ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\Documents and Settings\ioanna\Desktop\ioan_1\Skef_2.doc
|
|
- Ἀγαυή Βασιλειάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
2 ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήµατα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονοµετρικό Υπόδειγµα οι διαχρονικές αλληλεπιδράσεις µεταξύ των µεταβλητών του εξαντλούνται εντός µιας χρονικής περιόδου Οι αλληλεπιδράσεις όµως µεταξύ των µεταβλητών του µπορεί να είναι δυναµικές 1 και µη δυναµικές εν είναι όµως διαχρονικές Απλώς εξαντλούνται µέσα σε µία χρονική περίοδο Οι διαχρονικές αλληλεπιδράσεις µεταξύ των οικονοµικών µεγεθών µπορούν να σχηµατοποιηθούν είτε µ ένα στατικό είτε µ ένα διαχρονικό σχήµα αλληλεξαρτήσεων Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα στατικά οικονοµετρικά υποδείγµατα, δηλαδή µε αλληλεξαρτήσεις µεταξύ διαφόρων οικονοµικών µεγεθών, οι επιδράσεις των οποίων όµως εξαντλούνται εντός µιας χρονικής περιόδου Ένα τέτοιο σχήµα στατικών αλληλεξαρτήσεων για τρία οικονοµικά µεγέθη 1, 2, 3 δίδεται στο Σχεδιάγραµµα Περίοδος -1 (προχθές) Ιανουάριος Περίοδος -2 (Εχθές) Φεβρουάριος Περίοδος (Σήµερα) Μάρτιος Σχεδιάγραµµα 31 ιαχρονική & ιαµεταβλητή παρουσίαση των αλληλεξαρτήσεων των µεταβλητών, 1 2, 3 Στο σχήµα αλληλεξαρτήσεων 31 θα µπορούσαµε να δεχθούµε ότι υπάρχουν δύο χαρακτηριστικά 1 Η ιαχρονική Αλληλεξάρτηση (Αλληλεπίδραση) µεταξύ των µεγεθών 1, 2, 3 η οποία εξαντλείται εντός µιας χρονικής περιόδου ηλαδή δεν υπάρχουν επιδράσεις µεταξύ των µεταβλητών 1, 2, 3 σε διαφορετικές χρονικές περιόδους 2 Υπάρχουν διαδοχικές αλληλεπιδράσεις µεταξύ των µεταβλητών ( j = 1,2,3 ) j Οι διαδοχικές αυτές αλληλεπιδράσεις δίδονται στο Σχεδιάγραµµα 32 1 Μία δυναµική επίδραση(εξάρτηση) µπορεί να είναι δυναµική χωρίς απαραιτήτως να είναι διαχρονική Απλώς πρόκειται για µία επίδραση η οποία εξαντλείται εντός µιας χρονικής περιόδου αλλά ταυτόχρονα έχει ένα σχήµα δυναµικού χαρακτήρα C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
3 ιαχρονικές Αλληλεπιδράσεις Σχεδιάγραµµα 32 ιαδοχικές Αλληλεπιδράσεις µεταξύ των µεταβλητών ενός Σχήµατος Αλληλεξαρτήσεων ΕΙ Η ΑΛΛΗΛΕΠΙ ΡΑΣΕΩΝ Οι ιαδοχικές αλληλεπιδράσεις θα µπορούσαν επιπλέον να εξειδικευθούν ως εξής: 1 Απλές επιδράσεις Απλές Επιδράσεις (Μονόδροµες Επιδράσεις) (31) 2 Ανατροφοδοτικές Επιδράσεις(Αµφίδροµες Επιδράσεις) Ανατροφοδοτικές Επιδράσεις (32) Οι Απλές και οι Ανατροφοδοτικές επιδράσεις µπορεί να είναι Σταθερές, Γραµµικές και Μη Γραµµικές επιδράσεις C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
4 Οικονοµικό Παράδειγµα 1 Θα µπορούσαµε να εξειδικεύσουµε ένα πιθανό Σχήµα Αλληλεξάρτησης µεταξύ της Ιδιωτικής Κατανάλωσης ( ( PCON ) και του ιαθέσιµου Εισοδήµατος y ( YD ) ως εξής: 1 Απλές επιδράσεις PCON YD YD PCON (33) 2 Ανατροφοδοτικές Επιδράσεις PCON YD (34) Στην πρώτη περίπτωση η κάθε µία µεταβλητή επιδρά µονοµερώς στην διαµόρφωση της µεταβλητικότητας της άλλης, ενώ στην δεύτερη περίπτωση οι µεταβλητικότητες και των δύο µεταβλητών αλληλοδιαµορφώνονται µέσω ενός Ανατροφοδοτικού σχήµατος C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
5 23 ΣΤΑΘΕΡΕΣ ΕΠΙ ΡΑΣΕΙΣ(CONSTANT EFFECTS) Μία σταθερή επίδραση παραµένει η ίδια καθ όλη την διάρκεια της επίδρασης της Είναι δηλαδή ανεξάρτητη του χρόνου και του επιπέδου των τιµών που λαµβάνουν οι µεταβλητές του σχήµατος Παράδειγµα: Η επίδραση της µεταβλητής 2 στην 1 για όλες τις χρονικές περιόδους, είναι σταθερή και είναι ίση µε β = 0 74 Αυτό συµβολίζεται ως: 0,74 1 = 2 β (35) Αναλυτικότερα η (35) ερµηνεύεται ως εξής: «µία µεταβολή στην 2 θα επιφέρει µία µεταβολή στην 1 ίση µε β = 074 Αν συµβολίσουµε τις µεταβολές µε 1 και 2, τότε µπορούµε να γράψουµε 2 : 1 = β = 074 (Σταθερός Αριθµός) (36) 2 Η µεταβολή αυτή είναι ανεξάρτητη σε σχέση µε τον χρόνο () και τα επίπεδα τιµών που λαµβάνουν οι µεταβλητές του σχήµατος αλληλεξάρτησης 2 και 1 Γραφικά η σχέση (36) παρουσιάζεται στο Σχεδιάγραµµα 33 Επίδραση της 1 2 σε σχέση µε τον χρόνο 1 2 β = 0,74 χρόνος Σχεδιάγραµµα (33) Γραφική παρουσίαση της επίδρασης της µεταβλητής διαµόρφωση της µεταβλητικότητας της 1 2 στην 2 Ο συµβολισµός β ij εκφράζει την επίδραση της µεταβλητής j στην διαµόρφωση της µεταβλητικότητας της µεταβλητής i ηλαδή το β εκφράζει την επίδραση της µεταβλητής 2 στην διαµόρφωση των τιµών της 1 C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
6 Επίδραση της 2 1 σε σχέση µε την µεταβολή της 1 είναι ανεξάρτητη από τις τιµές που λαµβάνει η µεταβλητή β = 0,74 1 Σχεδιάγραµµα (34) Γραφική παρουσίαση της επίδρασης της το ύψος των τιµών 1 2 στην 1 σε σχέση µε Επίδραση της 2 1 σε σχέση µε την µεταβολή της 1 είναι ανεξάρτητη από τις τιµές που λαµβάνει η µεταβλητή β = 0,74 2 Σχεδιάγραµµα (35) Γραφική παρουσίαση της επίδρασης της το ύψος των τιµών 2 2 στην 1 σε σχέση µε C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
7 24 ΜΗ ΣΤΑΘΕΡΕΣ ΕΠΙ ΡΑΣΕΙΣ( ΥΝΑΜΙΚΕΣ ΕΠΙ ΡΑΣΕΙΣ) Μεταξύ των µεταβλητών ενός σχήµατος Αλληλεξαρτήσεων οι υποθέσεις της σταθερότητας των επιδράσεων είναι αν όχι πολύ περιοριστικές, τουλάχιστον υπόκεινται σε κριτική Στην περίπτωση αυτή θα πρέπει να κάνουµε ποιο ρεαλιστικές υποθέσεις για τον τρόπο που διαµορφώνονται οι αλληλεπιδράσεις µεταξύ των οικονοµικών µεταβλητών Ι Μη σταθερές Επιδράσεις σε σχέση µε τον χρόνο Η πρώτη υπό έλεγχο υπόθεση είναι κατά πόσο η επίδραση ( β ij ) µιας µεταβλητής j σε µία άλλη µεταβλητή i είναι σταθερή και δεν µεταβάλλεται εντός µιας χρονικής περιόδου Θα µπορούσε δηλαδή η επίδραση της 2 1 να είναι µία συνάρτηση του χρόνου (), δηλαδή: 1 = ϕ() (Συνάρτηση χρόνου) β (σταθερά) 2 Θα µπορούσε δηλαδή η επίδραση της µεταβλητής 2 στην διαµόρφωση της µεταβλητικότητας της 1 να µην είναι σταθερή και ίση µε β = 0 75 αλλά να µεταβάλλεται µέσα στην χρονική περίοδο που έχουµε υποθέσει ότι εξαντλείται χρονικά Στο Σχεδιάγραµµα 36 παρουσιάζουµε µία τέτοια πιθανή επίδραση, η οποία δεν είναι σταθερή όπως στο Σχεδιάγραµµα 33, αλλά µεταβάλλεται στην διάρκεια µιας χρονικής περιόδου 1 2 φ β, Σχεδιάγραµµα (36) Γραφική παρουσίαση της διαχρονικής επίδρασης της µεταβλητής 2 1 Χρονική χρόνος Περίοδος C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
8 Αυτό σηµαίνει ότι η επίδραση της µεταβλητής 2 στην διαµόρφωση της µεταβλητικότητας της 1 δεν είναι σταθερή αλλά µεταβάλλεται στην διάρκεια µιας χρονικής περιόδου Θα µπορούσαµε να συµβολίσουµε αυτή την περίπτωση, ως εξής: 1 = β = f() (Συνάρτηση του χρόνου ) 2 II Μη Σταθερές Επιδράσεις σε σχέση µε τις µεταβλητές του Σχήµατος Θα µπορούσε επιπλέον η επίδραση της 2 στην 1 να µην είναι σταθερή, και να εξαρτάται από το ύψος είτε της µεταβλητής 1 είτε το ύψος (µέγεθος) της µεταβλητής 2 Στην περίπτωση αυτή, έχουµε: [Η Μεταβολή της 2 εξαιτίας της του ύψους (τιµών) της 1 ] 2 δεν είναι σταθερή αλλά είναι µία συνάρτηση 1 β = ϕ1 2 ( ) 1 (37) ή [Η Μεταβολή της 1 εξαιτίας της φ 2() του ύψους των τιµών της 2 ] 2 δεν είναι σταθερή αλλά είναι µί συνάρτηση 1 β = φ2 2 ( ) 2, (38) ή [Η Μεταβολή της 1 εξαιτίας της () φ 3 του ύψους των τιµών της 2 δεν είναι σταθερή αλλά είναι µία συνάρτηση 1 και της 2 ] ( ) 1 β = ϕ3 1, 2 2 (39) C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
9 Οι σχέσεις (37), (38) και (39) παρουσιάζονται γραφικά στο Σχεδιάγραµµα Επίδραση της 2 σε σχέση µε το ύψος της Επίδραση της 2 σε σχέση µε το ύψος της Επίδραση της 2 1 σε σχέση µε το ύψος των µεγεθών της 1 και Σχεδιάγραµµα (37) Γραφική Παρουσίαση των σχέσεων (37), (38) και (39) Οι ανάλογες γραφικές παρουσιάσεις που αντιστοιχούν στα πραγµατικά δεδοµένα των χρονοσειρών του βασικού παραδείγµατος δίδονται στα Σχεδιαγράµµατα : C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
10 3 2 BB :11963:21966:31969:41973:11976:21979:31982:41986:11989:21992:31995:4 OBS Σχεδιάγραµµα 38 Σταθερή επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης σε σχέση µε τον χρόνο () 3 2 BB INC Σχεδιάγραµµα 39 Σταθερή επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης σε σχέση µε το ύψος του ιαθεσίµου Εισοδήµατος(ΙNC) C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
11 3 2 BB CS Σχεδιάγραµµα 310 Σταθερή επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης σε σχέση µε το ύψος της Ιδιωτικής Κατανάλωσης(CS) Σχεδιάγραµµα 311 Σταθερή επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης σε σχέση µε το ύψος του ιαθεσίµου Εισοδήµατος(ΙNC και σε σχέση µε το ύψος της Ιδιωτικής Κατανάλωσης(CS) C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
12 ΓΕΝΙΚΑ Γενικεύοντας, θα µπορούσαµε να θεωρήσουµε ότι µεταξύ των µεταβλητών ενός σχήµατος αλληλεξάρτησης j ( j = 1,2,3 ) υπάρχουν οι βij επιδράσεις, τις οποίες και παρουσιάζουµε στο Σχεδιάγραµµα 3 1 β 21 β β 13 β 31 2 β 23 3 β 32 Σχεδιάγραµµα (3) Γραφική παρουσίαση των αλληλεπιδράσεων µεταξύ των j j = 1,2,3 µεταβλητών ( ) Θα πρέπει να σηµειώσουµε ότι ο συµβολισµός των επιδράσεων µεταξύ δύο µεταβλητών 1 και 2 είναι ο εξής: \1 1 β 2 ή ij j β i Οι αλληλεπιδράσεις αυτές θα µπορούσαν να είναι: 1 Σταθερές i ij β, j 2 Μη Σταθερές Μεταβλητές β 21 i ij,, j (Σε σχέση µε τον χρόνο) β i 22 j,, 2, j (Σε σχέση µε το ύψος των µεταβλητών j ) C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
13 ΟΙΚΟΝΟΜΙΚΟ ΠΑΡΑ ΕΙΓΜΑ (ΑΣΚΗΣΗ 1) Έχετε στην διάθεση σας στοιχεία για δύο από τις βασικότερες ΜακροΟικονοµικές µεταβλητές της Κατανάλωσης και του ιαθεσίµου Ιδιωτικού Εισοδήµατος Να σχηµατοποιήσετε το στατικό σχήµα αλληλεξαρτήσεων µεταξύ αυτών των µεταβλητών στο πλαίσιο της οριακής ροπής προς κατανάλωση Απάντηση Οι δυνατές εξειδικεύσεις της σχέσης αλληλεξάρτησης µεταξύ των µεταβλητών και y θα µπορούσαν να είναι: C β C (1) y (2) β 21 Σχεδιάγραµµα (313) υνατές αλληλεξαρτήσεις µεταξύ της Κατανάλωσης και του ιαθεσίµου Ιδιωτικού Εισοδήµατος όπου C : Ιδιωτική Κατανάλωση y : ιαθέσιµο Εισόδηµα C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
14 β Ειδικότερα η επίδραση C y κατανάλωση θα µπορούσε να είναι: που εκφράζει την οριακή ροπή 3 προς 1 Σταθερή επίδραση (Σταθερή Οριακή Ροπή προς Κατανάλωση), σε σχέση µε τον χρόνο C y = β f ( ) (Συνάρτηση του χρόνου) C y β Σχεδιάγραµµα 314 Σταθερή επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης Η παραπάνω υπόθεση, υφίσταται έντονες κριτικές, δεδοµένου ότι η οριακή ροπή προς κατανάλωση διαφοροποιείται διαχρονικά Συνήθως µεταβάλλεται µε την πάροδο του χρόνο ( ) 2 Σταθερή Επίδραση ανεξάρτητα του ύψους του ιαθέσιµου Εισοδήµατος C β = = 0, 45 (ύψος του εισοδήµατος) y C y β y ( ιαθέσιµο Εισόδηµα) Σχεδιάγραµµα (315) Σταθερή Επίδραση του ιαθέσιµου Εισοδήµατος στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης 3 Για την έννοια της οριακής ροπής προς κατανάλωση βλέπε οποιοδήποτε εισαγωγικό εγχειρίδιο ΜακροΟικονοµικής ή εισαγωγικής Οικονοµικής C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
15 Μή Σταθερή Επίδραση Και η παραπάνω υπόθεση είναι υπό οικονοµικό έλεγχο, δεδοµένου ότι είναι γνωστό ότι το ύψος της κατανάλωσης εξαρτάται και από το επίπεδο του διαθέσιµου εισοδήµατος µας ( y ) Εν προκειµένου θα µπορούσε η οριακή ροπή προς κατανάλωση να είναι ανάλογη του ιαθέσιµου Εισοδήµατος y ηλαδή, θα µπορούσε η οριακή ροπή προς κατανάλωση να ακολουθούσε ένα σχήµα όπως αυτό που παρουσιάζεται στο Σχεδιάγραµµα (316) C y Οριακή Ροπή προς Κατανάλωση ιαθέσιµο Εισόδηµα y Σχεδιάγραµµα (316) Γραφική παρουσίαση της σχέσης της οριακής ροπής προς Κατανάλωση σε σχέση µε το ύψος του ιαθεσίµου Εισοδήµατος Αλγεβρικά αυτό σηµαίνει ότι: C dc = = ϕ( y ) y dy Με βάση το Σχεδιάγραµµα (3) η οριακή ροπή προς κατανάλωση εξαρτάται από το ύψος του ιαθέσιµου Εισοδήµατος Θα µπορούσαµε επίσης να συµπληρώσουµε ότι όσο αυξάνει το ιαθέσιµο Εισόδηµα, µειώνεται η οριακή ροπή προς κατανάλωση, η οποία τείνει να σταθεροποιηθεί σε κάποιο επίπεδο C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
16 Επιπλέον θα µπορούσαµε να δεχθούµε ότι η µεταβολή που επέρχεται στην Κατανάλωση από µία µεταβολή ( y ) του ιαθέσιµου Εισοδήµατος, δεν είναι ανεξάρτητη από το ύψος της Κατανάλωσης Τέλος θα µπορούσαµε να δεχθούµε ότι η µεταβολή στην Κατανάλωση ( C ) από µία µεταβολή ( y ) του ιαθέσιµου Εισοδήµατος, θα µπορούσε να είναι συνάρτηση και του επιπέδου της Κατανάλωσης και του Εισοδήµατος του ιαθέσιµου Εισοδήµατος Γενικά Θα µπορούσαµε λοιπόν να εξειδικεύσουµε τις σχέσεις αλληλεξάρτησης της Κατανάλωσης µε το ιαθέσιµο Εισόδηµα µε βάση τις εξής δυνατές εξειδικεύσεις: C 1 f (, y, C ) y = β C 2 = β, = f ( ) (Συνάρτηση του χρόνου) y C 3 = β = f ( y ) (Συνάρτηση του ιαθέσιµου Εισοδήµατος) y 4 C y = β = f ( C ) (Συνάρτηση του ύψους της Κατανάλωσης) 5 C y = β = f ( C, y ) (Συνάρτηση του ιαθέσιµου Εισοδήµατος, και του ύψους της Κατανάλωσης) C 6 = β = f ( C, y, ) (Συνάρτηση του ιαθέσιµου Εισοδήµατος, y του ύψους της Κατανάλωσης και της τεχνολογικής προόδου ) C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
17 C:\Documens and Seings\ioanna\Deskop\ioan_1\Skef_2doc
ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc
ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήματα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονομετρικό Υπόδειγμα οι διαχρονικές αλληλεπιδράσεις μεταξύ των μεταβλητών του εξαντλούνται εντός μιας χρονικής
Διαβάστε περισσότεραΟικονοµετρικό Υπόδειγµα. Γράφηµα Ροής 1.
ΕΙΣΑΓΩΓΗ. Μία από τις βασικότερες λειτουργίες της οικονοµετρικής µεθοδολογίας είναι η Συγκεκριµενοποίηση των αλληλεπιδράσεων µεταξύ των διαφόρων οικονοµικών µεγεθών. Η Συγκεκριµενοποίηση αυτή αναφέρεται
Διαβάστε περισσότεραΚεφάλαιο ΙΙΙ. Σχηµατοποίηση ενός Στατικού Σχήµατος Αλληλεπιδράσεων.
Κεφάλαιο ΙΙΙ. Σχηµατοποίηση ενός Στατικού Σχήµατος Αλληλεπιδράσεων. (Συναρτησιακή Εξειδίκευση) Προκειµένου να προσεγγίσουµε αριθµητικά τις αλληλεπιδράσεις µεταξύ των διαφόρων (οικονοµικών) µεγεθών, χρειάζεται
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΣΧΗΜΑΤΟΣ. ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. ( Παλινδρόµηση στον Πληθυσµό και Παλινδρόµηση στο είγµα).
ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΣΧΗΜΑΤΟΣ. ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. ( Παλινδρόµηση στον Πληθυσµό και Παλινδρόµηση στο είγµα). Στην Στατιστική Εξειδίκευση ένα Σχήµα Αλληλεξάρτησης εξειδικεύεται στον Πληθυσµό και το
Διαβάστε περισσότεραΚεφάλαιο ΙΙΙ. Σχηματοποίηση ενός Στατικού Σχήματος Αλληλεπιδράσεων.
Κεφάλαιο ΙΙΙ. Σχηματοποίηση ενός Στατικού Σχήματος Αλληλεπιδράσεων. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\κεφ_-5.doc 5. Σχηματοποίηση του Σχήματος των Αλληλεπιδράσεων. Όπως αναφέρθηκε στα προηγούμενα μέρη,
Διαβάστε περισσότεραΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από
Διαβάστε περισσότεραΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.
:\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ρ. Α. Μαγουλάς Οκτώβριος 4 Η συνάρτηση δ ( και η παράγωγός της Ορίζεται ως εξής: δ ( ανωµαλο
Διαβάστε περισσότεραΜάθηµα 5ο. Το υπόδειγµα της Συνολικής Ζήτησης
Μάθηµα 5ο Το υπόδειγµα της Συνολικής Ζήτησης Η συνολική Ζήτηση και τα συστατικά της Είδαµε ότι ένας τρόπος µέτρησης του ΑΕΠ είναι αυτός της συνολικής δαπάνης της οικονοµίας µε την παρακάτω ταυτότητα GDP
Διαβάστε περισσότεραΣηµειώσεις Οικονοµετρίας Ι.. ικαίος Τσερκέζος
Ο ΚΕΦΑΛΑΙΙΟ 33 Η ΣΣΥΜΜΕΕΤΤΑΒΛΗΤΤΟΤΤΗΤΤΑ ΤΤΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΜΕΕΓΓΕΕΘΩΝ.. (ΣΣΥΣΣΧΕΕΤΤΙ ( ΙΣΣΗ) ) Γραµµική και Μη Γραµµική Συσχέτιση. Συντελεστής Αυτοσυσχέτισης. Μνήµη Χρονοσειρών. 8 7 6 F F F3 F4 F5 F6 F7
Διαβάστε περισσότεραΆσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )
Άσκηση Οικονομετρίας ΙΙ.. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις ) Περιεχόμενα. Γενικά. Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή
2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία
Διαβάστε περισσότεραΥποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.
C:\Documens nd Seings\kpig\Deskop\-------- ------G---- ----S 6.doc Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Στα υποδείγματα με πολυωνυμικά κατανεμημένες διαχρονικές επιδράσεις υποθέτουμε
Διαβάστε περισσότερα5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών
Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει
Διαβάστε περισσότεραΚεφάλαιο 2 Μακροοικονοµική Ισορροπία
Κεφάλαιο 2 Μακροοικονοµική Ισορροπία Σύνοψη Στο κεφάλαιο αυτό αναπτύσσεται η έννοια της µακροοικονοµικής ισορροπίας, η οποία αποδίδεται ως η βραχυχρόνια κατάσταση της οικονοµίας όπου δεν υπάρχουν τάσεις
Διαβάστε περισσότεραΜΕΤΡΗΣΕΙΣ Ι ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ. C:\book I\ΚΕΦΑΛΑΙΟ 2α.doc 1
ΚΕΦΑΛΑΙΟ 2 Ο ΤΑ OIKONOMIKA Ε ΟΜΕΝΑ. THE DATA. TYPES OF DATA TIME SERIES CROSS-SECTIONAL POOLED AND CROSS-SECTIONAL AND TIME SERIES EXPERIMANTED DATA AGGREGATION PROBLEM ΕΙ Η Ε ΟΜΕΝΩΝ: ΧΡΟΝΟΣΕΙΡΕΣ. ΙΑΣΤΡΩΜΑΤΙΚΑ
Διαβάστε περισσότεραΚίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος
υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές
Διαβάστε περισσότερα2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.
2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,
Διαβάστε περισσότεραΗ ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
Διαβάστε περισσότεραΘέµα: Εισοδηµατικός περιορισµός
Θέµα: Εισοδηµατικός περιορισµός Η γραφική απεικόνιση του εισοδηµατικού περιορισµού συνδέεται άµεσα µε την οικονοµική του και αλγεβρική ερµηνεία. Έστω λοιπόν, δύο αγαθά: Χ και Ψ. ν συµβολίσουµε µε το εισόδηµα,
Διαβάστε περισσότεραΠαράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες
Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων
Διαβάστε περισσότερα2. Missing Data mechanisms
Κεφάλαιο 2 ο 2. Missing Data mechanisms 2.1 Εισαγωγή Στην προηγούµενη ενότητα περιγράψαµε κάποια από τα βασικά µοτίβα εµφάνισης των χαµένων τιµών σε σύνολα δεδοµένων. Ένα άλλο ζήτηµα που µας απασχολεί
Διαβάστε περισσότεραόπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Διαβάστε περισσότεραΣχολικός Σύµβουλος ΠΕ03
Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,...,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση
26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.
Διαβάστε περισσότεραΧρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8
Χρηµατικά µέτρα των ωφελειών από ανταλλαγή Διάλεξη 8 Πλεόνασµα καταναλωτή Μπορείτε να αγοράσετε όσο βενζίνη θέλετε, µε το λίτρο, όταν µπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το µέγιστο που θα πληρώνατε
Διαβάστε περισσότεραΠολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος
ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΓΕΝΙΚΑ Όπως είναι ήδη γνωστό οι μεταβλητές που χρησιμοποιούνται
Διαβάστε περισσότεραΗ Μεγάλη Μεγάλη Ύφεση Ύφεση
Η Μεγάλη Ύφεση παρακίνησε πολλούς οικονοµολόγους να να αναρωτηθούν σχετικά µε µε την την εγκυρότητα της της Κλασικής Οικονοµικής Θεωρίας. Τότε Τότε δηµιουργήθηκε η πεποίθηση ότι ότι ένα ένα καινούριο υπόδειγµα
Διαβάστε περισσότεραΟνοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010
Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ο προσδιορισµός του επιπέδου της ιδιωτικής κατανάλωσης, των επενδύσεων και των συνολικών εισαγωγών. Mία εµπειρική µελέτη για την Νορβηγία, την
Διαβάστε περισσότεραΚεφάλαιο 4 Προσδιορισµός Εισοδήµατος και Επιτοκίου Το Υπόδειγµα IS LM
Κεφάλαιο 4 Προσδιορισµός Εισοδήµατος και Επιτοκίου Το Υπόδειγµα LM Σύνοψη Όταν η επενδυτική δαπάνη εξαρτάται από το επιτόκιο, η συνθήκη ισορροπίας στην αγορά αγαθών θα περιλαµβάνει δύο µεταβλητές το εισόδηµα
Διαβάστε περισσότεραΜαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 5 Μαθηµατικό Παράρτηµα Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις διαφορών
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί
Διαβάστε περισσότεραΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ
ΕΞΩΓΕΝΗΣ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ: ΥΠΟΔΕΙΓΜΑΤΑ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 2 ης Εκδοσης Εισαγωγή 1. Το Υπόδειγμα Harrod-Domar 1.1. Εισαγωγή 1.2. Οι Υποθέσεις και η Ισορροπία του Υποδείγματος 1.3. Διερεύνηση
Διαβάστε περισσότερα11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου
ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού
Διαβάστε περισσότερα3. Η µερική παράγωγος
1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο
Διαβάστε περισσότεραΠΕΡΙΦΕΡΕΙΑΚΟΙ ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΛΥΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΛΥΣΗ Μια παράµετρος που πρέπει να συνυπολογίζεται στη διαδικασία των περιφερειακού προγραµµατισµούείναιοιπεριφερειακοίπολλαπλασιαστές (regional multipliers). Η συνήθης
Διαβάστε περισσότεραΚεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
Διαβάστε περισσότεραΜαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις
Διαβάστε περισσότεραΑ1. α. Λ β. Σ γ. Σ δ. Σ ε. Λ
Ενδεικτικές Απαντήσεις Γ Λυκείου Φεβρουάριος Αρχές Οικονοµικής Θεωρίας επιιλογής Α. α. Λ β. Σ γ. Σ δ. Σ ε. Λ ΟΜΑΔΑ ΠΡΩΤΗ Α. δ Α. δ ΟΜΑΔΑ ΔΕΥΤΕΡΗ Β. Σχολικό βιβλίο, σελ. 5: «Τα οικονομικά αγαθά και οι υπηρεσίες
Διαβάστε περισσότεραΜεταβιβάσιµες Άδειες Ρύπανσης (Tradeable Emission Permits) Ας θεωρήσουµε και πάλι ότι υπάρχουν επιχειρήσεις n, ( i 1,2,..., n)
: Άδειες ή ικαιώµατα Ρύπανσης Μεταβιβάσιµες Άδειες Ρύπανσης (Tdeble Emsso Pemts) Ας θεωρήσουµε και πάλι ότι υπάρχουν επιχειρήσεις, (,,..., ) =, που ευθύνονται για την παραγωγή αποβλήτων (ρύπων) ποσότητας,
Διαβάστε περισσότεραΗ οικονοµία στην Μακροχρόνια Περίοδο Τι είναι το κλασσικό υπόδειγµα;
Η οικονοµία στην Μακροχρόνια Περίοδο Τι είναι το κλασσικό υπόδειγµα; Είναι ένα αρκετά απλό αλλά συνάµα θεωρητικά ισχυρό υπόδειγµα δοµηµένο γύρω από αγοραστές και πωλητές οι οποίοι επιδιώκουν τους δικούς
Διαβάστε περισσότερα7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας
7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 8: Η τεχνική των ψευδομεταβλητών - Έλεγχοι σταθερότητας των συντελεστών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότερα3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)
. Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν
Διαβάστε περισσότεραΕίδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το
ΜΑΘΗΜΑ 9ο ΣΥΝΟΛΟΚΛΗΡΩΣΗ (Έννοιες, Ορισµοί) Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το πρόβληµα της
Διαβάστε περισσότεραΚαλάθι αγαθών. Σχέσεις προτίµησης. Ιδιότητες σχέσεων προτίµησης. Notes. Notes. Notes. Notes
Θεωρία Καταναλωτή-Προτιµήσεις Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου 2014 1 / 17 Προτιµήσεις καταναλωτών Θέλουµε
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οι δαπάνες απλώς σημαίνουν τη δαπάνη χρημάτων πρωταρχικά για περισσότερη
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει
Διαβάστε περισσότεραΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική
Διαβάστε περισσότερα3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Μάθημα 5 Πολλαπλασιαστής δαπανών Πολλαπλασιαστής των επενδύσεων! Η μεταβολή του αυτόνομου μέρους των συνολικών δαπανών έχει πολλαπλάσια επίδραση στο επίπεδο των δαπανών και
Διαβάστε περισσότεραΤιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή
3: Μέτρα ευηµερίας του καταναλωτή Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή (Πλεόνασµα καταναλωτή Ισοδύναµη µεταβολή και µεταβολή αποζηµίωσης) Ο ορισµός της κοινωνικής ευηµερίας
Διαβάστε περισσότεραΣτις παρακάτω προτάσεις Α2 και Α3 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα του το γράµµα που αντιστοιχεί στη σωστή απάντηση.
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 24 ΑΠΡΙΛΙΟΥ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να
Διαβάστε περισσότεραΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Ενότητα 3: Προσδιορισμός του εθνικού εισοδήματος H περίπτωση της κλειστής οικονομίας δίχως κυβέρνηση
Ενότητα 3: Προσδιορισμός του εθνικού εισοδήματος H περίπτωση της κλειστής οικονομίας δίχως κυβέρνηση Τμήμα Λογιστικής-Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
Διαβάστε περισσότεραΑΠΟΚΡΙΣΗ ΙΚΤΥΟΥ R-L σε ΤΕΤΡΑΓΩΝΙΚΟ και ΤΡΙΓΩΝΙΚΟ ΠΑΛΜΟ
ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΑΠΟΚΡΙΣΗ ΙΚΤΥΟΥ R- σε ΤΕΤΡΑΓΩΝΙΚΟ και ΤΡΙΓΩΝΙΚΟ ΠΑΛΜΟ ρ. Α. Μαγουλάς Μάρτιος 2017 1 1. Εισαγωγή Στο παρακάτω σχήµα φαίνεται ένα απλό δίκτυο R. ιέγερση (είσοδος)
Διαβάστε περισσότεραΜάθηµα ευτέρας 20 / 11 / 17
90 Μάθηµα ευτέρας 20 / / 7 5) ιανυσµατικά διαγράµµατα στην Η.Μ.Κ. Κατά την µελέτη ηλεκτρικών δικτύων στην Η.Μ.Κ. χρησιµοποιούνται πολύ συχνά τα λεγόµενα διανυσµατικά διαγράµµατα. Οι στρεφόµενοι µε την
Διαβάστε περισσότεραΔΕΟ34. Απάντηση 2ης ΓΕ Επιμέλεια: Γιάννης Σαραντής. ΘΕΡΜΟΠΥΛΩΝ 17 Περιστέρι ,
ΔΕΟ34 Απάντηση 2ης ΓΕ 2016-2017 Επιμέλεια: Γιάννης Σαραντής 1 Ερώτηση Α.1 α) Εάν στα πλαίσια του Κεϋνσιανού υποδείγματος ασκηθεί συσταλτική δημοσιονομική πολιτική με μείωση δημοσίων δαπανών και αύξηση
Διαβάστε περισσότεραΚεφάλαιο 6 Παράγωγος
Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της
Διαβάστε περισσότεραP( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο ιδάσκων: Π. Τσακαλίδης 9ο Φροντιστήριο Επιµέλεια: Κωνσταντίνα Φωτιάδου Ασκηση. Η τ.µ. X ακολουθεί την κανονική κατανοµή
Διαβάστε περισσότεραii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.
Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Διαβάστε περισσότεραΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ
ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα
Διαβάστε περισσότεραΤο θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y
5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και
Διαβάστε περισσότεραΌριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:
Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί
Διαβάστε περισσότεραΕκτίµηση της ζήτησης. Ανάλυση. Μέθοδοι έρευνας µάρκετινγκ ΚΕΦΑΛΑΙΟ 4
Εκτίµηση της ζήτησης ΚΕΦΑΛΑΙΟ 4 Ανάλυση Παλινδρόµησης και Μέθοδοι έρευνας µάρκετινγκ Το πρόβληµα του προσδιορισµού της (πραγµατικής) καµπύλης ζήτησης Η απλή συνένωση στα πλαίσια ενός διαγράµµατος των παρατηρήσεων
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 9.1 Εισαγωγή Στην ανάλυση παλινδρόμησης που περιλαμβάνει στοιχεία χρονοσειρών, αν το υπόδειγμα
Διαβάστε περισσότεραΚεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Διαβάστε περισσότερα9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.
9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)
Διαβάστε περισσότεραΔιεθνές εµπόριο-1 P 1 P 2
Διεθνές εµπόριο-1 Το διεθνές εµπόριο συµβάλλει στην καλύτερη αξιοποίηση των παραγωγικών πόρων της ανθρωπότητας γιατί ελαχιστοποιεί το κόστος παραγωγής της συνολικής προσφοράς αγαθών και υπηρεσιών που διακινείται
Διαβάστε περισσότεραΚεφάλαιο 2. Σύνολα καταναλωτικών επιλογών. Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή. Εισοδηµατικοί περιορισµοί
Κεφάλαιο 2 Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή Σύνολα καταναλωτικών επιλογών p Ένα σύνολο καταναλωτικών επιλογών είναι η δέσµη καταναλωτικών επιλογών που είναι στη διάθεση του καταναλωτή!
Διαβάστε περισσότεραΟικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά
Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν
Διαβάστε περισσότεραc(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: M Τετάρτη 6 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα Ε_ΜλΓΑ(α)
Διαβάστε περισσότεραQ D1 = P και Q S = P.
ΚΕΦΑΛΑΙΟ 5: Ο ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ Να σηµειώσετε µε Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Τιµή ισορροπίας είναι η τιµή στην οποία η ζητούµενη ποσότητα είναι ίση µε την προσφερόµενη ποσότητα.
Διαβάστε περισσότεραΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.
Διαβάστε περισσότερα4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη.
4. Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. Η αγορά ασφαλιστικών συµφωνιών είναι µία ιδιαίτερη περίπτωση αγοράς δικαιωµάτων. Αντικείµενο της αγοράς αυτής είναι να δώσει την ευκαιρία µεταβίβασης εισοδήµατος από
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6. Αποδόσεις κλίµακας, Εκτίµηση κόστους και καινοτοµίες
ΚΕΦΑΛΑΙΟ 6 Αποδόσεις κλίµακας, Εκτίµηση κόστους και καινοτοµίες Αποδόσεις κλίµακας Ο βαθµός στον οποίο µεταβάλλεται η παραγωγή µετά από µια µεταβολή στην ποσότητα των εισροών που χρησιµοποιούνται στην
Διαβάστε περισσότεραΣηµειώσεις. Μικροοικονοµικής Θεωρίας ΙΙΙ (ΜΙΚΟ 201)
Σηµειώσεις Μικροοικονοµικής Θεωρίας ΙΙΙ (ΜΙΚΟ 201) «Γενική Ισορροπία του Πλήρους Ανταγωνισµού» Βαγγέλης Τζουβελέκας Ρέθυµνο, 2003 ΚΕΦΑΛΑΙΟ 2 ΓΕΝΙΚΗ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΠΛΗΡΟΥΣ ΑΝΤΑΓΩΝΙΣΜΟΥ 2.1 Γενική Ισορροπία
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 8.1 Η Φύση των Ψευδομεταβλητών Οι μεταβλητές που παίρνουν τιμές 0 και 1 ονομάζονται ψευδομεταβλητές
Διαβάστε περισσότεραΆσκηση 1. Μικροοικονοµική 5. ΖΗΤΗΣΗ ΚΑΙ ΠΡΟΣΦΟΡΑ. 5η Εισήγηση. Αξία ραδιοφώνων. Αριθµός ραδιοφώνων που χάνονται κάθε εβδοµάδα
Αριθµός φυλάκων Αριθµός ραδιοφώνων που χάνονται κάθε Άσκηση 1 Αξία ραδιοφώνων που χάνονται κάθε Πρόσθετο όφελος από κάθε φρουρό 0 100 1000 1 70 700 300 2 50 500 200 3 40 400 100 4 32 320 80 5 25 250 70
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Διαβάστε περισσότεραΤο περιβάλλον ως σύστηµα
Το περιβάλλον ως σύστηµα Σύστηµα : ηιδέατουστηθεώρησητουκόσµου Το σύστηµα αποτελεί θεµελιώδη έννοια γύρω από την οποία οργανώνεται ο τρόπος θεώρησης του κόσµου και των φαινοµένων που συντελούνται µέσα
Διαβάστε περισσότεραΥλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!
Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται
Διαβάστε περισσότεραΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και A5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,
Διαβάστε περισσότεραΜακροοικονομική. Διάλεξη 4 Η Καμπύλη IS
Μακροοικονομική Διάλεξη 4 Η Καμπύλη IS 1 Η Νεοκλασική Σύνθεση Σε αυτή την διάλεξη θα αναπτύξουμε το πρώτο μέρος του IS-LM υποδείγματος To IS-LM υπόδειγμα προσπαθεί να εξηγήσει πως λειτουργεί η οικονομία
Διαβάστε περισσότεραΖήτηση για εκπαιδευση
Ζήτηση για εκπαιδευση Έστω, ότι η ζωή ενός ατόμου i, i = 1,, n, χωρίζεται σε δυο περιόδους, t και t + 1. Η πρώτη περίοδος αφορά την εφηβεία και η δεύτερη περίοδος αφορά την ενηλικίωση. Το άτομο αφιερώνει
Διαβάστε περισσότεραΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που
Διαβάστε περισσότεραx=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).
3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ
ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:
Διαβάστε περισσότεραΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Στην αγορά ενός αγαθού συμμετέχουν δύο καταναλωτές, των οποίων οι ατομικές συναρτήσεις
Διαβάστε περισσότεραΑ. Αυτάρκης Οικονομία
σελ. από 9 Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Οικονομικής Επιστήμης Μάθημα: 473 Διεθνής Οικονομική Εαρινό Εξάμηνο 05 Καθηγητής: Γιώργος Αλογοσκούφης Φροντιστής: Αλέκος Παπαδόπουλος 8/5/05 Διαγραμματική
Διαβάστε περισσότεραΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών
54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής
Διαβάστε περισσότεραΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)
ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΛΟΓΟΙ ΥΠΑΡΞΗΣ ΤΟΥ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΚΑΙ ΘΕΩΡΙΑ ΑΠΟΛΥΤΟΥ ΚΑΙ ΣΥΓΚΡΙΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ
Πρόκειται για τµήµα των σηµειώσεων (περίπου το 20%) για το test δεξιοτήτων στην ύλη της διεθνούς οικονοµικής ΕΝΟΤΗΤΑ 1: ΛΟΓΟΙ ΥΠΑΡΞΗΣ ΤΟΥ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΚΑΙ ΘΕΩΡΙΑ ΑΠΟΛΥΤΟΥ ΚΑΙ ΣΥΓΚΡΙΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ
Διαβάστε περισσότεραΤρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται
Διαβάστε περισσότερα