ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013)
|
|
- Ανθούσα Γιαννακόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 1/ 34
2 Περιεχόµενα 12ης εβδοµάδας 1 Το Κανάλι Πολλαπλής Πρόσβασης (Multiple Access Channel - MAC) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 2/ 34
3 Κανάλι Πολλαπλής Πρόσβασης (Multiple Access Channel) Πολλοί χρήστες που επιθυµούν να επικοινωνήσουν µε ένα κεντρικό σταθµό. Παράδειγµα: Κινητά τερµατικά προς σταθµό ϐάσης. Το κανάλι πολλών χρηστών που έχει κατανοηθεί καλύτερα. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 3/ 34
4 Κανάλι Πολλαπλής Πρόσβασης (MAC) (2) Εως τώρα, η παράµετρος που επηρέαζε την επικοινωνία ήταν ο ϑόρυβος (η τυχαιότητα του καναλιού). Στο MAC, επιπλέον του ϑο- ϱύβου, η επικοινωνία επηρεάζεται από παρεµβολές (interference). Πόση πληροφορία µπορούµε να µεταδώσουµε για κάθε χρήστη, και πώς σχετίζονται µεταξύ τους οι χωρητικότητες των χρηστών; ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 4/ 34
5 Κανάλι Πολλαπλής Πρόσβασης (MAC) Ορισµοί Για απλοποίηση, ϑα αναφερθούµε, κατ αρχάς, σε MAC 2 χρηστών. Ορισµός 12.1 ιακριτό MAC χωρίς µνήµη: Αποτελείται από 3 αλ- ϕάβητα X 1, X 2 και Y και πίνακα πιθανοτήτων µετάβασης p(y x 1, x 2 ). Ορισµός 12.2 Κώδικας ((2 nr1, 2 nr2 ), n) για το MAC: Αποτελείται από δύο σύνολα ακεραίων M 1 = { 1, 2,..., 2 nr1 } και M2 = { 1, 2,..., 2 nr 2 } (σύνολα µηνυµάτων message sets), δύο συναρτήσεις κωδικοποίησης (encoding functions): X 1 : M 1 X n 1 και X 2 : M 2 X n 2, και µια συνάρτηση αποκωδικοποίησης (decoding function) g : Y n M 1 M 2. Θεωρούµε τέλειο συγχρονισµό µεταξύ των χρηστών. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 5/ 34
6 1 Το Κανάλι Πολλαπλής Πρόσβασης (Multiple Access Channel - MAC) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 6/ 34
7 Μετάδοση στο MAC Στο διακριτό κανάλι χωρίς µνήµη ενός χρήστη, το ερώτηµα που µας απασχόλησε ήταν πόσα είναι τα διαφορετικά µηνύµατα που µπορούµε να µεταδώσουµε αξιόπιστα µέσα στο κανάλι. Στο MAC (χωρίς µνήµη) ϑέλουµε να ϐρούµε πόσα είναι τα δια- ϕορετικά µηνύµατα που µπορεί να µεταδώσει αξιόπιστα µέσα στο κανάλι κάθε χρήστης. Οι χρήστες δεν µπορούν να συνεργαστούν για τη µετάδοση. Ο χρήστης 1 επιλέγει ένα από 2 nr1 µηνύµατα και στέλνει την αντίστοιχη κωδική λέξη στο κανάλι. Οµοίως, ο χρήστης 2 επιλέγει ένα από 2 nr2 µηνύµατα ανεξάρτητα από το χρήστη 1 και εκπέµπει την αντίστοιχη κωδική λέξη. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 7/ 34
8 Μετάδοση στο MAC (2) Ορισµός 12.3 Μέση Πιθανότητα Σφάλµατος: P (n) 1 e = 2 n(r1+r2) Pr {g(y n ) (m 1, m 2 ) εστάλη το (m 1, m 2 )} (m 1,m 2) M 1 M 2 Ορισµός 12.4 Ενα Ϲεύγος ϱυθµών µετάδοσης (R 1, R 2 ) είναι εφικτό (achievable) για το MAC εάν υπάρχει ακολουθία κωδίκων (2 nr1, 2 nr2, n) τέτοια ώστε P (n) e 0 για n. Ορισµός 12.5 Η περιοχή χωρητικότητας (capacity region) του MAC είναι το κλειστό σύνολο (closure) της ένωσης (union) των εφικτών (R 1, R 2 ). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 8/ 34
9 Η περιοχή χωρητικότητας του MAC είναι κυρτή Εστω R 1 = (R 1,1, R 2,1 ) και R 2 = (R 1,2, R 2,2 ) δύο Ϲεύγη ϱυθµών µετάδοσης που ανήκουν στην περιοχή χωρητικότητας, C, του MAC. Μπορούµε να µεταδώσουµε µε οποιοδήποτε κυρτό συνδυασµό λr 1 + (1 λ)r 2, 0 λ 1, µεταδίδοντας µε R 1 100λ % του χρόνου και µε R 2 100(1 λ) % του χρόνου (times haring). Η πιθανότητα σφάλµατος του κώδικα µε time sharing είναι του αθροίσµατος των πιθανοτήτων σφάλµατος των επι µέρους κωδίκων (και, εποµένως, µπορεί να γίνει αυθαίρετα µικρή). Εποµένως, η περιοχή χωρητικότητας του MAC (και κάθε καναλιού στο οποίο µπορούµε να χρησιµοποιήσουµε time sharing) είναι κυρτή (convex). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 9/ 34
10 Περιοχή Χωρητικότητας MAC Θεώρηµα 12.6 (Cover ): Η περιοχή χωρητικότητας του MAC (X 1 X 2, p(y x 1, x 2 ), Y) είναι το κλειστό σύνολο (closure) του κυρτού κύτους (convex hull) όλων των (R 1, R 2 ) που ικανοποιούν τις σχέσεις Περιοχή ϱυθµών (rate region) MAC 2 χρηστών για δεδοµένη p(x 1 )p(x 2 ) R 1 < I(X 1 ; Y X 2 ), R 2 < I(X 2 ; Y X 1 ), R 1 + R 2 < I(X 1, X 2 ; Y ) για κάποια κατανοµή p 1 (x 1 )p 2 (x 2 ) στο σύνολο X 1 X 2. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 10/ 34
11 Περιοχή Χωρητικότητας MAC (2) ηλαδή, αν ονοµάσουµε R(p 1, p 2 ) την περιοχή επιτεύξιµων ϱυθ- µών µετάδοσης για συγκεκριµένες κατανοµές p 1 = p(x 1 ) και p 2 = p(x 2 ) (δηλαδή την περιοχή της προηγούµενης διαφάνειας), MAC 2 χρηστών C = convex closure of p1,p 2 R(p 1, p 2 ). ε ϑα το αποδείξουµε στο µάθηµα. Σηµείωση: Η κατανοµή εισόδου είναι p 1 (x 1 )p 2 (x 2 ) γιατί ϑεωρούµε ότι οι χρήστες δεν µπορούν να συνεργαστούν. Υπάρχουν και άλλοι, πιο χρήσιµοι τρόποι να εκφράσουµε τη C (µε χρήση time-sharing variable Q), αλλά δε ϑα επεκταθούµε (δείτε π.χ. El Gamal & Kim και Cover & Thomas). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 11/ 34
12 1 Το Κανάλι Πολλαπλής Πρόσβασης (Multiple Access Channel - MAC) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 12/ 34
13 Παράδειγµα Ανεξάρτητα BSC X 1 Y X 2 Μπορούµε να στείλουµε µε R 1 = 1 H(p 1 ) από το 1ο κανάλι, και, ταυτόχρονα, µε ϱυθµό R 2 = 1 H(p 2 ) από το 2ο κανάλι. Τα δύο κανάλια είναι ανεξάρτητα δεν εµφανίζεται παρεµβολή. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 13/ 34
14 Παράδειγµα Ανεξάρτητα BSC Περιοχή Χωρητικότητας R 2 C 2 = -H p 2 C 1 = -H p 1 R 1 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 14/ 34
15 Παράδειγµα υαδικό Πολλαπλασιαστικό Κανάλι Οι X 1 και X 2 παίρνουν τιµές στο σύνολο {0, 1} {0, 1}. Y = X 1 X 2. Οταν X 1 = 1, µπορούµε να στείλουµε R 2 = 1 bit/χρήση καναλιού µε χρήση οµοιόµορφης κατανοµής για τη X 2. R 1 = 0, δεδοµένου ότι η X 1 δεν αλλάζει. Οµοίως, όταν X 2 = 1, µπορούµε να στείλουµε R 1 = 1 bit/χρήση καναλιού µε χρήση οµοιόµορφης κατανοµής για τη X 1. R 2 = 0. Μπορούµε να πετύχουµε οποιοδήποτε Ϲεύγος (λ, 1 λ), 0 λ 1 µε διαµέριση στο χρόνο (time sharing). ηλαδή, ``παγώνουµε το X 2 για 100λ % του χρόνου και µεταδίδουµε µε οµοιόµορφα κατανεµηµένη X 1 (αντίστροφα για το υπόλοιπο 100(1 λ) %). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 15/ 34
16 Παράδειγµα υαδικό Πολλαπλασιαστικό Κανάλι Περιοχή Χωρητικότητας R 2 C 2 = C 1 = R 1 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 16/ 34
17 Παράδειγµα υαδικό MAC ιαγραφής Οι X 1 και X 2 παίρνουν τιµές στο σύνολο {0, 1} {0, 1}. Y = X 1 + X 2. Εάν Y = 1 δε γνωρίζουµε εάν η είσοδος ήταν (X 1, X 2 ) = (1, 0) ή (0, 1). Εάν ϑέσουµε X 1 = 1, µπορούµε να µεταδώσουµε µε R 2 = 1 bit/χρήση καναλιού (µε οµοιόµορφη X 2 ). Εάν ϑέσουµε X 2 = 1, µπορούµε να µεταδώσουµε µε R 1 = 1 bit/χρήση καναλιού (µε οµοιόµορφη X 1 ). Μπορούµε να στείλουµε µε R 1 + R 2 > 1 bit/χρήση καναλιού; ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 17/ 34
18 Παράδειγµα υαδικό MAC ιαγραφής (2) Εστω ότι χρησιµοποιούµε οµοιόµορφη X 1. Εποµένως, R 1 = 1 bit/χρήση καναλιού. Εστω, επίσης, ότι ο δέκτης αποκωδικοποιεί πρώτα το X 2. Οταν Y = X 1 + X 2 = 0 ή Y = 2, γνωρίζουµε το X 2 (ισούται µε 0 και 1, αντίστοιχα). Αντίθετα, αν Y = 1, δεν µπορούµε να ϐρούµε άµεσα το X 2. Αν δούµε το X 1 ως ένα µηχανισµό διαγραφής, όταν X 1 = X 2 δεν εµφανίζεται διαγραφή, ενώ, αντίθετα, όταν X 1 X 2 το X 2 διαγράφεται. Εποµένως, από τη σκοπιά του χρήστη 2 το κανάλι είναι δυαδικό κανάλι διαγραφής µε πιθανότητα διαγραφής p = 1/2. Ωστόσο, γνωρίζουµε ότι, αν R 2 > 1 1/2 = 1/2, ο χρήστης 2 µπορεί να µεταδώσει 1/2 bit/χρήση του καναλιού. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 18/ 34
19 Παράδειγµα υαδικό MAC ιαγραφής (3) Στη συνέχεια, ο δέκτης αφαιρεί την τιµή του X 2 (την οποία γνω- ϱίζει µε πιθανότητα σφάλµατος που τείνει στο 0) από το Y, οπότε αποµένει το X 1 (χωρίς ϑόρυβο). Εποµένως, µπορούµε να στείλουµε 1 bit του χρήστη 1 και 1/2 bit του χρήστη 2! Στο σχήµα εικονίζεται το κανάλι όπως το ϐλέπει ο δέκτης στο 1ο ϐήµα (αποκωδικοποίηση X 2 ) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 19/ 34
20 Παράδειγµα υαδικό MAC ιαγραφής Περιοχή Χωρητικότητας R 2 C 2 = Μπορούµε, επίσης, να αρχίσουµε από το X 1 (οπότε το µέγιστο που µπορεί να µεταδώσει ο χρήστης 1 είναι 1/2 bit/χρήση του καναλιού). Μπορούµε, τέλος, να επιτύχουµε οποιοδήποτε Ϲεύγος (R 1, R 2 ) = (0.5+ α, 1 α), 0 α 0.5 µε time sharing. C 1 = R 1 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 20/ 34
21 Παράδειγµα υαδικό MAC ιαγραφής Σχόλια Στο συγκεκριµένο παράδειγµα, η περιοχή χωρητικότητας επιτυγχάνεται µε οµοιόµορφη p X1 (x 1 ) και οµοιόµορφη p X2 (x 2 ) (Bern(1/2)). Στη γενικότερη περίπτωση, για να µεταδώσουµε σε ένα συγκεκρι- µένο σηµείο της περιοχής χωρητικότητας απαιτείται time sharing, δηλαδή πρέπει να χρησιµοποιήσουµε διαφορετικές κατανοµές για διαφορετικά ποσοστά του χρόνου. Οταν αρκεί µόνο µία κατανοµή για να πετύχουµε όλα τα σηµεία της περιοχής χωρητικότητας, η C είναι πεντάγωνο (ή τρίγωνο ή τετράγωνο σε τετριµµένες περιπτώσεις). Αλλιώς, η C προκύπτει από κυρτή ένωση πενταγώνων. Αποδεικνύεται, επίσης, ότι ο µέγιστος αριθµός κατανοµών που απαιτείται για να µεταδώσουµε σε ένα οποιοδήποτε σηµείο της περιοχής χωρητικότητας είναι πεπερασµένος (στην περίπτωση του MAC 2 χρηστών ίσος µε 2). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 21/ 34
22 1 Το Κανάλι Πολλαπλής Πρόσβασης (Multiple Access Channel - MAC) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 22/ 34
23 Περιοχή επιτεύξιµων ϱυθµών µετάδοσης (Rate Region) Υπενθυµίζεται ότι, για δεδοµένη p(x 1 )p(x 2 ) στο σύνολο X 1 X 2, η περιοχή επιτεύξιµων ϱυθµών µετάδοσης δίνεται από τις ανισότητες R 1 < I(X 1 ; Y X 2 ), R 2 < I(X 2 ; Y X 1 ), R 1 + R 2 < I(X 1, X 2 ; Y ). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 23/ 34
24 Περιοχή επιτεύξιµων ϱυθµών µετάδοσης (Rate Region) (2) R 2 I X 2 ;Y X 1 I X 2 ;Y I X 1 ;Y I X 1 ;Y X 2 R 1 Θεωρούµε δεδοµένη p(x 1 )p(x 2 ). Η περιοχή εφικτών ϱυθµών µετάδοσης (όχι η περιοχή χωρητικότητας) ϕαίνεται στο Σχήµα. Σηµείο Β: Η X 1 δηµιουργεί τυχαιότητα (``θόρυβο ) στη µετάδοση της X 2. Ο µέγιστος ϱυθµός για τη µετάδοση της X 2 ισούται µε I(X 2 ; Y ). Στο δέκτη, ανιχνεύεται αρχικά η X 2. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 24/ 34
25 Περιοχή επιτεύξιµων ϱυθµών µετάδοσης (Rate Region) (3) R 2 I X 2 ;Y X 1 I X 2 ;Y I X 1 ;Y I X 1 ;Y X 2 R 1 εδοµένης, τώρα, της τιµής x 2 της X 2, ο δέκτης προχωρά στην αποκωδικοποίηση της X 1. Ο R 1 ισούται µε x 2 p(x 2 )I(X 1 ; Y X 2 = x 2 ) = I(X 1 ; Y X 2 ). Προφανώς, µπορούµε να επιτύχουµε και οποιαδήποτε άλλη τιµή R 2 < I(X 1 ; Y X 2 ). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 25/ 34
26 Περιοχή επιτεύξιµων ϱυθµών µετάδοσης (Rate Region) (4) R 2 I X 2 ;Y X 1 I X 2 ;Y I X 1 ;Y I X 1 ;Y X 2 R 1 Σηµεία C και D: Αντίστοιχα µε τα Α και Β, αλλά µε τους ϱόλους των X 1 και X 2 ανεστραµµένους. Επιπλέον του ϱυθµού µετάδοσης αλλάζει και η σειρά αποκωδικοποίησης στο δέκτη. ηλαδή, για το σηµείο Β αποκωδικοποιείται πρώτα η X 2, ενώ για το σηµείο C αποκωδικοποιείται πρώτα η X 1. Επίσης, αλλάζουν και τα ϐιβλία κωδίκων. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 26/ 34
27 ιαδοχική Αποκωδικοποίηση (Successive Decoding) στο MAC Η ιδέα της διαδοχικής αποκωδικοποίησης (successive decoding ή successive interference cancellation - SIC) είναι κεντρική στο MAC (καθώς και στο degraded Broadcast Channel, όπως ϑα δούµε στη συνέχεια). Π.χ. για το σηµείο Β. Αποκωδικοποιούµε τη X 2 ϑεωρώντας τη X 1 ως ϑόρυβο. Ανάλογα µε την τιµή της X 2, από τη σκοπιά της X 1 ϐλέπουµε X 2 διαφορετικά κανάλια. Αφού ϐρούµε την τιµή της X 2 επιλέγουµε το (ένα από τα X 2 ) κανάλι που ``βλέπει η X 1 και αποκωδικοποιούµε µε ϐάση αυτό το συγκεκριµένο κανάλι. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 27/ 34
28 ιαδοχική Αποκωδικοποίηση (Successive Decoding) στο MAC (2) Αντιστρόφως, για το σηµείο C, αποκωδικοποείται πρώτα η X 1 και η X 2 αποκωδικοποιείται µε ϐάση ένα από X 1 διαφορετικά κανάλια. Στο Γκαουσιανό MAC, η επιλογή καναλιού γίνεται µε αφαίρεση, όπως ϑα δούµε στη συνέχεια. Το τµήµα µεταξύ των Β και C επιτυγχάνεται µε time sharing. ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 28/ 34
29 Περιοχή επιτεύξιµων ϱυθµών µετάδοσης (Rate Region) (5) R 2 I X 2 ;Y X 1 I X 2 ;Y I X 1 ;Y I X 1 ;Y X 2 R 1 Το ευθύγραµµο τµήµα BC έχει κλίση 45 o. (Αποδείξτε το ως άσκηση) Αποδεικνύεται, επίσης (δείτε π.χ. El Gamal & Kim) ότι µπορούµε να επιτύχουµε οποιοδήποτε σηµείο της περιοχής επιτεύξιµων ϱυθµών µετάδοσης χωρίς να απαιτείται time sharing εφαρµόζοντας από κοινού αποκωδικοποίηση των X 1 και X 2 στο δέκτη (αντί για SIC). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 29/ 34
30 Γενική Μορφή Περιοχής Χωρητικότητας MAC Για να ϐρούµε την περιοχή χωρητικότητας του MAC πρέπει να πάρουµε το κλειστό σύνολο (closure) του κυρτού κύτους όλων των περιοχών επιτεύξιµων ϱυθµών (για όλες τις p(x 1 )p(x 2 )). Για παράδειγµα, για να µεγιστοποιήσουµε τον R 1, ενδέχεται να πρέπει να ``παγώσουµε τη X 2 σε µια τιµή x 2 για την οποία µεγιστοποιείται η I(X 1 ; Y X 2 = x 2 ) : max R 1 = max p1(x 1)p 2(x 2) I(X 1 ; Y X 2 ) = max p1(x 1)p 2(x 2) x 2 p 2 (x 2 )I(X 1 ; Y X 2 = x 2 ) max p1(x 1) {max x2 I(X 1 ; Y X 2 = x 2 )}. Αν δεν υπάρχει κατανοµή p 2 (x 2 ) µε περισσότερες από µία µη µηδενικές µάζες η οποία µεγιστοποιεί τον R 1, τα σηµεία Α και Β ταυτίζονται. Στο Παράδειγµα 12.2, για να µεγιστοποιήσουµε τον R 1 πρέπει να ``παγώσουµε τη X 2 στο 1 (και αντιστρόφως). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 30/ 34
31 Γενική Μορφή Περιοχής Χωρητικότητας MAC (2) Ωστόσο, ενδέχεται να υπάρχει κατανοµή p 2 (x 2 ) µε µη µηδενική εντροπία για την οποία ισχύει ότι max p1(x 1)p 2(x 2) x 2 p 2 (x 2 )I(X 1 ; Y X 2 = x 2 ) = max p1(x 1) {max x2 I(X 1 ; Y X 2 = x 2 )}. Στο Παράδειγµα 12.3, µπορούµε να επιτύχουµε το µέγιστο ϱυθµό R 1 = 1 (µε οµοιόµορφη X 1 ) και, ταυτόχρονα, R 2 = 0.5 bit (µε οµοιόµορφη X 2 ). Παρατηρήστε ότι, ακόµα και αν είχαµε ``παγώσει τη X 2 σε µία σταθερή τιµή, δε ϑα µπορούσαµε να µεταδώσουµε µε R 1 > 1. Παρόλο που στο Παράδειγµα 12.3 η περιοχή επιτεύξιµων ϱυθµών για οµοιόµορφες p 1 και p 2 ταυτίζεται µε την περιοχή χωρητικότητας, στη γενική περίπτωση η περιοχή χωρητικότητας είναι ένα κυρτό σύνολο που προέρχεται από την ένωση πενταγώνων (ή εκφυλισµένων πενταγώνων). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 31/ 34
32 Γενική Μορφή Περιοχής Χωρητικότητας MAC (3) Οπως ϑα δούµε, µία πολύ σηµαντική ειδική περίπτωση όπου όλα τα σηµεία στο όριο της περιοχής χωρητικότητας επιτυγχάνονται από µία µόνο κατανοµη p 1 (x 1 )p 2 (x 2 ) είναι το Γκαουσιανό MAC. Οπως προαναφέρθηκε, αποδεικνύεται ότι, για να επιτευχθεί οποιοδήποτε σηµείο της περιοχής χωρητικότητας του MAC 2 χρηστών, αρκεί time sharing µεταξύ 2 το πολύ κατανοµών p 1 (x 1 )p 2 (x 2 ). Για λεπτοµέρειες, δείτε El Gamal & Kim. Αποδεικνύεται, επίσης, ότι οποιοδήποτε σηµείο της περιοχής χω- ϱητικότητας, C, µπορεί να επιτευχθεί χωρίς time sharing µε χρήση coded time sharing (για λεπτοµέρειες, δείτε El Gamal & Kim). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 32/ 34
33 ιευκρίνιση: 2 είδη time sharing 1. Time sharing µεταξύ ϐιβλίων κωδίκων για δεδοµένη p 1 (x 1 )p 2 (x 2 ) (και, εποµένως, δεδοµένη rate region). Για κάθε ένα από τα δύο σηµεία χρησιµοποιούµε SIC στο δέκτη. Η σειρά SIC αλλάζει όταν αλλάζουµε σηµείο. Μπορούµε να µην κάνουµε timesharing αν χρησιµοποιήσουµε από κοινού (ταυτόχρονη) αποκωδικοποίηση των X 1 και X 2 στο δέκτη. 2. Time sharing µεταξύ Q = 2 διαφορετικών γινοµένων κατανοµών p 1 (x 1 )p 2 (x 2 ) προκειµένου να επιτύχουµε οποιοδήποτε σηµείο της περιοχής χωρητικότητας. Μπορούµε να µην κάνουµε time sharing αν χρησιµοποιήσουµε coded time sharing (δε ϑα επεκταθούµε σε αυτό το µάθηµα). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 33/ 34
34 Γενίκευση MAC για m χρήστες X 1 X 2 p y x 1 x 2 x m Y X m Θεώρηµα 12.7 (Cover ): Η περιοχή χωρητικότητας του MAC m χρηστών είναι το κλειστό σύνολο (closure) του κυρτού κύτους (convex hull) των διανυσµάτων R = (R 1, R 2,..., R m ) που ικανοποιούν τις σχέσεις R(S) I(X(S); Y X(S c )) για όλα τα σύνολα S {1, 2,..., m}, όπου S c το συµπλήρωµα του S και για όλες τις κατανοµές εισόδου (µε ανεξάρτητα X i ). ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη 34/ 34
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 13 & 27 Μαΐου 2014 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 17 Μαΐου 2011 (2η έκδοση, 21/5/2011) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 25 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 24 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 21 Μαΐου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Ιουνίου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας 12η
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 23 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση
22A004 (eclass EE278) Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 11 Δ. Τουμπακάρης 6 Ιουνίου 2013 22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση Διάρκεια Εξέτασης: 3 ώρες. 4 ασκήσεις
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη
ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια
EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 4 Δ. Τουμπακάρης 5 Ιουνίου 5 EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια. *Τα κανάλια με μνήμη έχουν μεγαλύτερη
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις
EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 15 Δ Τουμπακάρης 3 Ιουνίου 015 EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις 1 Υποβέλτιστοι κώδικες
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14
Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
3 Αναδροµή και Επαγωγή
3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα
5.1 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει
< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
Κεφάλαιο 1. Θεωρία Ζήτησης
Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.
p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη
Κεφάλαιο 6 Παράγωγος
Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:
Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n
HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι
Περιεχόµενα διαλέξεων 2ης εβδοµάδας
Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.
Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι
Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
xp X (x) = k 3 10 = k 3 10 = 8 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
Κεφάλαιο 7 Βάσεις και ιάσταση
Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε
2. Στοιχεία Πολυδιάστατων Κατανοµών
Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε
( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}
7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο
3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)
3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ
ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006
Κανόνες παραγώγισης ( )
66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n.
ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ β 4 Ιανουαρίου 005 Τα ϑέµατα,, και 4 είναι υποχρεωτικά. Από τα ϑέµατα 5 και 6 ϑα επίλέξετε ϑέµα. ηλαδή ϑα γράψετε ΜΟΝΟ 5 ϑέµατα. ΘΕΜΑ o.5 + 0.5 = ϐ.) α) Να αποδειχθεί ότι η δυναµοσειρά
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία-Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία-Ευηµερία 19 Απριλίου 2013 1 / 20 Το πρώτο Θ.Θ.Ο.Ε. µας λέει ότι κάθε Βαλρασιανή
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Θεωρια Αριθµων Προβληµατα
Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Σ ή. : υαδικά. Ε ό. ή Ενότητα
1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
1 Το ϑεώρηµα του Rademacher
Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.
Προσδιορισµός της φασµατικής ισχύος ενός σήµατος
Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα
Αρµονική Ανάλυση. Ενότητα: Χώροι L p - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Χώροι L p - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Περιεχόμενα 1 Κωδικοποίησ η Πηγής 2 Χωρητικότητα Διακριτών Καναλιών 2 / 21
Θεωρία Πληροφορίας και Στοιχεία Κωδίκων Κωδικοποίησ η Πηγής και Χωρητικότητα Διακριτών Καναλιών Διδάσ κων: Καλουπτσ ίδης Νικόλαος Επιμέλεια: Κατσ άνος Κωνσ ταντίνος Τμήμα Πληροφορικής και Τηλεπικοινωνιών
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
1 Οι πραγµατικοί αριθµοί
1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς
4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-
Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)
Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές
Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι
Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης
Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier
Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier
Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.
Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων Ορέστης Τελέλης telelis@unipi.g Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς A B C = A + B + C A B B C A C +
Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Παρουσίαση ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση α Στους µιγαδικούς δεν υφίστανται ανισοτικές σχέσεις Το σύνολο C διατηρεί ισοτικά όλες τις ιδιότητες του R εν υφίστανται ανισοτικές σχέσεις, υφίστανται µόνο στο
Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;
ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50
Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος
Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή
Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την