ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη
|
|
- Βηθανία Ερατώ Κρεστενίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 1/ 26
2 Αντιστοιχία µε ϐιβλιογραφία Cioffi: Barry, Lee & Messerschmitt (3rd ed.): Proakis & Salehi, Communication Systems Engineering (2nd ed.): 7.1, ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 2/ 26
3 Περιεχόµενα σηµερινού µαθήµατος 1 Αποδιαµόρφωση και αποκωδικοποίηση παρουσία ϑορύβου (συνέχεια) 2 ιανυσµατικό µοντέλο καναλιού AWGN ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 3/ 26
4 Ανίχνευση µε χρήση διανυσµάτων Στην πράξη, η λαµβανόµενη κυµατοµορφή y(t) στο δέκτη δεν ισούται µε την κυµατοµορφή x i (t), i = 1,..., M που µεταδίδεται από τον ποµπό (λόγω ϑορύβου και καναλιού). Σκοπός της ανίχνευσης είναι να ϐρεθεί ποια κυµατοµορφή x i (t) (και άρα ποιο διάνυσµα x i ή, ισοδύναµα, ποιο µήνυµα m i ) έστειλε ο δέκτης. Για την ανάλυση της ανίχνευσης ϑα δουλέψουµε µε διανύσµατα. Θα ϑεωρήσουµε, δηλαδή, ότι, µε χρήση προσαρµοσµένου ϕίλτρου N κλάδων, η κυµατοµορφή y(t) έχει αναλυθεί (αποδιαµορφωθεί) σε συνιστώσες y 1, y 2,..., y N. Εποµένως, το πρόβληµα είναι το εξής: εδοµένου του ληφθέντος διανύσµατος y = [y 1, y 2,..., y N ] να ϐρεθεί το µεταδοθέν διάνυσµα x i. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 4/ 26
5 Ανίχνευση µε χρήση διανυσµάτων (2) Για την ανάλυση και τη σχεδίαση του ανιχνευτή χρησιµοποιούµε το διανυσµατικό µοντέλο καναλιού του σχήµατος. Η p Y X (y x) χαρακτηρίζει πλήρως το διακριτό κανάλι. Εξαρτάται από το κανάλι, από το ϑόρυβο, από τις κυµατοµορφές που χρησιµοποιούνται για τη διαµόρφωση και από τη σχεδίαση του συστήµατος. Θα ϑεωρήσουµε, προς το παρόν, ότι γνωρίζουµε την p Y X (y x). Αργότερα ϑα δούµε παραδείγµατα συστηµάτων και υπολογισµού της p Y X (y x). ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 5/ 26
6 Ανίχνευση µε χρήση διανυσµάτων (3) x y x=g(y) ^ p Y X Εκτιμητής Ο ανιχνευτής/εκτιµητής έχει ως είσοδο το y και ως έξοδο την εκτίµηση, ˆx, του σήµατος που µεταδόθηκε. Επειδή η σχέση µηνύµατος m i και διανύσµατος x i στον ποµπό είναι 1-προς-1, ο δέκτης µπορεί να εκτιµήσει από το ˆx ποιο µήνυµα ˆm µεταδόθηκε. Σφάλµα µετάδοσης εµφανίζεται όταν ˆm = m j, j i, όπου m i το µήνυµα που µεταδόθηκε (ισοδύναµα, όταν ˆx x i ). ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 6/ 26
7 υαδικό Συµµετρικό Κανάλι (Binary Symmetric Channel) p Y X (0 1) = p Y X (1 0) = p (αναστροφή ψηφίου) p Y X (0 0) = p Y X (1 1) = 1 p Ενα από τα πιο χρήσιµα µοντέλα στις Ψηφιακές Επικοινωνίες. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 7/ 26
8 υαδική µετάδοση που υπόκειται σε γκαουσιανό ϑόρυβο Υποθέτουµε ότι y = x + n, όπου n N (0, σ 2 ). f Y X (y x) = f N (y x). Εποµένως, f Y X (y x = 1) = 1 2πσ e (y+1)2 2σ 2, f Y X (y x = +1) = 1 2πσ e (y 1)2 2σ 2. Θα το χρησιµοποιήσουµε κατά κόρον ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 8/ 26
9 Κατανοµή ληφθέντος σήµατος, Πιθανότητα Σφάλµατος Από τον κανόνα Bayes, εάν ο αστερισµός αποτελείται από M σύµ- ϐολα, το καθένα από τα οποία µεταδίδεται µε πιθανότητα p X (x m ), p Y (y) = M 1 m=0 p Y X (y x m )p X (x m ) M 1 ή f Y (y) = f Y X (y x m )p X (x m ). m=0 Πιθανότητα Σφάλµατος (Probability of Error): P e Pr{ ˆm m}. Πιθανότητα σωστής λήψης: P c = 1 P e = Pr{ ˆm = m}. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 9/ 26
10 Ανίχνευση Μέγιστης εκ των Υστέρων Πιθανότητας (Maximum a posteriori probability (MAP) detection) Εστω ότι ο ποµπός εκπέµπει το µήνυµα m i και ότι ο δέκτης λαµβάνει σήµα y. P c y = Pr( ˆm = m i Y = y) = p M Y (m i y) = p X Y (x i y) (γιατί;) Ορισµός Ο ανιχνευτής MAP επιλέγει το σήµα x i που µεγιστοποιεί την εκ των υστέρων πιθανότητα p X Y (x i y) δεδοµένου ότι ελήφθη το σήµα y. Κανόνας Ανίχνευσης ΜΑΡ ˆx MAP (y) = arg max p X Y (x y) x ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 10/ 26
11 Ανίχνευση MAP (συνέχεια) Από το ϑεώρηµα Bayes, p X Y (x i y) = p Y X(y x i)p X(x i) p Y(y). εδοµένου ότι ο παρονοµαστής p Y (y) είναι κοινός για όλες τις p X Y (x i y), ο ανιχνευτής MAP µπορεί να υλοποιηθεί ως εξής: Κανόνας Ανίχνευσης ΜΑΡ ˆm = m i εάν p Y X (y x i )p X (x i ) p Y X (y x j )p X (x j ) j i. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 11/ 26
12 Ανίχνευση Μέγιστης Πιθανοφάνειας (Maximum Likelihood (ML) detection) Εάν όλα τα µεταδιδόµενα σύµβολα (και µηνύµατα) είναι ισοπίθανα: p X (x i ) = 1, i = 0, 1,..., M 1, ο κανόνας ανίχνευσης MAP M απλοποιείται στον κανόνα ανίχνευσης ML Κανόνας Ανίχνευσης ML ˆm = m i εάν p Y X (y x i ) p Y X (y x j ) j i. Ο ανιχνευτής ML χρησιµοποιείται συχνά σε Ψηφιακά Συστήµατα. Ωστόσο, µερικές ϕορές η εύρεση αναλυτικής έκφρασης για τις p Y X (y x i ) ενδέχεται να είναι αδύνατη ή οι εκφράσεις µπορεί να είναι πολύπλοκες. Για το λόγο αυτό πολλοί δέκτες χρησιµοποιούν προσεγγιστικούς κανόνες (µε αποτέλεσµα να αυξάνει η πιθανότητα σφάλµατος σε σχέση µε την ανίχνευση ML). ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 12/ 26
13 Περιοχές Αποφάσεων (Decision (Voronoi) Regions) Προκειµένου να µην υπολογίζεται η τιµή των συναρτήσεων p Y X (y x i ) (ή του γινοµένου τους µε τις p X (x i )) στο δέκτη κάθε ϕορά που λαµβάνεται ένα σήµα y, µπορεί να έχει προσδιοριστεί εκ των προτέρων το σήµα x i που προκύπτει από τον κανόνα ML (ή MAP) για κάθε πιθανή τιµή του λαµβανόµενου σήµατος y. Ο δέκτης προσδιορίζει την περιοχή του Ευκλείδειου χώρου (πε- ϱιοχή απόφασης) στην οποία ανήκει το y το οποίο λαµβάνει και αποφασίζει για το µεταδοθέν σήµα µε ϐάση την περιοχή. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 13/ 26
14 Περιοχές Αποφάσεων (2) Οι περιοχές απόφασης για το δέκτη ML του καναλιού µε δυαδική µετάδοση και Γκαουσιανό ϑόρυβο που εξετάσαµε ενωρίτερα ϕαίνονται στο σχήµα. Μαθηµατικά, εάν y < 0 x = 1, ενώ εάν y 0 x = +1. Θα δούµε στη συνέχεια ότι, στην περίπτωση Γκαουσιανού καναλιού, οι κανόνες MAP και ML απλοποιούνται σηµαντικά σε σχέση µε τη γενική τους µορφή. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 14/ 26
15 Θεώρηµα Αντιστρεψιµότητας (Reversibility Theorem) Η εφαρµογή αντιστρέψιµου µετασχηµατισµού στο διάνυσµα εξόδου y του καναλιού δεν επηρεάζει την απόδοση του ανιχνευτή MAP. Εποµένως, στο σχήµα, εφόσον ο µετασχηµατισµός F είναι αντιστρέψιµος, η εκτίµηση MAP που ϐασίζεται στο y ϑα είναι ίδια µε την εκτίµηση MAP που ϐασίζεται στο z. Φυσικά, οι περιοχές απόφασης των δύο ανιχνευτών MAP ϑα είναι, στη γενική περίπτωση, διαφορετικές. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 15/ 26
16 ιανυσµατικό µοντέλο καναλιού AWGN Το κανάλι Προσθετικού Λευκού Γκαουσιανού Θορύβου (AWGN) 1 Αποδιαµόρφωση και αποκωδικοποίηση παρουσία ϑορύβου (συνέχεια) 2 ιανυσµατικό µοντέλο καναλιού AWGN ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 16/ 26
17 Το κανάλι AWGN ιανυσµατικό µοντέλο καναλιού AWGN Ο {n(t)} είναι Λευκός Προσθετικός Γκαουσιανός Θόρυβος µε R n (τ) = N0 δ(τ) και E[n(t)] = 0. Τα δείγµατά του (µετά από ιδανικό ϕίλτρο και δειγµατοληψία) ακολουθούν Γκαουσιανή κατανοµή 2 N (0, N0 2 ). Εάν υποθέσουµε ότι η µετάδοση διαρκεί T s, y(t) = x(t) + n(t), t [0, T]. Υποθέτουµε, επίσης, ότι το µεταδιδόµενο σήµα x(t) ανήκει σε υπόχωρο V του L 2 [0, T] διάστασης N. Αρα, µπορεί να εκφραστεί µε χρήση των συναρτήσεων ϐάσης του V: x(t) = N i=1 x iφ i (t). ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 17/ 26
18 Το κανάλι AWGN (2) ιανυσµατικό µοντέλο καναλιού AWGN Ο ϑόρυβος n(t) είναι, στη γενική περίπτωση, άπειρης διάστασης. Εποµένως, οι N συναρτήσεις ϐάσης φ i (t) δεν αρκούν για την πε- ϱιγραφή του: n(t) = N i=1 n iφ i (t) + n (t), όπου n (t) V. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 18/ 26
19 ιανυσµατικό µοντέλο καναλιού AWGN Το διανυσµατικό κανάλι AWGN µετά τον αποδιαµορφωτή y i = T 0 y(τ)φ i (τ)dτ = T 0 (x m(τ) + n(τ))φ i (τ)dτ = x m,i + n i. Το ίδιο αποτέλεσµα, προφανώς, προκύπτει εάν χρησιµοποιήσουµε προσαρµοσµένα ϕίλτρα. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 19/ 26
20 ιανυσµατικό µοντέλο καναλιού AWGN Το διανυσµατικό κανάλι AWGN µετά τον αποδιαµορφωτή (2) n i = T 0 n(τ)φ i (τ)dτ. Η τ.µ. n i είναι Γκαουσιανή (ως γραµµικός συνδυασµός Γκαουσιανών µεταβλητών) µε µέση τιµή 0. Επίσης, όπως ήδη έχουµε δείξει, E[n i n j ] = N0 δ 2 ij = σ 2 δ ij (Στην απόδειξη µεγιστοποίησης του SNR από το προσαρµοσµένο ϕίλτρο ϑεωρήστε τετριµµένο ϕίλτρο µε h(t) = 1). Εποµένως, οι συνιστώσες n i του διανύσµατος ϑορύβου n το οποίο υπερτίθεται στο διάνυσµα x m είναι µεταξύ τους ασυσχέτιστες και, εποµένως, ανεξάρτητες (γιατί;). Σηµείωση: Στην περίπτωση µιγαδικού ϑορύβου (στην οποία δεν έχουµε αναφερθεί ακόµη) για να είναι οι n i ανεξάρτητες πρέπει, ε- πιπλέον, ο (µιγαδικός) ϑόρυβος n(t) να είναι κυκλικώς συµµετρικός (circularly symmetric). Παρατηρήστε ότι οι n i είναι Γκαουσιανές ανεξαρτήτως των συναρτήσεων ϐάσης, φ i (t), που χρησιµοποιούµε για τη διαµόρφωση! ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 20/ 26
21 ιανυσµατικό µοντέλο καναλιού AWGN Το διανυσµατικό κανάλι AWGN µετά τον αποδιαµορφωτή (3) Μπορούµε, εποµένως, να γράψουµε p(y x m ) = N p(y i x m,i ) = i=1 = N i=1 1 2πσ e 1 (2π) N/2 σ N e (yi xm,i ) 2 2σ 2 Ni=1 (yi xm,i ) 2 2σ 2. Υπολογίσαµε, λοιπόν, την p Y X (y x) για το διανυσµατικό µοντέλο του καναλιού AWGN! Το µοντέλο αυτό µπορεί να χρησιµοποιηθεί για να περιγράψει το κανάλι µεταξύ της εισόδου του διαµορφωτή και της εξόδου του αποδιαµορφωτή για οποιεσδήποτε συναρτήσεις ϐάσης φ i (t). ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 21/ 26
22 ιανυσµατικό µοντέλο καναλιού AWGN Το διανυσµατικό κανάλι AWGN µετά τον αποδιαµορφωτή (4) Εποµένως, αντί για το Γκαουσιανό κανάλι αριστερά µπορούµε, ι- σοδύναµα, να χρησιµοποιούµε το διανυσµατικό Γκαουσιανό κανάλι δεξιά, όπου το n είναι ένα τυχαίο Γκαουσιανό διάνυσµα N διαστάσεων µε µηδενική µέση τιµή, ασυσχέτιστες µεταξύ τους συνιστώσες n i και κατανοµή p N (n) = = Ni=1 1 ni 2 e N 0 = (πn 0 ) N/2 1 n 2 (2πσ 2 e 2σ ) 2. N/2 1 n 2 e N 0 (πn 0 ) N/2 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 22/ 26
23 Irrelevance του n (t) ιανυσµατικό µοντέλο καναλιού AWGN εν έχουµε, ακόµα, απαντήσει στο εξής ερώτηµα: Η χρήση προσαρµοσµένου ϕίλτρου και, στη συνέχεια, του διανυσµατικού µοντέλου καναλιού για να εκτιµήσουµε το µεταδοθέν µήνυµα στο κανάλι AWGN, είναι ισοδύναµη µε την εκτίµηση του m απευθείας από την y(t) ή κατά τη µετατροπή έχει χαθεί κάποια πληροφορία; Μπορεί να αποδειχθεί ότι E[n (t)y i ] = 0 (π.χ. Proakis Ch.5). Επο- µένως, το n (t) είναι ανεξάρτητο (γιατί;) των συνιστωσών του y και, συνεπώς, δεν προσφέρει καµια πληροφορία για την εκτίµηση του x. Θυµηθείτε και το ϑεώρηµα προβολής: εδοµένου ότι το σήµα x m ανήκει στον υπόχωρο V διάστασης N, για να ελαχιστοποιήσου- µε το µέσο τετραγωνικό σφάλµα εκτίµησης πρέπει να ϐρούµε την προβολή του y στον V. Αυτό ακριβώς κάνουν ο αποδιαµορφωτής προσαρµοσµένων ϕίλτρων και ο αποδιαµορφωτής συσχέτισης. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 23/ 26
24 Irrelevance του n (t) (συνέχεια) ιανυσµατικό µοντέλο καναλιού AWGN Αρα, η χρήση προσαρµοσµένου ϕίλτρου (ή αποδιαµορφωτή συσχέτισης) διατηρεί όλη την πληροφορία που σχετίζεται µε την α- νίχνευση των x m,i. Για την ολοκληρωµένη απόδειξη µε χρήση του ότι το n (t) είναι irrelevant ϐλ. Cioffi Ch. 1. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 24/ 26
25 ιανυσµατικό µοντέλο καναλιού AWGN Είδαµε ότι, για το Γκαουσιανό διανυσµατικό κανάλι, p(y x i ) = 1 y xi 2 (2π) N/2 σ N e 2σ 2. Εποµένως, ο κανόνας ανίχνευσης MAP για το Γκαουσιανό κανάλι µπορεί να γραφτεί ως εξής: ˆm = m i εάν p Y X (y x i )p X (x i ) p Y X (y x j )p X (x j ) j i ˆm = m i εάν 1 y xi 2 1 y x j 2 (2π) N/2 σ N e 2σ 2 p X (x i ) (2π) N/2 σ N e 2σ 2 p X (x j ) j i y xi 2 ˆm = m i εάν e 2σ 2 p X (x i ) e y x j 2 2σ 2 p X (x j ) j i ˆm = m i εάν y x i 2 2σ 2 ln{p X (x i )} y x j 2 2σ 2 ln{p X (x j )} j i ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 25/ 26
26 ιανυσµατικό µοντέλο καναλιού AWGN (2) Κανόνας MAP για το διανυσµατικό κανάλι AWGN ˆm = m i εάν y x i 2 2σ 2 ln{p X (x i )} y x j 2 2σ 2 ln{p X (x j )} j i Κανόνας ML για το διανυσµατικό κανάλι AWGN (γιατί;) ˆm = m i εάν y x i 2 y x j 2 j i Αρα, ο ανιχνευτής ML επιλέγει το διάνυσµα x i µε τη µικρότερη Ευκλείδεια απόσταση από το διάνυσµα y στην έξοδο του αποδιαµορ- ϕωτή προσαρµοσµένου ϕίλτρου. Ο ανιχνευτής MAP χρησιµοποιεί την απόσταση σε συνδυασµό µε µια σταθερά που εξαρτάται από την κατανοµή των x i. ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη 26/ 26
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 5η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 5η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 23 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 5η
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 3η και 4η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 3η και 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 6 Απριλίου 2011 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών
Περιεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 7η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 7η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 13 Μαΐου 2011 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 7η
Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.
Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 24 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
Ο Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς
Ο Βέλτιστος Φωρατής Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε να µεγιστοποιείται
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 21 Μαΐου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Ιουνίου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας 12η
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 17 Μαΐου 2011 (2η έκδοση, 21/5/2011) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 10: Ψηφιακή Μετάδοση Βασικής Ζώνης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των πινάκων αναζήτησης
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 23 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K
Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 9 Mάθηµα: «Ψηφιακές Επικοινωνίες» Θέµα 1 ο (3%) A =6 o K P R = 1pWatt SNR IN G LNA =13dB LNA =3 K LNA G F =.8 F = 73 K Φίλτρο G = db F = 8 db Ενισχυτής IF SNR OU 1.
Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ Βασικά αξιώµατα και ιδιότητες της πιθανότητας Σεραφείµ Καραµπογιάς Η αθροιστική συνάρτηση κατανοµής cumulaive diribuio ucio CDF µίας τυχαίας µεταβλητής X ορίζεται
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 3η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 3η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 3η
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 8η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 8η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 27 Απριλίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Baseband Transmission
Ψηφιακές Επικοινωνίες Baseband ransmission Antipodal Signalling - Binary Orthogonal Signalling Probability of Error M-ary Orthogonal Signalling Waveforms Detection M-PAM detection Probability of error
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί
Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί από τον αριθµό µητρώου του. Συγκεκριµένα υπολογίζει
Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Αναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
2 η Εργαστηριακή Άσκηση
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εκτίµηση Τυχαίων Σηµάτων othig i atue is adom A thig
Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson
Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt
Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ
. ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ 1 Εισαγωγή Θεωρήστε το στοιχειώδες τηλεπικοινωνιακό σύστηµα του παρακάτω Σχήµατος, αποτελούµενο από έναν ποµπό, ένα δέκτη και το κανάλι µετάδοσης. x α
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Κεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
Στοχαστικά Σήµατα και Εφαρµογές
Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία
x y max(x))
ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα
Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 25 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
x(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω
ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη
ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow
Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW
ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 13 & 27 Μαΐου 2014 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας
Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Αναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα 3: Πιθανότητα σφάλματος στη φώραση σήματος Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Ο Βέλτιστος Φωρατής Σεραφείμ Καραμπογιάς
Εισαγωγή στην Τοπολογία
Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Ψηφιακές Τηλεπικοινωνίες. Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος
Ψηφιακές Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Κυματομορφών Σήματος Ψηφιακό Τηλ/κό Σύστημα: Τι είδαμε ως τώρα; ΠΗΓΗ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΗΓΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΚΑΝΑΛΙΟΥ ΦΙΛΤΡΟ ΠΟΜΠΟΥ ΑΠΟΔΙΑΜΟΡΦΩΤΗΣ ΚΑΝΑΛΙ ΔΙΑΜΟΡΦΩΤΗΣ
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Γραφική αναπαράσταση ενός ψηφιακού σήµατος
γ) Ψηφιακάτα x (n) 3 2 1 1 2 3 n Γραφική αναπαράσταση ενός ψηφιακού σήµατος Αφού δειγµατοληπτηθεί και κβαντιστεί η έξοδος µιας αναλογικής πηγής πληροφορίας, δηµιουργείταιµιαακολουθίααπόκβαντισµένεςτιµές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Συναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
Ο Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς
Ο Βέλτιστος Φωρατής Σεραφείµ Καραµπογιάς Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική
Εξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.
Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών
Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Εργασία Προσοµοίωσης ενός Τηλεπικοινωνιακού Συστήµατος και Εκτίµηση Απόκρισης Αραιού Καναλιού Εισαγωγή Στην παρούσα εργασία
Kalman Filter Γιατί ο όρος φίλτρο;
Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:
Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Ακαδηµαϊκό Ετος
Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Ακαδηµαϊκό Ετος 2012-2013 Τίτλος Εργασίας Προσοµοίωση Προσαρµοστικού Ισοστάθµιση για Αραιά Κανάλια 1 Εισαγωγή Στην παρούσα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ Η/Υ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΥΝΘΕΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΔΙΑΤΑΞΕΩΝ Φεβρουάριος 2011
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ Η/Υ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΥΝΘΕΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΔΙΑΤΑΞΕΩΝ Φεβρουάριος 0 Θέμα (50): Βιομηχανική μονάδα διαθέτει δύο κτίρια (Α και Β) σε απόσταση 5 Km και σε οπτική
ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ
Πρόβλημα 1 ΦΡΟΝ ΑΣΚΗΣΕΙΣ ΕΙΣ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΝΑΛΙ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ s + r Ο πομπός στέλνει στο δέκτη μέσω του καναλιού του σχήματος την ακολουθία συμβόλων {st} t=1,2,,10 που ανήκουν στο
E[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν
10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό
ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν