Σύνοψη Το κεφάλαιο αυτό αποτελεί το «πέρασμα» από το Διαφορικό στον Ολοκληρωτικό Λογισμό Η θεμελιώδης έννοια, για το σκοπό αυτό, είναι η αντιπαράγωγος ή αόριστο
j=1 x n (i) x s (i) < ε.
Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.
ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. v. Σε αυτή την περίπτωση το lim v
ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Η ακολουθία { α ν } λέγεται αθροίσιμη αν η ακολουθία {S ν } συγκλίνει, όπου S 2 3.... Σε αυτή την περίπτωση το lim S συμβολίζεται με και λέγεται το άθροισμα της ακολουθίας {
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο
ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, 10-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την συμμετρική ιδιότητα της Ιδιότητας Supremum. Η ΙΔΙΟΤΗΤΑ INFIMUM. Κάθε μη-κενό και κάτω φραγμένο σύνολο έχει μέγιστο κάτω φράγμα.
2 1, x < 2. f(x) = 3x + 1, x 2. lim. f(x) = lim. x 2. x 1, x < 1. 3x 2 x > 1
ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός οὐκ οἴεται θεοὺς εἶναι ὁ ἄθεος, ὁ δὲ δεισιδαίμων οὐ βούλεται, πιστεύει δ ἄκων φοβεῖται γὰρ ἀπιστεῖν. gkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ - ΚΑΡΡΑΣ
Κεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός
Κεφάλαιο 2 Σειρές Στο κεφάλαιο αυτό θα εισάγουμε την έννοια της σειράς, δηλαδή του αθροίσματος ενός άπειρου πλήθους πραγματικών αριθμών. Στην Παράγραφο 2. θα ορίσουμε, καταρχάς, τις σειρές, και θα δούμε
lim y < inf B + ε = x = +. f(x) =
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για
Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )
Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του Π.Ο της μόνον και μόνον όταν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 πραγματικός αριθμός. και είναι Η παραγωγισιμότητα
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Σήμερα θα δούμε κάποια πράγματα για μια σημαντική ειδική κατηγορία σειρών, εκείνες που έχουν όλους τους προσθετέους τους μη-αρνητικούς. Και θα αρχίσουμε
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.
Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.. Έστω 0 < a
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 018-19. Λύσεις ένατου φυλλαδίου ασκήσεων. 1. Έστω a < b. Αποδείξτε ότι υπάρχει ξ ώστε (i) a < ξ < b και e b e a = (b a)e ξ. (ii) a < ξ < b και cos b cos a = (e
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Εκτός από το κριτήριο του Cauchy, όλα τα άλλα κριτήρια σύγκλισης μιας σειράς που είδαμε μέχρι τώρα (απόλυτης σύγκλισης, σύγκρισης δυο σειρών, λόγου,
Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).
Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε
( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}
7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]
ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 16-1-14 Μ. Παπαδημητράκης. 1 Άσκηση 5..15. Έστω f παραγωγίσιμη στο (0, + ) και lim x + f (x) = 0. Αποδείξτε ότι ( ) lim f(x + 1) f(x) = 0. x + Λύση: Θα εκμεταλλευτούμε
ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ
ΑΝΑΛΥΣΗ ΣΕ 39 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. l 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο l έχει την εξής ιδιότητα: l x για κάθε x > 0. Τότε l 0. Απόδειξη. Για να
ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού
[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)
[] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει
1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:
Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:, g, h Απάντηση: Η με έχει παράγωγο 4 Μπορούμε όμως να εργαστούμε ως εξής: Είναι άρα 4 Η g με g έχει παράγωγο : g Η συνάρτηση h με h έχει
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή πρωτεύουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι,
f (x) 2e 5(x 1) 0, άρα η f
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 8 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α 1 Βλέπε σχολικό βιβλίο σελίδα 14-143
Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε
ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014
ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση