e είναι ακέραια ρίζα του Ρ(χ), να βρεθούν
|
|
- Ισοκράτης Κοντολέων
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Σύογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίη Ξανθόπουου Μαθηµατικά : Τάξη: Β ράµα 30 Μαρτίου 01 Θέµα Α ίνεται το πουώνυµο P ( x) = x κ x+ κ κ: θετικός ακέραιος. Α 1. Να βρεθούν οι τιµές του κ ώστε το Ρ(χ) να έχει µία τουάχιστον ακέραια ρίζα. Α. Αν το Ρ(χ) έχει µία ακέραια ρίζα, να δείξετε ότι δεν µπορεί να είναι διπή. Α 3. Αν ο αριθµός οι γωνίες φ και θ. ηµ φ+ e είναι ακέραια ρίζα του Ρ(χ), να βρεθούν Θέµα Β Θεωρούµε τα σηµεία Α(0,), Β(,0) και τις προβοές Α 1, Β 1 των Α, Β αντίστοιχα, στην µεταβητή ευθεία ε που περνά από την αρχή των αξόνων. Β 1. Να βρεθεί ο γεωµετρικός τόπος των µέσων των ευθυγράµµων τµηµάτων Α 1 Β 1. Β. Να αποδείξετε ότι οι κύκοι µε διάµετρο το τµήµα Α 1 Β 1, διέρχονται από ένα σταθερό σηµείο. 1
2 Σύογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίη Ξανθόπουου ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ : Τάξη: B ράµα 30 Μαρτίου 01 Α 1. Αν ρ είναι ρίζα του Ρ(χ), τότε Ρ(ρ) = 0. ρ κ ρ+ κ = 0 κ(1 ρ ) = ρ = 0 ρ = κ. Από ευκείδια διαίρεση ρ : ρ 1 προκύπτει 3 ρ ( )( ρ + ρ + ρ+ 1) κ = = = ρ + ρ + ρ+. 1 Επειδή κ είναι θετικός ακέραιος θα πρέπει Z. ηαδή το ρ 1 πρέπει να διαρεί το -1. Άρα ρ = ή ρ = 0. Για ρ =, κ = 1 και για ρ = 0, κ =. Α. Αν ρ είναι διπή ακέραια ρίζα τότε Ρ(χ) = (χ ρ) Q(χ) µε Q(χ) να είναι της µορφής χ + βχ + γ. Τότε: Ρ(χ) = (χ ρχ + ρ )( χ + βχ + γ) για κάθε χ R. Ρ(χ) = χ + βχ 3 + γχ ρχ 3 ρβχ ργχ + ρ χ + ρ βχ + ρ γ Ρ(χ) = χ + (β ρ)χ 3 + (γ ρβ + ρ )χ + (-ργ + ρ β)χ + ρ γ. Άρα θα πρέπει: β ρ = 0 β = ρ γ ρβ + ρ = 0 γ = 3ρ -ργ + ρ β = -κ -ρ3ρ + ρ ρ = - κ ρ 3 = κ ρ γ = κ ρ 3ρ = κ 3ρ = ρ 3 3ρ ρ 3 + = 0 το οποίο δεν έχει ακέραια ρίζα. ος τρόπος Για κ = 1 Ρ(χ) = (χ )(χ 3 + χ + χ 6) και το δεν είναι ρίζα του χ 3 +χ +χ 6. Για κ = Ρ(χ) = χ χ = χ(χ 3 ) µε το µηδέν µοναδική ακέραια ρίζα. Α 3. Αν κ = τότε 0 µοναδική ακέραια ρίζα. Όµως Άρα θα πρέπει κ = 1 και ακέραια ρίζα το. ηµ φ+ θ Άρα συν = ηµ φ+ e 0. e ηµ φ+ e = 1 ηµ φ+ = 0 Τεικά φ = π και θ = κπ + π µε κ, Z.
3 Β 1. Αν η ευθεία είναι παράηη στον ψ ψ τότε θα έχει εξίσωση χ=0 και θα έχουµε Α Α 1 και Β 1 Ο οπότε το µέσο του τµήµατος Α 1 Β 1 θα είναι το µέσο Ν(0,1) του ΟΑ. Αν η ευθεία ε είναι παράηη στον χ χ, τότε θα έχει εξίσωση ψ=0 και θα έχουµε Β Β 1, Α 1 Ο,εποµένως το µέσο του Α 1 Β 1 θα είναι το µέσο Λ(1,0) του ΟΒ. Σε κάθε άη περίπτωση η ευθεία ε θα έχει τη µορφή ψ=χ (1) µε R *. Οι ευθείες ΑΑ 1 και ΒΒ 1 έχουν συντεεστή διεύθυνσης τους θα είναι και οι εξισώσεις ΑΑ 1 : () ΒΒ 1 : (3) Λύνοντας τα συστήµατα των (1), (3) έχουµε άρα: 1 = x+ x = x και ψ = Άρα Β 1 (, ) Οµοίως βρίσκουµε ύνοντας το σύστηµα των (1),() ότι Α 1 ( + 1 ( + 1) Το µέσο Μ του Α 1 Β 1 είναι Μ, + 1, ) Θέτουµε χ= και ψ= τότε ψ=χ οπότε για χ 0 θα έχουµε () Η () παριστάνει κύκο κέντρου 1 1 Κ, και ακτίνας ρ=. 3
4 Τα σηµεία Ν, Λ ανήκουν επίσης στον κύκο (Κ.ρ). Αντιστρόφως αν Μ (χ,ψ) τυχαίο σηµείο του παραπάνω κύκου όπου ψ Μ Ν,Λ,Ο. θέτοντας =, και προβάοντας τα Α, Β στην ευθεία x ΟΜ το Μ θα είναι το µέσο του τµήµατος Α 1 Β 1 όγω της (). Τα Ν, Λ είναι µέσα των προβοών των Α,Β πάνω στις ευθείες ψ ψ και χ χ, ενώ το Ο είναι µέσο των προβοών των Α,Β στην ευθεία ψ=-χ. Β. Ο κύκος διαµέτρου Α 1 Β 1 έχει εξίσωση όπου R (*) Για =0 έχουµε τον κύκο (χ-1) +ψ =1 (5) για =-1 έχουµε τον κύκο χ +ψ = (6) Η ύση του συστήµατος των (5),(6) δίνει (χ,ψ)=(1,1) ή (χ,ψ)=(1,-1). Από τα παραπάνω σηµεία εύκοα επαηθεύουµε ότι µόνο το (1,1) ικανοποιεί την εξίσωση (*) για κάθε R. Έτσι όοι οι κύκοι διαµέτρου Α 1 Β 1 διέρχονται από το σταθερό σηµείο (1,1) το οποίο είναι το ίχνος της προβοής του Ο πάνω στην ΑΒ (και ταυτόχρονα στην προκειµένη περίπτωση το µέσο του τµήµατος ΑΒ). Β τρόπος Β 1. Το τετράπευρο ΑΑ 1 ΒΒ 1 είναι τραπέζιο αφού ΑΑ 1 // ΒΒ 1. Αν Η το µέσο του ΑΒ τότε ΗΜ // ΑΑ 1 εποµένως ΗΜ Α 1 Β 1. ηαδή το σταθερό τµήµα
5 ΟΗ φαίνεται από το σηµείο Μ υπό ορθή γωνία, άρα το Μ ανήκει σε κύκο διαµέτρου ΟΗ=ΝΛ. Τα µέσα Ν, Λ, Η των ΟΑ, ΟΒ, ΑΒ είναι σηµεία του ζητούµενου γ.τ. και ανήκουν επίσης στον παραπάνω κύκο. ( ως ειδικές περιπτώσεις όπου η ευθεία ε ταυτίζεται τον ψ ψ, χ χ και την ευθεία ΟΗ). Το σηµείο Ο επίσης είναι σηµείο του γ.τ. (περίπτωση όπου ε // ΑΒ ) και ανήκει στον παραπάνω κύκο. Αντίστροφα, αν Μ είναι τυχαίο σηµείο του κύκου διαµέτρου ΟΗ, διαφορετικό από τα Ο,Ν (τα οποία όπως επισηµάναµε είναι σηµεία του γ.τ) θεωρώντας την ευθεία ΟΜ και προβάοντας τα Α,Β πάνω σ αυτήν δεδοµένου ότι ΗΜ Α 1 Β 1 θα είναι ΗΜ // ΑΑ 1 οπότε η ΗΜ θα διέρχεται από το µέσο του τµήµατος Α 1 Β 1. Β. Αν ΟΗ ΑΒ θα δείξουµε ότι το σηµείο Η ανήκει πάντοτε στους κύκους διαµέτρου Α 1 Β 1. Το τετράπευρο ΑΗΑ 1 Ο είναι εγγράψιµο γιατί το ΟΑ φαίνεται υπό ορθή γωνία από τα σηµεία Α 1 και Η. Θα έχουµε οιπόν. Επίσης το τετράπευρο ΟΗΒ 1 Β είναι εγγράψιµο αφού το ΟΒ φαίνεται υπό ορθή γωνία από τα Η και Β 1. Έτσι. Έτσι Ο Α1 ΗΒ1 = 90 δηαδή το Η ανήκει στον κύκο διαµέτρου Α 1 Β 1. Αν υπήρχε και δεύτερο σταθερό σηµείο Η τότε το κέντρο Μ θα βρισκόταν στην σταθερή µεσοκάθετο του ευθυγράµµου τµήµατος ΗΗ πράγµα αδύνατο αφού ο γεωµετρικός τόπος των σηµείων Μ είναι κύκος. 5
α,+ ) R, µε f(α) > 0 για την [ ] R µε f(0) = 2012, η οποία έχει x +
Σύογος Θετικών Επιστόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίη Ξανθόπουου Μαθατικά : Τάξη: Γ ράµα Μαρτίου Θέµα ο : α, R, µε α > για την συν για κάθε α, Έστω η παραγωγίσιµη συνάρτηση οποία ισχύει
2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας
. Ασκήσεις σχοικού βιβίου σείδας 69 7 A Oµάδας. Να αποδείξτε ότι, για κάθε πραγµατική τιµή του µ η εξίσωση (µ ) + µ + µ παριστάνει ευθεία γραµµή. Πότε η ευθεία αυτή είναι παράηη προς τον άξονα, πότε προς
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η υπερβολή x y. Να βρείτε Tις ασύµπτωτες και την εκκεντρότητα της υπερβολής. i Tις εφαπτόµενες της υπερβολής που είναι παράλληλες στην ευθεία (ε) : x + y + 0 ii Tο εµβαδόν
11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο
Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)
3. Η ΠΑΡΑΒΟΛΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ). Εξίσωση παραβολής p, όπου
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και
= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.
Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)
ΕΠΙΜΕΛΕΙΑ : ΒΑΣΙΛΗΣ ΚΡΑΝΙΑΣ - ΒΑΣΙΛΟΠΟΥΛΟΣ ΔΗΜΗΤΡΗΣ. Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει 2, 2
Άσκηση 1 η Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει,, 1 και 4 5 0. i. Να δείξετε ότι τα σημεία Α,Β,Γ είναι συνευθειακά. ii. iii. Να υπολογίσετε την τιμή της παράστασης Να βρεθεί το
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας ( )
1.1 σκήσεις σχοικού βιβίου σείδας 64 65 Οµάδας 1. Να βρείτε το συντεεστή διεύθυνσης : i) Tης ευθείας, η οποία διέρχεται από τα σηµεία ( 1, 4) και (1, 6) ii) Tης ευθείας, η οποία τέµνει τους άξονες στα
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.
Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο site του φροντιστηρίου. 5ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ
3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας
3. Ασκήσεις σχολικού βιβλίου σελίδας 87 89 Οµάδας. Να βρείτε την εξίσωση του κύκλου µε κέντρο την αρχή των αξόνων σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν διέρχεται από το σηµείο Α(, 3 ) (ii)
2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : 1 + i, 1 i, 3 + 4i, 3 4i, 5i, 4, 1 i, 1 i.
.3 Ασκήσεις σχολικού βιβλίου σελίδας 00-0 A Οµάδας. Να βρείτε τα µέτρα των µιγαδικών : +,, 3 +, 3, 5,, ( ) ( + ), ( ) ( + ), και +, 3+ 3 + + + ( ) 3+ 3 3 + 5 5 3 + ( ) 5 5 5 5 5. 5 + + (οι +, είναι συζυγείς,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή
1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον
4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 1. Έστω τα διανύσµατα u = ( 6, 8) και v = (9, 1) είξτε ότι είναι αντίρροπα Να βρείτε την εξίσωση της έλλειψης που έχει ηµιάξονες τα µέτρα των διανυσµάτων, κέντρο την αρχή
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A στω µια συν ρτηση f, η οποία είναι ορισµ νη σε ένα κειστό δι στηµα [α, β] Αν: η f είναι συνεχής στο [α, β] και fα fβ δείξτε ότι για κάθε
ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α ίνονται τα διανύσµατα α και β, τα οποία δεν είναι παράλληλα προς τον άξονα y y και έχουν συντελεστές διεύθυνσης λ και λ αντίστοιχα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε.
Β ΛΥΚΕΙΟΥ ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) Του Κώστα Βακαλόπουλου Στο άρθρο που ακολουθεί παραθέτουμε μια σειρά από ασκήσεις στις οποίες συνυπάρχουν άλλοτε αρμονικά και άλλοτε ανταγωνιστικά οι δύο βασικές
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1o Α. Αν α, ν είναι δύο διανύσµατα του επιπέδου µε α 0 και η προβολή του ν στο α συµβολίζεται µε προβ α ν, τότε
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες
ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,
Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από
( ) ( ) ( ) ( ) ( ) ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Εηνική Μαθηματική Ουμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, ΦΕΒΡΟΥΑΡΙΟΥ 009 ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ Θέματα μεγάων τάξεων ΠΡΟΒΛΗΜΑ Να προσδιορίσετε τις τιμές του θετικού ακέραιου 9n Α n 7 είναι
Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο
Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β
ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 41. Να αποδείξετε ότι ηµx συνx + συνx ηµx γ) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 συνx 1+ ηµx ( 1 + εφx) 1 + 1 εφ x συν x 1 1+ εφ x ηµx συνx ηµ x συν x + + συνx ηµx συνxηµx συνx 1+ ηµx ( 1 + εφx) συνx 1+
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο
= u u I, ως διαφορά συζυγών. z + 2. i) R. Λύση: α τρόπος. + z z = . Άρα. x 2 +y 2 +x-2=0. , ως. i) Re(z 2 )= -4, ii) Im(z 2 )=2, iii) Re(1+z 2 )=0.
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ) Υπολογίστε τους µιγαδικούς, των οποίων το τετράγωνο ισούται µε: α) 6 β) - γ) -7 δ) - ε) α) 6 ± 6 β) - ± ± γ) -7() -7-7 7 0-7 ± ± ±± δ) -() - - - ± m ± m ±m 0 ε) () - ±± 0 0 ) Εάν, µιγαδικοί,
3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου
3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων
ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου
Σύλλογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Μαθηµατικά : Τάξη: Γ ράµα Απριλίου Θέµα ο ίνεται η συνάρτηση :, δύο φορές παραγωγίσιµη για την οποία ισχύει: ) )
1 ο ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Ευθεία (10 θέµατα δυναµικής αντιµετώπισης) Θέµα 1 Από σηµείο Α του άξονα x x φέρνουµε ευθεία (ε 1
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Ευθεία (10 θέµατα δυναµικής αντιµετώπισης) Θέµα 1 Από σηµείο Α του άξονα x x φέρνουµε ευθεία (ε 1 ) παράλληλη στην ευθεία (ε): 1 y= x και την (ε 2 ) παράλληλη στον άξονα
y 2 =2px με εστία Ε(p/2, 0) και διευθετούσα δ: x=-p/2.
ΠΑΡΑΒΟΛΗ P Α δ (διευθετούσα) C (παραβολή) Μ (ΜΕ)=(ΜΡ) Κ Ε (εστία) Ορισμός: Παραβολή λέγεται ο γεωμ. τόπος των σημείων Μ του επιπέδου που ισαπέχουν από ένα σημείο Ε (Εστία) και μία ευθεία δ(διευθετούσα)
ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ
Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».
Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001
Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:
Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ
2 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. ίνεται ο κύκλος x + y = 5 και οι εφαπτόµενες σ αυτόν από το σηµείο Μ(0, 0). Αν Α και Β είναι τα σηµεία επαφής, να βρείτε Τις εξισώσεις των εφαπτόµενων Τις συντεταγµένες των
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 5 Α Θεωρία Σχολικό Βιβλίο (έκδοση
Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10
7 ο Γενικό Λύκειο Περιστερίου ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΗΜΕΡΟΜΗΝΙΑ:
ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα
Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του κύκλου c: x + y = ρ στο σημείο του
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε
ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ. 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0
ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΥΚΛΟ 1. Να βρεθεί η εξίσωση του κύκλου που περνά από τα σηµεία Α(2,0) και Β(0,0) και έχει το κέντρο του στην ευθεία 2x-3y=0 2. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σηµείο Κ(1,2)
ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία
ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα
Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.
Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία
( ) ( ) ( ) ( ) ( ) ( )
ΕΠΙΤΡΟΠΗ ΔΙΓΩΝΙΣΜΩΝ η Εηνική Μαθηματική Ουμπιάδα "Ο ρχιμήδης" ΣΒΒΤΟ, ΦΕΒΡΟΥΡΙΟΥ 9 ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΤΩΝ Θέματα μεγάων τάξεων ΠΡΟΒΛΗΜ Να προσδιορίσετε τις τιμές του θετικού ακέραιου 9n n 7 είναι ρητός n
ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός
ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε
Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: 01/03/2015. Θέμα Β. Θέμα Α. Α 1. Σχολικό Βιβλίο σελίδα 73.
Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: /3/5 Θέμα Α Α. Σχολικό Βιβλίο σελίδα 73. Α.. Σχολικό Βιβλίο σελίδα 84. Α 3. i --> Σ, ii --> Σ, iii --> Λ, iv --> Λ, v --> Σ Θέμα
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΝ ΚΑΘΗΓΗΤΗ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orionidf.gr ΘΕΜΑ Α Α. Απόδειξη
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες
x - 1, x < 1 f(x) = x - x + 3, x
Σελίδα από 4 ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΗΣΙΜΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Του Αντώνη Κυριακόπουλου Εισαγωγή Στην εργασία αυτή παραθέτω χρήσιµες επισηµάνσεις στις βασικές έννοιες των πραγµατικών συναρτήσεων
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Τρίτη, 31 Μαΐου 2005 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Τρίτη, Μαΐου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κειστό διάστηµα [α, β]. Αν η f είναι συνεχής στο [α, β] και f(α) f(β)
( ) ( ) ΠΑΡΑΒΟΛΗ ΘΕΜΑΤΑ ΑΠΑΝΤΗΣΕΙΣ Π. Δρακουλάκος. 1. Αφού η C έχει άξονα τον x x, η εξίσωση της είναι της μορφής y = 2ρx, ρ Εύρεση του ρ.
ΠΑΑΟΛΗ ΘΕΑΤΑ ΑΠΑΝΤΗΣΕΙΣ Π Δρακουλάκος Αφού η C έχει άξονα τον, η εξίσωση της είναι της μορφής = ρ, ρ Εύρεση του ρ ος τρόπος: Αφού η = ρ, = +, = ρ και η = + εφάπτονται, το σύστημα έχει μία διπλή λύση =
Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x
φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα
1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα
ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1
1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.
ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α
ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α Όχι βιαστικά, όχι αργά. Στο ρυθµό σου.. Έστω συνάρτηση f ορισµένη στο R µε συνεχή δεύτερη παράγωγο που ικανοποιεί τις σχέσεις f() f () και f ()f() + (f ()) f()f ()
Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΣΥΝΕΙΡΜΟΣ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 4 Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α.. Βιβλίο, 3. παράγραφος Α.. α. Σ β. Λ γ. Λ δ. Σ ε. Λ Α.3. α.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()
Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x
. Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής
άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w
ΘΕΜΑ ο Α.. Θεωρία Σχολ. σελ. 5 Α.. Θεωρία Σχολ. σελ. 9 Β. α) Σ γ) Λ β) Σ δ) Λ ΘΕΜΑ ο ε) Σ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΜΑΪΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
( )( ) ( )( ) Βασικές γνώσεις A 2
Βασικές γνώσεις Ευθεία που τέµνει τους άξονες : yλx+β. Ευθεία που διέρχεται από την αρχή των αξόνων : yλx. Ευθεία παράλληλη στον άξονα x x και τέµνει τον y y στο (0, y 0 ) : y y0. Ευθεία παράλληλη στον
Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)
. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)
ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0
ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x
ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΓΕΩΜΕΤΡΙΚΙ ΤΠΙ ΚΑΙ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ ΒΑΣΙΚΕΣ ΕΝΝΙΕΣ ΣΥΝΤΜΗ ΕΠΑΝΑΛΗΨΗ ΑΠΣΤΑΣΗ ΣΗΜΕΙΥ Α( 1, y 1 ΑΠ ΤΗΝ ΑΡΧΗ (0, 0 των αξόνων: (A = + y 1 1 Αν έχουμε τον μιγαδικό αριθμό 1 = 1 + i y 1 με εικόνα στο μιγαδικό
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.
2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ A ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΩΝΗΣΕΙΣ Α. α) Έστω η συνάρτηση f ( ) = µε R και p.να αποδείξετε ότι η f είναι παραγωγίσιµη στο R και ισχύει f '( ) = ln. β) Έστω οι συναρτήσεις f,
Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος
Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =
ΚΥΚΛΟΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΞΑΣΚΗΣΗ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ. 2. Έστω Κ (α, β) το κέντρο και ρ η ακτίνα του ζητούμενου κύκλου C. οπότε:
ΚΥΚΛΟΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΞΑΣΚΗΣΗ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ 1. Έστω Κ (α, β) το κέντρο και ρ η ακτίνα του ζητούμενου κύκλου C. Έχω: d(k, ε 1 ) = d(k, ε ) = (ΟΚ) = ρ α =, β =, ρ = α =, β =, ρ = οπότε: C 1 : (x
( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)
Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον
Ερωτήσεις σωστού-λάθους
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο
1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του
Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ
1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης Τετάρτη, 9 Μα ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, τότε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη
5 η δεκάδα θεµάτων επανάληψης
5 η δεκάδα θεµάτων επανάληψης 41. α + 1 Έστω η συνάρτηση f() = ( 3 ), α 1 Αν το σηµείο Μ( 1, 3) βρίσκεται στην γραφική παράσταση της f να βρείτε το α ii ) Αν α = 0 να λύσετε την ανίσωση f() + f(2) > 2