Καλάθι αγαθών. Σχέσεις προτίµησης. Ιδιότητες σχέσεων προτίµησης. Notes. Notes. Notes. Notes
|
|
- Νηλεύς Κουταλιανός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία Καταναλωτή-Προτιµήσεις Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Προτιµήσεις καταναλωτών Θέλουµε να αναλύσουµε τις επιλογές ενός καταναλωτή. ηλ. Πώς επιλέγει να καταναλώσει ως συνάρτηση των µεταβλητών που είναι εξωγενείς γιαυτόν (δεν τις επηρεάζει άµεσα ο ίδιος). Μεταβλητές επιλογής Πόσα πορτοκάλια και λάδι µηχανής καταναλώνω. Εξωγενείς µεταβλητές τιµές πορτοκαλιών, λαδιού, εισόδηµα (είναι το εισόδηµα πάντα εξωγενές;) Η επιλογή του µας δείχνει τί προτιµάει. Εγώ π.χ. προτιµάω ένα ποτήρι γάλα + 1 κρουασάν από καφέ και τοστ µε µαρµελάδα που στοιχίζουν το ίδιο (0 σε προπληρωµένο ξενοδοχείο). Θέλουµε να µελετήσουµε σχέσεις προτίµησης. Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 2 Ερωτήσεισ: 1 Τί είναι καλάθι αγαθών; Σκεφτείτε το σαν το καλάθι της νοικοκοιράς. Η σαν το καλάθι στο amazon ή σε online shopping site. Περιέχει διαφορετικές ποσότητες διαφορετικών αγαθών. Π.χ. 2 κιλά πορτοκάλια, 1 µαρούλι, 2 Johnnie Walker, 4 κατσαβίδια κλπ. 2 Μεταξύ δύο καλαθιών ποιό προτιµάω; Η απάντηση στην ερώτηση 2 µας δίνει τις προτιµήσεις ενός καταναλωτή. Αν ξέρω για κάποιον καταναλωτή µεταξύ οποιωνδήποτε 2 καλαθιών µε αγαθά ποιο προτιµάει, τότε ξέρω τις σχέσεις προτίµησής του (και όπως ϑα δούµε ξέρω και την επιλογή του). Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Παραδείγµατα καλαθιών µε 5 αγαθά: 1 [1 υποκάµισο, 3 µπουκάλια νερό, 3 αυτοκίνητα, 4 ϐιβλία 1/2 κιλό αλεύρι] 2 [ 2 υποκάµισα, 2 µπουκάλια νερό, 1 αυτοκίνητο, 25 ϐιβλία 1/2 κιλό αλεύρι ] Για να ξεκινήσουµε την ανάλυση σκεφτείτε το απλούστερο δυνατόν καλάθι: 2 αγαθά, [, ]. : µπύρα : λουκάνικα Πώς τα απεικονίζουµε γραφικά στο χώρο των 2 διαστάσεων; Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17
2 F E F E C,D C D B B A A A F B C E D Σχήµα : Καλάθια αγαθών και. Το καλάθι i περιέχει i ποσότητα αγαθού και i ποσότητα αγαθού. Π.χ. το καλάθι E περιέχει E ποσότητα αγαθού και E ποσότητα αγαθού. Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Μπορούµε να «γεµίσουµε» το χώρο µε τέτοια καλάθια. ηλαδή κάθε σηµείο του επιπέδου αντιστοιχεί σε ένα τέτοιο καλάθι. Σχέσεις προτίµησησ: Ο κανόνασ/εγχειρίδιο/τυφλοσούρτης που µας λέει για έναν καταναλωτή, ανάµεσα σε δύο τέτοια καλάθια ποιο προτιµάει. Συµβολισµός σχέσεων προτίµησης του καταναλωτή i: A i B Ο i ϑεωρεί το καλάθι A τουλάχιστον τόσο καλό όσο και το B. εξωγενείσ: εν εξετάζουµε γιατί [ 3 µπύρες + 1 τζατζίκι] i [1 µπύρα + 2 τζατζίκια] εχόµαστε ότι αυτές είναι οι προτιµήσεις του. Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Συγκρίσεις καλαθιών Η σχέση προτίµησης που αναφέραµε παραπάνω (Θεωρώ το καλάθι A τουλάχιστον τόσο καλό όσο και το B) αρκεί για να οριστεί οποιαδήποτε προτίµηση µεταξύ καλαθιών. Αλλες πιθανές σχέσεις προτίµησησ: 1 A i B: Ο i προτιµάει το καλάθι A από το καλάθι B. Ορίζεται ως A i B και B i A. 2 A i B: Ο i είναι αδιάφορος µεταξύ του A και του B. Ορίζεται ως A i B και B i A Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Ιδιότητες σχέσεων προτίµησης Ιδιότητες σχέσεων προτίµησης Θεωρούµε ότι οι σχέσεις προτίµησης υπακούουν σε κάποιους «λογικούς» κανόνες (ώστε ο καταναλωτής να µπορεί να αποφασίσει µεταξύ καλαθιών χωρίς ο τρόπος επιλογής του να είναι «τρελλός»). Θεωρούµε ότι οι προτιµήσεις ενός καταναλωτή είναι: 1 Πλήρεισ: Είτε A B, είτε B A, είτε A B. Μπορεί πάντα να συγκρίνει δύο καλάθια αγαθών. εν «παίζει» το «δεν ξέρω» στη σύγκριση. 2 Μεταβατικέσ: Αν προτιµάει το A από το B και το B από το C τότε ϑα πρέπει να προτιµάει το A από το C. Ο καταναλωτής δεν κάνει κύκλους όταν καλείται να επιλέξει. 3 Μη κορεσµένες (τεχνικό). Μονοτονικές πιο ισχυρή υπόθεση: Περισσότερο είναι καλύτερο. Ισχύει πάντοτε; 4 Συνεχείς (τεχνική υπόθεση): Ο καταναλωτής δεν έχει ξαφνικές «αλλαγές διάθεσης». Π.χ. αν προτιµάει κόκκους Ϲάχαρης από ένα µήλο, ϑα προτιµάει και κόκκους Ϲάχαρης από ένα µήλο. Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17
3 Ορισµός Λέµε ότι µια πραγµατική συνάρτηση «αναπαριστά» τις σχέσεις προτίµησης i ενός καταναλωτή i, αν για δύο οποιαδήποτε καλάθια αγαθών A, B ισχύει: A i B (A) (B) Η συνάρτηση ονοµάζεται συνάρτηση χρησιµότητας. Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Θεώρηµα Αν οι σχέσεις προτίµησης ενός καταναλωτή i υπακούουν στις υποθέσεις 1 έως 4 παραπάνω, τότε υπάρχει µια πραγµατική, συνεχής συνάρτηση που τις αναπαριστά. Σηµασία: Τεράστια. Αντί να συγκρίνουµε ένα ένα όλα τα πιθανά καλάθια (πράγµα αδύνατον πρακτικά και ϑεωρητικά- είναι uncountable) µεγιστοποιούµε τη συνάρτηση χρησιµότητας όπου λαµβάνει τη µέγιστη τιµή Το καλάθι αυτό προτιµάται από όλα τα άλλα από τον καταναλωτή. Η συνάρτηση χρησιµότητας δίνει στο κάθε καλάθι µια αριθµητική τιµή. Οσο µεγαλύτερη η τιµή τόσο προτιµότερο το καλάθι. Ας δούµε γραφικά τι κάνει: Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 F E F E (D)=7 C,D C D (E)=4 B A A B (C)=3 (F)=2 (B)=1.3 (A)=1 A F B C E D 0 Σχήµα : Καλάθια αγαθών και και συνάρτηση χρησιµότητασ: (D) > (E) > (C) > (F) > (B) > (A) D i E i C i F i B i A Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Με δυο αγαθά (, ), η συνάρτηση χρησιµότητας απεικονίζεται σαν µια επιφάνεια (σεντόνι) στο χώρο. z Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17
4 Οριακή Χρησιµότητα Οριακή χρησιµότητα Θέλουµε να εξετάσουµε πόσο αυξάνει τη χρησιµότητά µας µικρή επιπλέον µονάδα αγαθού ας πούµε. ηλαδή πόσο µεταβάλλεται η χρησιµότητα ενός καταναλωτή αν αυξηθεί ελάχιστα η ποσότητα αγαθού που καταναλώνει: Οριακή χρησιµότητα ως προς : M =. Είναι ο λόγος της µεταβολής στη χρησιµότητα προς τη µεταβολή στην κατανάλωση του αγαθού. Μαθηµατικά είναι η µερική παράγωγος της ως προς : M = (,) (+,) (,) = lim 0 = (, ). Γραφικά σκεφτείτε ότι κρατούµε το σταθερό και εξετάζουµε πώς µεταβάλλεται η όταν µεταβάλλεται το. Η οριακή χρησιµότητα είναι η πρώτης τάξης παράγωγος και µας δίνει σε κάθε σηµείο την κλίση της εφαπτοµένης της ως συνάρτησης του : Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Οριακή Χρησιµότητα (, ȳ) εφ ˆθ =.3 εφ ˆθ =1 M 1.3 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Φθίνουσα Οριακή Χρησιµότητα Φθίνουσα Οριακή χρησιµότητα (,) Είναι λογικό να ϑεωρήσουµε ότι όταν. ηλαδή, όσο τρώµε µια µπουκιά επιπλεόν µπανάνας, µας ευχαριστεί αλλά όλο και λιγότερο: Σκεφτείτε τον καταναλωτή να πεινάει. Η πρώτη µπουκιά του ϐελτιώνει τη ϑέση πάρα πολύ. Η δεύτερη τον ευχαριστεί πολύ. Οσο καταναλώνει κι άλλο αυξάνει η ευχαρίστησή του, άλλα όλο και λιγότερο. Αυτό µας λέει ο νόµος της ϕθίνουσας οριακής χρησιµότητας. Αν και η µονοτονικότητα των προτιµήσεων (που ϑυµηθείτε δεν είναι απαραίτητη, µας αρκει τοπικός µη κορεσµός) µας αποκλείει ένα τέτοιο ενδεχόµενο, ϑεωρητικά (και πρακτικά) είναι δυνατόν µια έξτρα µπουκιά να µειώνει τη χρησιµότητά µας. (π.χ. όταν έχουµε ϐαρυστοµαχιάσει). Τότε η οριακή χρησιµότητα µπορεί να γίνει και αρνητική. Γραφικά: Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17 Φθίνουσα Οριακή Χρησιµότητα (, ȳ) αρχίζει η δυσπεψία: από εδώ και πέρα όσο τρώω χειροτερεύω M } θετική οριακή χρησιμότητα } αρνητική οριακή χρησιμότητα 0 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17
5 Υπολογισµός Οριακής Χρησιµότητας Οριακή χρησιµότητα αλγεβρικά Ας δούµε πώς υπολογίζουµε την οριακή χρησιµότητα ενός καταναλωτή µε προτιµήσεις που αναπαριστώνται από Cobb-Douglas συναρτήσεις χρησιµότητας. (, ) = 3 1/3 2/3. (3, 1) M ( = 3, = 1) = = ,1 = = = (3, 1) M ( = 3, = 1) = = 2 (3) = Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου / 17
Notes. Notes. Notes. Notes
Θεωρία Καταναλωτή-Προτιμήσεις Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιμήσεις 3 Οκτωβρίου 2012 1 / 19 Προτιμήσεις καταναλωτών Θέλουμε
Μικροοικονοµική Θεωρία. Ζήτηση ενός αγαθού ως συνάρτηση της τιµής. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 40 Ζήτηση ενός αγαθού ως συνάρτηση της τιµής
Μικροοικονοµική Θεωρία. Τιµές και εισόδηµα. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 30 Τιµές και εισόδηµα Η συνάρτηση χρησιµότητας
Γενική Ισορροπία. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 50. Παρατήρηση. Στη γενική ισορροπία προσέξτε ότι οι καµπύλες
Μικροοικονοµική Θεωρία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 24 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 4 Σεπτεµβρίου 014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 4 Σεπτεµβρίου 014 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη
Γενική Ισορροπία. Γενική ισορροπία vs Μερική ισορροπία. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 30 Γενική ισορροπία - Εισαγωγή Γενική ισορροπία vs Μερική ισορροπία
Γενική Ισορροπία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 013 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη αντιστοιχία
Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία-Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία-Ευηµερία 19 Απριλίου 2013 1 / 20 Το πρώτο Θ.Θ.Ο.Ε. µας λέει ότι κάθε Βαλρασιανή
Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων
Ορθολογισµός στην οικονοµική Διάλεξη 3 Προτιµήσεις!1 Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη
Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες
Μικροοικονοµική Θεωρία. Γενική ισορροπία - Ανταλλαγή. Γενική ισορροπία - Ανταλλαγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 23 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 2014 1 / 23. Η οικονοµία των δύο καταναλωτών µε δύο αγαθά
Notes. Notes. Notes. Notes
Θεωρία Καταναλωτή: Αβεβαιότητα Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 0 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή: Αβεβαιότητα 9 Οκτωβρίου 0 / 5 Ανάγκη θεωρίας επιλογής υπό αβεβαιότητα
Λύσεις Πρώτου Πακέτου Ασκήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα
Γενική Ισορροπία. Γενική ισορροπία - Ανταλλαγή. Γενική ισορροπία - Ανταλλαγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 23. Η οικονοµία των δύο καταναλωτών µε δύο αγαθά που παρουσιάσαµε
Μικροοικονοµική Θεωρία. Μονοπώλιο. Μονοπώλιο. Μονοπώλιο. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 23 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 2014 1 / 26 Ως τώρα, υποθέσαµε ότι οι αγορές είναι ανταγωνιστικές.
ιάλεξη 3 Προτιµήσεις ~ σηµαίνει ότι το x προτιµάται τουλάχιστο όσο και ~ f Ορθολογισµός στην οικονοµική Σχέσεις προτιµήσεων
Ορθολογισµός στην οικονοµική ιάλεξη 3 Προτιµήσεις Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη διάθεση
Notes. Notes. Notes. Notes
Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 26 Μαΐου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) 26 Μαΐου 2012 1 / 19 Εως τώρα τα αγαθά που θεωρήσαμε ότι καταναλώνει ο καταναλωτής ήταν ιδιωτικά αγαθά. Με απλά λόγια
Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160
Ελαχιστοποίηση κόστους Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Ελαχιστοποίηση κόστους 9 Οκτωβρίου 2012 1 / 36 Κόστος Το πρόβλημα εύρεσης ενός άριστου καλαθιού
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Κεφάλαιο 3 Οικονοµικά των Επιχειρήσεων Ε. Σαρτζετάκης 1 Καταναλωτική συµπεριφορά! Σκοπός αυτής της διάλεξης είναι να εξετάσουµε τον τρόπο µε τον οποίο οι καταναλωτές
Γενική Ισορροπία- Υπαρξη και µοναδικότητα. Υπαρξη ϐαλρασιανής ισορροπίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία- Υπαρξη και µοναδικότητα Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία- Υπαρξη και µοναδικότητα 19 Απριλίου 2013 1 / 44 ύο Ϲητήµατα
Γενική Ισορροπία. Παραδείγµατα γενικής ισορροπίας µε ανταλλαγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 25 Παραδείγµατα γενικής ισορροπίας µε ανταλλαγή. ιαφορετικές προτιµήσεις
Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει
Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)
Κοινωνική επιλογή και Ευηµερία. Κοινωνική επιλογή. Κοινωνική επιλογή, το παράδοξο του Condorcet. Notes. Notes. Notes. Notes.
Κοινωνική επιλογή και Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευηµερία 19 Απριλίου 013 1 / 51 Κοινωνική επιλογή. Κοινωνική επιλογή.
Κεφάλαιο 1. Θεωρία Ζήτησης
Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.
Θεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Μικροοικονοµική Θεωρία. Προσφορά προϊόντος από επιχείρηση. Προσφορά προϊόντος από επιχείρηση. = 0 p = dc(q) Notes. Notes. Notes.
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 214 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 214 1 / 25 Προσφορά προϊόντος από επιχείρηση Ποια είναι
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές
Οικονοµικό Πανεπιστήµιο Αθηνών. Ε. Ο. Σ. Μικροοικονοµική ΙΙ Εξετάσεις Ιανουαρίου ιδάσκων : Ρουµανιάς Κώστας
Οικονοµικό Πανεπιστήµιο Αθηνών. Ε. Ο. Σ. Μικροοικονοµική ΙΙ Εξετάσεις Ιανουαρίου 2014 ιδάσκων : Ρουµανιάς Κώστας 24-2-2015 ΕΠΩΝΥΜΟ : ΟΝΟΜΑ : ΠΑΤΡΩΝΥΜΟ : ΑΡ. ΜΗΤΡΩΟΥ : Ο ΗΓΙΕΣ : Να απαντηθούν όλα τα ακόλουθα
Μικροοικονοµική Θεωρία
Μικροοικονοµική Θεωρία Θεωρία Χρησιµότητας και Προτιµήσεων. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. Συνολική και οριακή χρησιµότητα Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Ιστορική Αναδροµή
Εξωτερικές Οικονοµίες
Εξωτερικές Οικονοµίες Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 31 Μαΐου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Εξωτερικές Οικονοµίες 31 Μαΐου 2013 1 / 31 Εξωτερικότητες. Εξωτερικότητες. Ορισµός (Εξωτερικότητα)
(µονάδες 25) ΟΜΑ Α Β Να περιγράψετε, χρησιµοποιώντας και το κατάλληλο σχεδιάγραµµα, το οικονοµικό κύκλωµα.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 5 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Σηµαντικό ρόλο στη µεγιστοποίηση
Notes. Notes. Notes. Notes. p x. x x
Θεωρία ζήτησης Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία ζήτησης 9 Οκτωβρίου 2012 1 / 40 Ζήτηση ενός αγαθού ως συνάρτηση της τιμής Δεδομένου ότι ένας
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές
Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της
Οι επιδράσεις µιας µεταβολής της τιµής Διάλεξη 7 Εξίσωση Slutsk Τι θα συµβεί όταν µειωθεί η τιµή ενός αγαθού; Αποτέλεσµα υποκατάστασης : το αγαθό γίνεται σχετικά πιο φτηνό και γι αυτό ο καταναλωτής υποκαθιστά
Μικροοικονομική. Θεωρία Συμπεριφοράς Καταναλωτή
Μικροοικονομική Θεωρία Συμπεριφοράς Καταναλωτή Συνολική και οριακή ρησιμότητα Η κατανάλωση αγαθών συνεπάγεται κάποια ικανοποίηση ή ρησιμότητα για τον καταναλωτή. Συνολική ρησιμότητα (U) είναι η συνολική
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ
ΚΕΦΑΛΑΙΟ 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ Όταν εξετάζουµε µία συγκεκριµένη αγορά, πχ. την αστική αγορά εργασίας, η ανάλυση αυτή ονοµάζεται µερικής ισορροπίας. Όταν η ανάλυση µας περιλαµβάνει
Notes. Notes. Notes. Notes. T A = ŵ A p 1 e A 1 p 2e A 2 T B = ŵ B p 1 e A 1 p 2e B 2. 1 x A. 2 x B
Γενική Ισορροπία-Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Γενική Ισορροπία-Ευημερία 3 Δεκεμβρίου 2012 1 / 17 Το πρώτο Θ.Θ.Ο.Ε. μας λέει ότι κάθε
Συνάρτηση χρησιμότητας (utility function): u(x)
Συνάρτηση χρησιμότητας (utility function): u(x) είναι ένας τρόπος να δώσουμε έναν αριθμό σε κάθε δυνατό συνδυασμό κατανάλωσης, τέτοιο ώστε να δίνονται μεγαλύτεροι αριθμοί στους πλέον προτιμώμενους συνδυασμούς
Προτιµήσεις-Υπενθύµιση
Προτιµήσεις-Υπενθύµιση Διάλεξη 4 x y: To x προτιµάται σαφώς από το y.! x ~ y: Το x και το y προτιµούνται εξίσου. Χρησιµότητα! x y: Το x προτιµάται τουλάχιστο όσο και το y.!1! 1 Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Πρώτου Πακέτου Ασκήσεων 1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε με το
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Κεφάλαιο 6 Παράγωγος
Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ: ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΑΙ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑ: Μικροοικονομική Ι ΔΙΔΑΣΚΩΝ: Νίκος
Notes. Notes. Notes. Notes. A B C x y z y z x z x y
Κοινωνική επιλογή και Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 01 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευημερία 3 Δεκεμβρίου 01 1 / 50 Κοινωνική επιλογή. Κοινωνική επιλογή.
Άσκηση 1. Μικροοικονοµική 5. ΖΗΤΗΣΗ ΚΑΙ ΠΡΟΣΦΟΡΑ. 5η Εισήγηση. Αξία ραδιοφώνων. Αριθµός ραδιοφώνων που χάνονται κάθε εβδοµάδα
Αριθµός φυλάκων Αριθµός ραδιοφώνων που χάνονται κάθε Άσκηση 1 Αξία ραδιοφώνων που χάνονται κάθε Πρόσθετο όφελος από κάθε φρουρό 0 100 1000 1 70 700 300 2 50 500 200 3 40 400 100 4 32 320 80 5 25 250 70
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ Οι τιµές Στην οικονοµία οι τιµές παίζουν βασικό ρόλο. Κατανέµουν τους παραγωγικούς πόρους στις τοµείς όπου υπάρχει µεγαλύτερη ζήτηση µε το πιο αποτελεσµατικό τρόπο. Αυτό το οποίο
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.
Προτιµήσεις-Υπενθύµιση
Προτιµήσεις-Υπενθύµιση ιάλεξη 4 Χρησιµότητα x y: To x προτιµάται σαφώς από το y. x y: Το x και το y προτιµούνται εξίσου. y: Το x προτιµάται τουλάχιστο όσο και το y. x f Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση
Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος
υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές
Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους
Μορφές καµπυλών κόστους Διάλεξη 13 Καµπύλες κόστους Καµπύλη συνολικού κόστους είναι η γραφική απεικόνιση της συνάρτησης συνολικού κόστους. Καµπύλη µεταβλητού κόστους είναι η γραφική απεικόνιση της συνάρτησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Φεβρουαρίου
Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ
Άσκηση 1 Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ και Υ. Α Β Γ Δ Ε Χ 90 30 5 55 50 Υ 10 80 40 0 55 Ποιες από τις παρακάτω προτάσεις θεωρείτε ότι αντιστοιχούν σε ορθολογική
Μικροοικονοµική Θεωρία. Οικονοµικές πολιτικές σε ανταγωνιστικό περιβάλλον. Deadweight loss: Νεκρή Ϲηµία. Notes. Notes. Notes. Notes.
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 1 Οικονοµικές πολιτικές σε ανταγωνιστικό περιβάλλον.
Ανταγωνιστικές Οικονοµίες Ανταλλαγής
Κεφάλαιο 1 Ανταγωνιστικές Οικονοµίες Ανταλλαγής 1.1 Οικονοµία Ανταλλαγής Οπως και στο προηγουµενο κεφάλαιο, υποθέτουµε ότι ο χώρος αγα- ϑών είναι διατεταγµένος χώρος µε norm E και το σύνολο κατανάλωσης
Εισαγωγή στον Προγραµµατισµό. Σύντοµες Σηµειώσεις. Γιώργος Μανής
Εισαγωγή στον Προγραµµατισµό Σύντοµες Σηµειώσεις Γιώργος Μανής Νοέµβριος 2012 Αλγόριθµοι και Λογικά ιαγράµµατα Αλγόριθµος λέγεται µία πεπερασµένη διαδικασία καλά ορισµένων ϐηµάτων µου ακολουθείται για
Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία
Τεχνολογίες Διάλεξη 0 Τεχνολογία Τεχνολογία είναι µια διαδικασία µε την οποία εισροές µετατρέπονται σε εκροές. π.χ. εργασία, ένας υπολογιστής, ένας προβολέας, ηλεκτρισµός, κ.α. Συνδυάζονται για την παραγωγή
E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι
E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)
Κεφάλαιο 5 R (2, 3) R (3, 0)
Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική
Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις
Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ
Πολιτική Οικονομία Ενότητα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 03: Ζήτηση και προσφορά αγαθών Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη
Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο
Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά
Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν
4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2014-2015 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων και λύσεων 1. Σωστό ή Λάθος (εξηγείστε):
ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ. Η ζήτηση των αγαθών
ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ Η ζήτηση των αγαθών ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις της µορφής σωστό-λάθος Σηµειώστε αν είναι σωστή ή λανθασµένη καθεµιά από τις παρακάτω προτάσεις, περιβάλλοντας µε ένα κύκλο το αντίστοιχο
Τρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται
ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ: ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΑΙ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑ: Μικροοικονομική Ι ΔΙΔΑΣΚΩΝ: Νίκος
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που
Σχολικός Σύµβουλος ΠΕ03
Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις
Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή
3: Μέτρα ευηµερίας του καταναλωτή Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή (Πλεόνασµα καταναλωτή Ισοδύναµη µεταβολή και µεταβολή αποζηµίωσης) Ο ορισµός της κοινωνικής ευηµερίας
ΠΑΡΑΓΩΓΟΙ. ΣΗΜΕΙΑ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ Ι ΙΑΙΤΕΡΗ ΠΡΟΣΟΧΗ
Ηµερίδα Μαθηµατικών στην Κοζάνη την 5-3-09. ιοργανωτής: ΕΜΕ Κοζάνης. Συνδιοργανωτές: Σύλλογος Εκπαιδευτικών Φροντιστών υτ. Μακεδονίας και Σχολικός Σύµβουλος υτ. Μακεδονίας ΠΑΡΑΓΩΓΟΙ. ΣΗΜΕΙΑ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))
Διεθνές εµπόριο-1 P 1 P 2
Διεθνές εµπόριο-1 Το διεθνές εµπόριο συµβάλλει στην καλύτερη αξιοποίηση των παραγωγικών πόρων της ανθρωπότητας γιατί ελαχιστοποιεί το κόστος παραγωγής της συνολικής προσφοράς αγαθών και υπηρεσιών που διακινείται
4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών
54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται
Σύνολο ασκήσεων 5. = = ( ) = = ( ) = p ln ( ) Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης)
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή,, (συμβολισμός ή,, ) για τις παρακάτω συναρτήσεις = 1 3 = ( 1 3 4 )= 1 1 3+5 3 +8ln( 1 )+ 4 = ( ) = +3 + +3 = ( ) = p ln ()+ +
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει
Notes. Notes. Notes. Notes
Αγορές - Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 6 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - 6 Δεκεμβρίου 2012 1 / 26 Ως τώρα, υποθέσαμε ότι οι αγορές είναι ανταγωνιστικές. Μία συνέπεια των
Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )
2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε
Το Πρότυπο Υπόδειγμα του Διεθνούς Εμπορίου 5-1
Το Πρότυπο Υπόδειγμα του Διεθνούς Εμπορίου 5-1 Επισκόπηση Μετρώντας την αξία της παραγωγής και της κατανάλωσης Ευημερία και όροι εμπορίου Επιδράσεις της οικονομικής ανάπτυξης Επιδράσεις διεθνών μεταβιβάσεων
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο
Notes. Notes. Notes. Notes
Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. / 7 Κριτική στη θεωρία καταναλωτή Θεωρία καταναλωτή Η θεωρία του καταναλωτή που εξετάσαμε βασίστηκε πάνω σε μια σειρά υποθέσεων. Αναφέραμε ότι θεωρητικά η θεωρία
Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
1 Μερική παραγώγιση και μερική παράγωγος
Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες
ΑΛΛΗΛΕΞΑΡΤΗΣΗ ΚΑΙ ΤΑ ΚΕΡ Η ΤΟΥ ΕΜΠΟΡΙΟΥ
ΑΛΛΗΛΕΞΑΡΤΗΣΗ ΚΑΙ ΤΑ ΚΕΡ Η ΤΟΥ ΕΜΠΟΡΙΟΥ Κεφάλαιο 3 Αλληλεξάρτηση και εµπόριο! Η οικονοµική εξετάζει πως οι κοινωνίες παράγουν και διανέµουν τα αγαθά προσπαθώντας να ικανοποιήσουν τις ανάγκες και επιθυµίες
Θέµα: Εισοδηµατικός περιορισµός
Θέµα: Εισοδηµατικός περιορισµός Η γραφική απεικόνιση του εισοδηµατικού περιορισµού συνδέεται άµεσα µε την οικονοµική του και αλγεβρική ερµηνεία. Έστω λοιπόν, δύο αγαθά: Χ και Ψ. ν συµβολίσουµε µε το εισόδηµα,
= γ + δ P απαιτεί γ > 0
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 10 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η τιµή ενός αγαθού Χ αυξάνεται.
ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)
ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η Αποτελεσματικότητα και Ευημερία Ζητήματα που θα εξεταστούν: Πότε και πως επιτυγχάνεται η οικονομική αποτελεσματικότητα Θεωρήματα των οικονομικών της
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση
Πρώτο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 208-209 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 6 Νοεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου