Το πρόβλημα των μηδενικών ιδιοτιμών.
|
|
- Θυώνη Φραγκούδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Το πρόβημα των μηδενικών ιδιοτιμών. Από την προηγούμενη συζήτηση έχει γίνει φανερό ότι αν η ομογενής διαφορική εξίσωση L ϕ ( = 0έχει μη μηδενική ύση (ή ύσεις που να ικανοποιεί τις (ομογενείς συνοριακές συνθήκες του προβήματος L ( ( Ψ = f τότε η συνάρτηση Gree δεν κατασκευάζεται. Διατυπωμένη αιώς η ίδια πρόταση μας έει πως όταν ο διαφορικός μας τεεστής έχει μηδενικές ιδιοτιμές η συνάρτηση Gree όπως μπορεί αμέσως να δει κανείς από την εξ. (22- δεν κατασκευάζεται. Έτσι ή αιώς διατυπωμένη η πρόταση αυτή μας έει ότι η ύση στο πρόβημά μας ( αν υπάρχει δεν είναι μοναδική : Αν κάνουμε την ααγή Ψ( Ψ ( =Ψ ( +ϕ( (42 η συνάρτηση Ψ ( είναι κι αυτή ύση του προβήματός μας. Η τεευταία σχέση δηώνει την ύπαρξη μιας συμμετρίας : Η αντικατάσταση (42 δεν αάζει ούτε τη διαφορική εξίσωση ούτε τις συνοριακές συνθήκες. Αφήνει, δηαδή, το πρόβημα μας αναοίωτο. Επειδή αυτή η περίπτωση εμφανίζεται συχνά και έχει ιδιαίτερο ενδιαφέρον τόσο μαθηματικά όσο και φυσικά θα σταθούμε για ίγο σ αυτήν. Θα ορίσουμε καταρχήν τη εγόμενη γενικευμένη συνάρτηση Gree ϕ( ϕ( G (, (43 η οποία δεν είναι τίποτα άο παρά το άθροισμα (22 (για z = 0 από το οποίο έχουν αφαιρεθεί όοι οι όροι που αντιστοιχούν στις (μη μηδενικές ιδιοσυναρτήσεις που έχουν μηδενικές ιδιοτιμές και τις οποίες έχουμε αριθμήσει με τους δείκτες. (Εδώ έχουμε υποθέσει ότι ο διαφορικός τεεστής έχει ένα πήρες σύστημα ιδιοσυναρτήσεων και ότι το φάσμα του είναι διακριτό. Από τη σχ. (42 προκύπτει αμέσως ότι η γενικευμένη συνάρτηση Gree ικανοποιεί τη εγόμενη γενικευμένη εξίσωση Gree 1 LG (, = Lϕ( ϕ( = ϕ( ϕ( = (44 = ϕ ( ϕ ( + ϕ ( ϕ ( = δ( + ϕ ( ϕ ( και ότι υπόκειται στον περιορισμό : 9
2 1 1 dg (, ϕ ( = ϕ ( dϕ ( ϕ ( = ϕ ( δ = 0 (45, Όπως φαίνεται από την παραπάνω ανάυση η γενικευμένη συνάρτηση Gree μπορεί να ορισθεί είτε μέσω του αθροίσματος (43 είτε ως η ύση της εξίσωσης (44 που υπόκειται στον περιορισμό (45 και, βέβαια, σε ομογενείς συνοριακές συνθήκες. H χρησιμότητα της γενικευμένης συνάρτησης Gree φαίνεται από το παρακάτω θεώρημα: Έστω η διαφορική εξίσωση LΨ ( = f( η οποία συνοδεύεται από ομογενείς συνοριακές συνθήκες. Αν υπάρχουν συναρτήσεις ϕ ( 0 οι οποίες ικανοποιούν την ομογενή εξίσωση Lϕ ( = 0 και τις ομογενείς συνοριακές συνθήκες τότε η διαφορική εξίσωση έχει ύση εάν και μόνο εάν ο όρος της μη ομογένειας είναι τέτοιος ώστε dϕ ( f ( = 0 (46 Στην περίπτωση αυτή η ύση είναι με c αυθαίρετες σταθερές. Ψ ( = c ϕ ( + d G (, f ( (47 Πράγματι. Έστω ότι η Ψ είναι ύση της LΨ ( = f(. Μπορώ να την αναύσω στη βάση που συγκροτούν οι ιδιοσυναρτήσεις του διαφορικού τεεστή: Ψ ( = d δ( Ψ ( = d ϕ ( Ψ( ϕ( αϕ ( Επομένως και άρα L Ψ ( = α ϕ ( f( = α ϕ ( dϕ ( f ( = α dϕ ( ϕ( = αδ = 0, Από την τεευταία προκύπτει αμέσως το πρώτο μέρος του θεωρήματος. Το δεύτερο θα προκύψει αν ξεκινήσουμε από την έκφραση (47 : LΨ ( = dl G (, f( = d δ( + ϕ( ϕ ( f( = f( 10
3 Ορισμένες παρατηρήσεις είναι εδώ χρήσιμες. Οι συντεεστές c που εμφανίζονται στην (47 δεν μπορούν να προσδιορισθούν. Εύκοα διαπιστώνει κανείς ότι αν στη θέση τους χρησιμοποιήσει κάποιους άους το αποτέεσμα θα είναι και πάι ύση του προβήματός του. Αυτό είναι αναμενόμενο αφού από την αρχή είπαμε ότι η ύση δεν είναι μοναδική. Η γενική μορφή που έχουν οι συντεεστές αυτοί βρίσκεται εύκοα : c = dϕ ( Ψ ( (48 Όπως και στην περίπτωση της συνήθους συνάρτησης Gree έτσι και εδώ μπορούμε να δείξουμε ότι LG (, δ( ϕ( ϕ = + ( (49 Πράγματι. Αν ξεκινήσουμε από την (47 μπορούμε να γράψουμε Ψ ( = c ϕ ( d G (, L Ψ ( = c ϕ ( d L G (, Ψ ( Η μόνη ύση της τεευταίας είναι, βέβαια, η (49. Σε μονοδιάστατα προβήματα η γενικευμένη συνάρτηση μπορεί να κατασκευαστεί όπως και η συνήθης αφού οι βασικές της ιδιότητες ( συνέχεια της συνάρτησης, ασυνέχεια της πρώτης παραγώγου δεν αάζουν. Αν γνωρίζουμε τη γενικευμένη συνάρτηση Gree μπορούμε να βρούμε τη ύση της ομογενούς εξίσωσης (5 (αν υπάρχει που συνοδεύεται από μη ομογενείς συνοριακές συνθήκες. Όπως και στη συνήθη περίπτωση θα γράψουμε : Ψ ( = d δ( Ψ ( = d L G (, + ϕ ( ϕ ( Ψ ( = = bϕ ( d LG (, Ψ0( (50 Στην τεευταία σχέση οι (αυθαίρετοι συντεεστές b έχουν τη γενική μορφή b = dϕ ( Ψ0(. Αν τώρα στο τεευταίο οοκήρωμα της εξ. (50 κάνουμε κατά παράγοντες οοκήρωση θα πάρουμε Ψ ( = 0 bϕ( + QS( dg (, L Ψ 0( = bϕ( + QS( (51 Όπως και στη συνήθη περίπτωση έτσι και εδώ οι επιφανειακοί όροι είναι γνωστοί όγω των συνοριακών συνθηκών. 11
4 Από την προηγούμενη συζήτηση είναι φανερό ότι αν επεκτείνουμε τον ορισμό της συνάρτησης Gree ώστε να συμπεριάβουμε και τη γενικευμένη, καταήγουμε στο συμπέρασμα ότι, σε τεευταία ανάυση, όταν η ύση στο πρόβημά μας υπάρχει μπορεί να εκφραστεί μέσω της συνάρτησης Gree. Όπως φαίνεται και από τη σχέση (43 ο ορισμός της γενικευμένης συνάρτησης Gree δεν είναι τίποτα άο παρά μια προσπάθεια διαχείρισης του προβήματος των μηδενικών ιδιοτιμών : Ένας τρόπος να ομαοποιήσουμε μια έκφραση η οποία χωρίς αυτή μας την παρέμβαση δεν θα είχε νόημα. Μπορεί κανείς να αναρωτηθεί αν αυτός είναι ο μόνος ( ή και ο καύτερος τρόπος. Το ζήτημα αυτό εμφανίζεται κυρίως όταν το φάσμα του διαφορικού τεεστή είναι συνεχές και θα το συζητήσουμε στα επόμενα εδάφια όπου θα αντιμετωπίσουμε συγκεκριμένα προβήματα αά μπορούμε να το θίξουμε και εδώ. Έστω οιπόν ότι το φάσμα του διαφορικού τεεστή είναι συνεχές L ϕ ( = ϕ ( και ότι υπάρχουν μηδενικές ιδιοτιμές που αντιστοιχούν σε μη μηδενικές ιδιοσυναρτήσεις, Η συνεχής γενίκευση της (43 είναι : ( ( G (, = P d ϕ ϕ (52 Στην προηγούμενη σχέση το σύμβοο P δηώνει την κύρια τιμή του οοκηρώματος που ακοουθεί. Η σχ. (52 είναι η συνεχής έκδοση της (43 στο βαθμό που αντιμετωπίζει το πρόβημα των μηδενικών ιδιοτιμών με τον ίδιο τρόπο : Αποφεύγει τους μηδενισμούς του παρονομαστή. Η ιδιαιτερότητα της συνεχούς έκδοσης της γενικευμένης συνάρτησης είναι ότι ικανοποιεί τη συνήθη εξίσωση Gree : L G (, = P dϕ ( ϕ ( = δ( (53 Αν χρησιμοποιήσουμε την ταυτότητα 1 1 P = lim ± iπδ ( ξ ξ ξ ± iε (54 η συνάρτηση (52 θα γραφεί ( ( G ϕ ϕ (, = lim d iπ dϕ( ϕ( δ( ± iε (55 12
5 Ο πρώτος όρος στο αριστερό σκέος της τεευταίας σχέσης ± G(, ϕ( ϕ( lim d (56 ± iε ορίζει δύο συναρτήσεις, εν γένει διαφορετικές μεταξύ τους, οι οποίες είναι ύσεις της εξίσωσης Gree L G (, = lim d ϕ ( ϕ ( = δ( (57 ± ± iε αά εν γένει είναι διαφορετικές από τη γενικευμένη συνάρτηση Gree G.Όπως θα δούμε στα επόμενα εδάφια οι συναρτήσεις αυτές έχουν ιδιαίτερο ενδιαφέρον όγω των συνοριακών συνθηκών που ικανοποιούν. Από μαθηματική πευρά όμως δεν είναι παρά ένας διαφορετικός και εξίσου αποδεκτός- τρόπος ομαοποίησης μιας αποκίνουσας έκφρασης : Οι ιδιοτιμές απέκτησαν ένα μικρό φανταστικό μέρος και έτσι δεν υπάρχει τιμή της (πραγματικής παραμέτρου που να μηδενίζει τον παρονομαστή. Μια τεευταία παρατήρηση. Ο δεύτερος όρος στο αριστερό σκέος της (52 Λ (, = iπ dϕ ( ϕ ( δ( (58 είναι ύση της ομογενούς εξίσωσης L Λ (, = iπ dϕ ( ϕ ( δ( = 0 και έτσι είναι προφανές ότι οι συναρτήσεις G και G ± γενικό τύπο (39 : συνδέονται μεταξύ τους με το G ± = G ±Λ (59 13
(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0
Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()
Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :
Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες
Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή) κυματική εξίσωση σε D χωρικές και 1 χρονική διάσταση :
Η Κυματική Εξίσωση. Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την (μη ομογενή κυματική εξίσωση σε χωρικές και 1 χρονική διάσταση : t ( Ψ (, rt = f(, rt (139 ( Εδώ είναι μια σταθερά με διαστάσεις ταχύτητας.
R 1. e 2r V = Gauss E + 1 R 2
: Γραμμική πυκνότητα φορτίου βρίσκεται στον άξονα αγώγιμου κυινδρικού φοιού εσωτερικής ακτίνας και εξωτερικής α) Να υποογιστεί η επαγόμενη πυκνότητα φορτίου στις δύο όψεις του φοιού, αν το συνοικό του
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες
z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι
στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ. 2. Χρησιμοποιώντας αποκλειστικά το προηγούμενο αποτέλεσμα να λύσετε το ( ) ( )
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΦΥΣΙΚΗΣ. Να λύσετε το πρόβλημα. l. Χρησιμοποιώντας αποκλειστικά το προηγούμενο αποτέλεσμα να λύσετε το πρόβλημα : f a l b 3. Βρείτε τη συνάρτηση η οποία ικανοποιεί την εξίσωση και
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα.
Μάθηµα 6 ο, Νοεµβρίου 8 (9:-:). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Πρόχειρο ιαγώνισµα: Νοεµβρίου 8 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης ώρα. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΕΤΟΣ ΣΠΟΥ ΩΝ: ΘΕΜΑ [4] Σωµάτιο εριγράφεται
ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΟΡΙΣΜΟΙ Δίνεται ο πίνακας Παρατηρήστε τι γίνεται όταν ποαπασιάζουμε τον Α με το διάνυσμα u u u παίρνουμε δηαδή ένα διάνυσμα ποαπάσιο του u. Η αναζήτηση διανυσμάτων που έχουν παρόμοια
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)
Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ
.3 Στάσιμο Κύμα.3 Στάσιμο κύμα.3.1 Μαθηματική Επεξεργασία Ας υποθέσουμε ότι έχουμε μία χορδή και σε αυτήν την χορδή διαδίδονται δύο πανομοιότυπα κύματα σε αντίθετες κατευθύνσεις. Δηαδή αν το δούμε από
ΠΕΠΕΡΑΣΜΕΝΕΣ ΙΑΦΟΡΕΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΙΑΦΟΡΩΝ
ΠΕΠΕΡΑΣΜΕΝΕΣ ΙΑΦΟΡΕΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΙΑΦΟΡΩΝ Α. Πεπερασµένες διαφορές Εστω δεδοµένος πραγµατικός αριθµός. Για τυχούσα συνάρτηση f = f() ορίζουµε ως διαφορά (πρώτης τάξης) της f() την συνάρτηση f µε f() =
Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση:
ΜΑΘΗΜΑ : Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE. Εισαγωγή Ο µετασχηµατισµός pl και ο µετασχηµατισµός Z είναι δύο πού χρήσιµα µαθηµατικά εργαεία για την ανάυση και σχεδίαση συστηµάτων αυτοµάτου και ιδιαίτερα ΓΧΑ Γραµµικών
και Y εάν και 4. Να βρεθούν οι κατανομές των υπό συνθήκη τ.μ. [ Y Y ] και [ ] p x x p x p x Po x Po x e
Παράδειγμα Οι τμ μεταβητές X παραμέτρους X είναι ανεξάρτητες κατανέμονται σαν Posso με Να βρεθεί οι από κοινού κατανομή των X X Ποία η από κοινού των τμ Y Y εάν Y Y T X X X + X X Βρείτε τις περιθώριες
Εξίσωση Laplace Θεωρήματα Μοναδικότητας
Εξίσωση Laplace Θεωρήματα Μοναδικότητας Δομή Διάλεξης Εξίσωση Laplace πλεονεκτήματα μεθόδου επίλυσης της για εύρεση ηλεκτρικού δυναμικού Ιδιότητες λύσεων εξίσωσης Laplace σε 1, 2 και 3 διαστάσεις Θεώρημα
και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών.
Στις δύο διαστάσεις αφετηρία είναι η σχέση r + r r r A r + q r q Grr (, = ln ln L L (6 από την οποία μπορούμε να προσδιορίσουμε ότι και επομένως R R q = r, L r = L και A = r (7 r + r r r Grr (, = ln rr
1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς
Διονύσης Μητρόπουος Άνοδος κάθοδος κυιόμενου αρχικά σώματος σε κεκιμένο επίπεδο, με ή χωρίς οίσθηση ΕΚΦΩΝΗΣΗ Ένα «στρογγυό» σώμα έχει μάζα m, ακτίνα R και ροπή αδράνειας Ι cm m R². Οι τιμές του είναι ⅖
Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]
c Σειρές Fourier-Μετασχηματισμός Fourier Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( ) [ ] για την οποία ξέρουμε ότι f() = f( ) =. Μια τέτοια συνάρτηση μπορούμε πάντα να τη γράψουμε : π f( ) = A
ενώ θεωρήσαμε το διάνυσμα R στην κατεύθυνση του άξονα z. + = + (172) Έτσι οι συναρτήσεις Green παίρνουν την τελική τους μορφή :
Σε τρεις χρικές διαστάσεις θα έχουμε K( r, r ; t t dpp si( pτ dθ siθ exp( ip os θ π dp si( pτ si( p (171 Όπς και στο προηγούμενο κεφάλαιο (εξ. (8 έτσι και εδώ μεταγράψαμε την ολοκλήρση σε σφαιρικές συντεταγμένες,
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής
0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ
x είναι f 1 f 0 f κ λ
3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία
Κεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
Επώνυμο: Όνομα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 94 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.syghrono.gr Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ --7 ΕΝΔΕΙΚΤΙΚΕΣ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ., 1 i n, με σταθερό όρο b F και συντελεστές a i
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Γραμμικά συστήματα Μία εξίσωση της μορφής K () καείται γραμμική εξίσωση μεταητών i i με σταθερό όρο F και συντεεστές i F όπου το F θα είναι το σώμα των πραγματικών ή μιγαδικών αριθμών
, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!
Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του
3. Χαρακτηριστικές Παράμετροι Κατανομών
. Χαρακτηριστικές Παράμετροι Κατανομών - Αναμενόμενη ή μέση τιμή μιας διακριτής τυχαίας μεταβητής. Θα ήταν αρκετά χρήσιμο να γνωρίζουμε γύρω από ποια τιμή «κυμαίνεται» η τ.μ. Χ. γύρω από την οποία «απώνεται»
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου
14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές
e είναι ακέραια ρίζα του Ρ(χ), να βρεθούν
Σύογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίη Ξανθόπουου Μαθηµατικά : Τάξη: Β ράµα 30 Μαρτίου 01 Θέµα Α ίνεται το πουώνυµο P ( x) = x κ x+ κ κ: θετικός ακέραιος. Α 1. Να βρεθούν
Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).
Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε
ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73
ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται
3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
0 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω E διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A E. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική
Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.
Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο
3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
20 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει ότι
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών ΜΕΜ 74 Λύσεις Θεμάτων Εξέτασης Ιούνη 9 Ζήτημα Α Α. Δείξτε ότι αν p, q πραγματιϰά πολυώνυμα ίδιου βαϑμού, τότε p q ϰαϑώς ±. Λύση. Αρϰεί να δείξουμε ότι για με αρϰετά μεγάλο
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ακαδημαϊκό έτος Λύσεις για την Προαιρετική Εργασία
Τεχνικές Εκτίμησης Υποογιστικών Συστημάτων Ακαδημαϊκό έτος 2016-17 Λύσεις για την Προαιρετική Εργασία Φεβρουάριος 2017 Πρόβημα 1 Δίνεται το παρακάτω μητρώο με τις πιθανότητες μετάβασης μιας Μαρκοβιανής
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας
Διπλωματική Εργασία. Εφαρμοσμένη Θεωρία Πινάκων
Πανεπιστήμιο Μακεδονίας Τ.Ε.Ι. Δυτικής Μακεδονίας Π.Μ.Σ Εφαρμοσμένης Πηροφορικής Διπωματική Εργασία Θέμα Εφαρμοσμένη Θεωρία Πινάκων Επιβέπον Καθηγητής Πετράκης Ανδρέας Μεταπτυχιακός Φοιτητής Τσαγκαρή Αθηνά
Με αφορμή την άσκηση 2.47
Με αφορμή την άσκηση 2.47 Σε κάποιο σημείο ενός ομογενούς εαστικού μέσου βρίσκεται μία πηγή Π παραγωγής εγκαρσίων κυμάτων d με εξίσωση y=a ημ(ωt). Στο σημείο Σ βρίσκεται δέκτης κυμάτων που απέχει απόσταση
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ΑΡΙΘΜΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΑΛΓΕΒΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΘΕΜΑ A A. Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () >. Έστω, με. Θα δείξουμε ότι f ( ) f ( ). Πράγματι, στο διάστημα [, ] η f ικανοοιεί
Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)
Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη
Κινητικότητα στα στάσιμα ή μαντεύω και επαληθεύω
Κινητικότητα στα στάσιμα ή μαντεύω και επαηθεύω Αντί να προσθέσω κάποιες ασκήσεις μαζί με τις εκατοντάδες των ασκήσεων που μέχρι τώρα έχετε δει, προτιμώ να δούμε μαζί μια μικρή μεέτη στις διάφορες μορφές
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A στω µια συν ρτηση f, η οποία είναι ορισµ νη σε ένα κειστό δι στηµα [α, β] Αν: η f είναι συνεχής στο [α, β] και fα fβ δείξτε ότι για κάθε
Λύσεις Προαιρετικής Eργασίας Τεχνικές Εκτίμησης
Λύσεις Προαιρετικής Eργασίας Τεχνικές Εκτίμησης 2010-2011 kolako@ced.upatras.gr 10 Μαρτίου 2011 Πρόβημα 1 Ερώτημα ) Έστω W S και W B ο μέσος χρόνος αναμονής στην ουρά του σταθμού S και B αντίστοιχα. Λαμβάνοντας
όπου α (β) = η αναλογία των μη εμπορεύσιμων αγαθών στο συνολικό εγχώριο (ξένο) δείκτη τιμών.
Κεφάαιο 6 ο : Προσδιορισμός πραγματικής ισοτιμίας Εισαγωγή Η ανάυση στα προηγούμενα κεφάαια αναφερόταν στους προσδιοριστικούς παράγοντες της ονομαστικής συνααγματικής ισοτιμίας. Στο παρόν κεφάαιο θα ασχοηθούμε
Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
Δομή Διάλεξης. Εύρεση επαγόμενων επιφανειακών φορτίων. Εύρεση δύναμης που ασκείται στο πραγματικό φορτίο και αποθηκευμένης ηλεκτροστατικής ενέργειας.
Μέθοδος Ειδώλων Δομή Διάλεξης 1 ο παράδειγμα εφαρμογής μεθόδου ειδώλων για εύρεση δυναμικού με δεδομένες οριακές συνθήκες και ύπαρξη συμμετρίας: Φορτίο πάνω από άπειρο επίπεδο αγωγό. Εύρεση επαγόμενων
Ο πρώτος από τους όρους της παραπάνω εξίσωσης, τον οποίο θα σημειώνουμε, μπορεί να απλοποιηθεί αν παρατηρήσουμε ότι τόσο η G
Προβλήματα με μη ομογενείς συνοριακές συνθήκες. Όταν το πρόβλημά μας συνοδεύεται από μη ομογενείς συνοριακές συνθήκες, είτε αυτές αφορούν στο χώρο είτε στο χρόνο, θα πρέπει να βρούμε τη λύση της ομογενούς
Αρµονική Ανάλυση. Ενότητα: Ο µετασχηµατισµός Hilbert στον L p (T) Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Ο µετασχηµατισµός Hilbert στον L () Απόστοος Γιαννόπουος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υικό, όπως εικόνες,
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από
Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΥ ΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ Σηµειώσεις Μη Γραµµικού Προγραµµατισµού Β Κούτρας ΧΙΟΣ Β Κούτρας ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΙΣΜΟΣ ΕΙΣΑΓΩΓΗ Στο κοµµάτι αυτό
ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου
Σύλλογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Μαθηµατικά : Τάξη: Γ ράµα Απριλίου Θέµα ο ίνεται η συνάρτηση :, δύο φορές παραγωγίσιµη για την οποία ισχύει: ) )
Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο
Ηλεκτρικό Δυναμικό Δομή Διάλεξης Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ιδιότητες ηλεκτρικού δυναμικού (χρησιμότητα σε υπολογισμούς, σημείο αναφοράς, αρχή υπέρθεσης) Διαφορικές
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΤΩΝ q-κατανομων
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ & ΣΥΓΧΡΟΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΤΩΝ q-κατανομων ΔΙΠΛΩΜΑΤΙΚΗ
Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε
ΟΙ Ι ΙΟΚΑΤΑΣΤΑΣΕΙΣ ΤΟΥ ΤΕΛΕΣΤΗ ΚΑΤΑΣΤΡΟΦΗΣ ΩΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΥΝΟΧΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (COHERENT STATES) ΤΟΥ ΑΡΜΟΝΙΚΟΥ ΤΑΛΑΝΤΩΤΗ Στην προηγούµενη ανάρτηση, δείξαµε ότι στην αναπαράσταση
ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014
ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο
[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)
[] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων
Τρίτη, 31 Μαΐου 2005 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Τρίτη, Μαΐου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κειστό διάστηµα [α, β]. Αν η f είναι συνεχής στο [α, β] και f(α) f(β)
Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
Αρμονικός Ταλαντωτής
Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία
Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x)
Τμήμα Π Ιωάννου & Θ Αποστολάτου 7/5/000 Μηχανική ΙI Μετασχηματισμοί Legendre Έστω μια πραγματική συνάρτηση f (x) Ορίζουμε την παράγωγο συνάρτηση df (x) της f (x) : ( x) (η γραφική της παράσταση δίνεται
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις
Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)
Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε
4. Όρια ανάλυσης οπτικών οργάνων
4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ
0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x
wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Θέμα Α ΑΈστω μια συνάρτηση
ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)
1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της
Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015
Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 5 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ (ΚΑΙ ΕΠΑ.Λ. ΟΜΑΔΑ Β ) ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ
V. Διαφορικός Λογισμός. math-gr
V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),
Πανελλαδικές Εξετάσεις 8 Μαθηματικά Προσανατολισμού /6/8 ΘΕΜΑ Α Προτεινόμενες λύσεις Α Αφού η f είναι παραγωγίσιμη στο σημείο του πεδίου ορισμού της, ισχύει ότι: Για κάθε έχουμε: Επομένως ισχύει ότι: Δηλαδή:
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση