ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών"

Transcript

1 ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1

2 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,..., X K. Η συνάρτηση f είναι γραµµική ως προς τις X 1,..., X K, αν για κάθε j = 1,..., K η f X j δεν εξαρτάται από την X j. H συνάρτηση f είναι προσθετική ως προς τις X 1,..., X K, αν για κάθε j = 1,..., K η f X j δεν εξαρτάται από την X l, για κάθε l j, l = 1,..., K. H συνάρτηση f είναι γραµµική και προσθετική ως προς τις X 1,..., X K, αν για κάθε j = 1,..., K η f X j δεν εξαρτάται από τις X 1,..., X K. Το γραµµικό υπόδειγµα παλινδροµήσης είναι γραµµικό και προσθετικό ως προς τις ερµηνευτικές µεταβλητές X 1,..., X K. E (Y ) = f(x 1,..., X K ) = β 0 + β 1 X β K X K 2

3 Τα µη γραµµικά υποδείγµατα πολυµεταβλητής παλινδρόµησης (multiple nonlinear regression models) µε ερµηνευτικές µεταβλητές X 1,..., X K θεωρούν ότι η E (Y ) είναι µη γραµµική ή/και µη προσθετική ως προς τις ερµηνευτικές µεταβλητές X 1,..., X K. Υπάρχουν περιπτώσεις που το µη γραµµικό υπόδειγµα παλινδρόµησης µε ερµηνευτικές µεταβλητές X 1,..., X K µετασχηµατίζεται σε γραµµικό και προσθετικό (όχι όµως απαραίτητα ως προς τις αρχικές ερµηνευτικές µεταβλητές X 1,..., X K και µε την αρχική εξαρτηµένη µεταβλητή Y ). Στο µετασχη- µατισµένο υπόδειγµα εφαρµόζεται η µέθοδος OLS. Αν δεν υπάρχει κατάλληλος µετασχηµατισµός, τότε στο µη γραµµικό υπόδειγµα παλινδρόµησης µε ερµηνευτικές µεταβλητές X 1,..., X K εφαρµόζεται η µέθοδος µη γραµµικών ελαχίστων τετραγώνων NLS (non-linear least squares). 3

4 1. Πολυωνυµική µορφή Y t = β 0 + β 1 X t + β 2 X 2 t... + β K X K t + u t, t = 1,..., T Το υπόδειγµα µη γραµµικό ως προς την ερµηνευτική µεταβλητή X. Το υπόδειγµα µετασχηµατίζεται σε γραµµικό και προσθετικό ως προς τις ερµηνευτικές µεταβλητές X 1,..., X K Y t = β 0 + β 1 X t1 + β 2X t β K X tk + u t, t = 1,..., T ( ) όπου X tj = Xj t, j = 1,..., K Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 4

5 2. Αντίστροφη µορφή Y t = β 0 + β 1 1 X t + u t, t = 1,..., T Το υπόδειγµα είναι µη γραµµικό ως προς την ερµηνευτική µεταβλητή X. Το υπόδειγµα µετασχηµατίζεται σε γραµµικό ως προς την ερµηνευτική µεταβλητή X t Y t = β 0 + β 1 X t + u t, t = 1,..., T ( ) όπου X t = 1 X t Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 5

6 3. Συνάρτηση σταθερών ελαστικοτήτων Y t = β 0 X β 1 t1... X β K tk u t, t = 1,..., T Το υπόδειγµα είναι µη γραµµικό και µη προσθετικό ως προς τις ερµηνευτικές µεταβλητές X 1,..., X K. Μετασχηµατίζεται σε γραµµικό και προσθετικό ως προς τις ερµηνευτικές µεταβλητές X 1,..., X K Y t = β 0 + β 1X t β KX tk + u t, t = 1,..., T ( ) όπου και Y t = ln(y t ), X tj = ln(x tj), j = 1,..., K, u t = ln(u t) β 0 = ln(β 0) Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 6

7 4. Εκθετική µορφή Y t = e β 0+β 1 X t +u t, t = 1,..., T Το υπόδειγµα είναι µη γραµµικό ως προς την ερµηνευτική µεταβλητή X. Μετασχηµατίζεται σε γραµµικό ως προς την ερµηνευτική µεταβλητή X όπου Y t = β 0 + β 1 X t + u t, t = 1,..., T ( ) Y t = ln(y t ) Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 7

8 5. Λογιστική καµπύλη Y t = γ 1 + e β 0+β 1 t+u t, t = 1,..., T όπου γ > 0 και β 1 < 0. Το υπόδειγµα δεν είναι γραµµικό ως προς την ερµηνευτική µεταβλητή X, όπου X t = t. Εφόσον γ είναι γνωστό, µετασχηµατίζεται σε γραµµικό ως προς την ερµηνευτική µεταβλητή X όπου Y t = β 0 + β 1 t + u t, t = 1,..., T ( ) Y t = ln γ 1 Y t Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 8

9 6. Κατά τµήµατα γραµµική Y t = β 0 + β 1 X t + u t, t = 1,..., T ζ 0 + ζ 1 X t + u t, t = T + 1,..., T όπου T είναι η παρατήρηση µετά την οποία υπάρχει σπάσιµο (break) της παλινδρόµησης. Το υπόδειγµα δεν είναι γραµµικό ως προς την ερµηνευτική µεταβλητή X. Μετασχηµατίζεται σε γραµµικό και προσθετικό ως προς τις ερµηνευτικές µεταβλητές D, X, X D όπου D t = Y t = β 0 + γ 0 D t + β 1 X t + δ 1 (X t D t ) + u t, t = 1,..., T 1, t = T + 1,..., T, ζ 0 = β 0 + γ 0 και ζ 1 = β 1 + δ 1 0, t = 1,..., T ( ) Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 9

10 7. Κατά τµήµατα γραµµική Y t = β 0 + β 1 X t + u t, t ισχύει X t X ζ 0 + ζ 1 X t + u t, t ισχύει X t > X όπου X είναι το όριο (threshold) της ερµηνευτικής µεταβλητής X για το οποίο υπάρχει σπάσιµο της παλινδρόµησης. Το υπόδειγµα δεν είναι γραµµικό ως προς την ερµηνευτική µεταβλητή X. Μετασχηµατίζεται σε γραµµικό και προσθετικό ως προς τις ερµηνευτικές µεταβλητές D, X, X D όπου D t = Y t = β 0 + γ 0 D t + β 1 X t + δ 1 (X t D t ) + u t, t = 1,..., T 1, t ισχύει X t > X, ζ 0 = β 0 + γ 0 και ζ 1 = β 1 + δ 1 0, t ισχύει X t X ( ) Το µετασχηµατισµένο υπόδειγµα ( ) εκτιµάται µε τη µέθοδο OLS. 10

11 Τεχνική των ψευδοµεταβλητών Για να περιλάβουµε ποιοτικές µεταβλητές στο υπόδειγµα παλινδρόµησης χρησι- µοποιούµε τις ψευδοµεταβλητές (dummy variables). Αν η ποιοτική µεταβλητή έχει m κατηγορίες, ορίζονται m ψευδοµεταβλητές D t1 = 1, t κατηγορία 1,..., D tm = 0, t / κατηγορία 1 1, t κατηγορία m 0, t / κατηγορία m Οι πολλαπλασιαστικές ψευδοµεταβλητές για την ερµηνευτική µεταβλητή X j είναι το γινόµενο κάθε ψευδοµεταβλητής µε την X j, X j D 1,..., X j D m. Το υπόδειγµα παλινδρόµησης µπορεί να συµπεριλαµβάνει πάνω από µία ποιοτική µεταβλητή και την αλληλεπιδρασή τους. 11

12 Παγίδα των ψευδοµεταβλητών (dummy variable trap): Αν στο υπόδειγµα παλινδρόµησης συµπεριλάβουµε όλες τις m ψευδοµεταβλητές ή όλες τις m πολλαπλασιαστικές ψευδοµεταβλητές για την ερµηνευτική µεταβλητή X j, τότε η υπόθεση Α.2 δεν ισχύει αφού για κάθε t = 1,..., T ισχύει ότι D t D tm = 1 ή X tj D t X tj D tm = X tj. Αν στο υπόδειγµα παλινδρόµησης χρησιµοποιήσουµε ψευδοµεταβλητές, συµπεριλαµβάνουµε τις m 1 ψευδοµεταβλητές D 2,..., D m. Αν στο υπόδειγµα παλινδρόµησης χρησιµοποιήσουµε πολλαπλασιαστικές ψευδο- µεταβλητές για την ερµηνευτική µεταβλητή X j, συµπεριλαµβάνουµε τις m 1 πολλαπλασιαστικές ψευδοµεταβλητές X j D 2,..., X j D m. 12

13 Α. Μεταβολή στον σταθερό όρο (m = 2) Y t = β 0 + γ 0 D t + β 1 X t + u t, t = 1,..., T Για τις παρατηρήσεις t για τις οποίες D t = 0 δίνει Y t = β 0 + β 1 X t + u t Για τις παρατηρήσεις t για τις οποίες D t = 1 δίνει Y t = (β 0 + γ 0 ) + β 1 X t + u t 13

14 Β. Μεταβολή στην κλίση (m = 2) Y t = β 0 + β 1 X t + δ 1 (X t D t ) + u t, t = 1,..., T Για τις παρατηρήσεις t για τις οποίες D t = 0 δίνει Y t = β 0 + β 1 X t + u t Για τις παρατηρήσεις t για τις οποίες D t = 1 δίνει Y t = β 0 + (β 1 + δ 1 ) X t + u t 14

15 Γ. Μεταβολή στον σταθερό όρο και στην κλίση (m = 2) Y t = β 0 + γ 0 D t + β 1 X t + δ 1 (X t D t ) + u t, t = 1,..., T Για τις παρατηρήσεις t για τις οποίες D t = 0 δίνει Y t = β 0 + β 1 X t + u t Για τις παρατηρήσεις t για τις οποίες D t = 1 δίνει Y t = (β 0 + γ 0 ) + (β 1 + δ 1 ) X t + u t 15

16 Σε κάθε από τις περιπτώσεις Α-Γ, το υπόδειγµα παλινδρόµησης µε τις ψευδο- µεταβλητές για όλο το δείγµα είναι ίσοδυναµο µε τα υπόδειγµατα παλινδροµήσης για κάθε στρώµα της ποιοτικής µεταβλητής. Τα πλεονεκτήµατα του υποδείγµατος παλινδρόµησης µε τις ψευδοµεταβλητές είναι Η εκτίµηση του σ 2 είναι πιο ακριβής αν τα σφάλµατα για κάθε στρώµα της ποιοτικής µεταβλητής έχουν την ίδια διακύµανση. Οι στατιστικοί έλεγχοι για τις διαφοροποιήσεις ανάλογα µε τα στρώµατα της ποιοτικής µεταβλητής υπολογίζονται εύκολα βάσει των t και F στατιστικών των συντελεστών των ψευδοµεταβλητών και των πολλαπλασιαστικών µεταβλητών. 16

17 Παραδείγµατα ψευδοµεταβλητών Φύλο D t1 = 1, t είναι άνδρας 0, t είναι γυναίκα, D t2 = 1, t είναι γυναίκα 0, t είναι άνδρας Φυλή D t1 = 1, t είναι λευκός/ή 0, t δεν είναι λευκός/ή, D t2 = 1, t είναι µαύρος/η 0, t δεν είναι µαύρος/η, D t3 = 1, t είναι ασιάτης/ισσα 0, t δεν είναι ασιάτης/ισσα,... 17

18 Διαχρονική επίδραση D t1 = 1, t είναι περίοδος ύφεσης 0, t είναι περίοδος ανάπτυξης, D t2 = 1, t είναι περίοδος ανάπτυξης 0, t περίοδος ύφεσης Εποχική επίδραση D t1 = 1, t είναι χειµώνας 0, t δεν είναι χειµώνας,..., D t4 = 1, t είναι φθινόπωρο 0, t δεν είναι φθινόπωρο Επίδραση ενός γεγονότος D t1 = 1, t = 1,..., T 0, t = T + 1,..., T, D t2 = 1, t = T + 1,..., T 0, t = 1,..., T Επίδραση της τιµής µίας ερµηνευτικής µεταβλητής D t1 = 1, t ισχύει X tj > X, D t2 = 0, t ισχύει X tj X 1, t ισχύει X tj X 0, t ισχύει X tj > X 18

19 Στατιστικοί έλεγχοι: συντελεστές ψευδοµεταβλητών Το υπόδειγµα παλινδρόµησης Y t = β 0 + β 1 X t β K X tk + u t, t = 1,..., T ( ) υποθέτει ότι οι συντελεστές παλινδρόµησης είναι σταθεροί ανά στρώµα i της ποιοτικής µεταβλητής Για να ελεγχθεί αν υπάρχουν διαφοροποιήσεις ανά στρώµα ορίζονται οι ψευδοµεταβλητές D t1 = 1, t στρώµα 1 0, t / στρώµα 1,..., D tm = 1, t στρώµα m 0, t / στρώµα m 19

20 Α. Μεταβολή στον σταθερό όρο Y t = β 0 + m Β. Μεταβολή στην κλίση i=2 γ id ti + K j=1 β jx tj + u t, t = 1,..., T (Α) Y t = β 0 + K j=1 β jx tj + m i=2 K j=1 δ ij ( X tj D ti ) + uit, t = 1,..., T (Β) Γ. Μεταβολή στον σταθερό όρο και στην κλίση Y t = β 0 + m i=2 γ id ti + K j=1 β jx tj + m K δ ij i=2 j=1 ( X tj D ti ) + ut, t = 1,..., T (Γ) 20

21 Στατιστικοί έλεγχοι: διαφοροποίηση στον σταθερό όρο όταν οι κλίσεις δεν διαφοροποιούνται Υποθέσεις: H 0 : γ 2 =... = γ m = 0 έναντι H 1 : τουλάχιστον ένα γ i 0, i = 2,..., m Στατιστική ελέγχου: F = (SSE SSE A )/(m 1) SSE A /(T K m) όπου SSE και SSE A είναι τα SSE των υποδειγµάτων παλινδρόµησης ( ) και (Α),. Κρίσιµη περιοχή: F > F m 1,T K m,α 21

22 Στατιστικοί έλεγχοι: διαφοροποίηση στις κλίσεις όταν ο σταθερός όρος δεν διαφοροποιείται Υποθέσεις: H 0 : δ 21 =... = δ m1 = 0,..., δ 2K =... = δ mk = 0 έναντι H 1 : τουλάχιστον ένα δ ij 0, i = 2,..., m, j = 1,..., K Στατιστική ελέγχου: F = (SSE SSE B )/(m 1)K SSE B /(T mk 1) όπου SSE και SSE B είναι τα SSE των υποδειγµάτων παλινδρόµησης ( ) και (Β). Κρίσιµη περιοχή: F > F (m 1)K,T mk 1,α 22

23 Στατιστικοί έλεγχοι: διαφοροποίηση στις κλίσεις όταν ο σταθερός όρος διαφοροποιείται Υποθέσεις: H 0 : δ 21 =... = δ m1 = 0,..., δ 2K =... = δ mk = 0 έναντι H 1 : τουλάχιστον ένα δ ij 0, i = 2,..., m, j = 1,..., K Στατιστική ελέγχου: F = (SSE A SSE Γ )/(m 1)K SSE Γ /(T mk m) όπου SSE A και SSE Γ είναι τα SSE των υποδειγµάτων παλινδρόµησης (Α) και (Γ). Κρίσιµη περιοχή: F > F (m 1)K,T mk m,α 23

24 Στατιστικοί έλεγχοι: διαφοροποίηση στον σταθερό όρο και στις κλίσεις Υποθέσεις: H 0 : γ 2 =... = γ m = 0, δ 21 =... = δ m1 = 0,..., δ 2K =... = δ mk = 0 έναντι H 1 : τουλάχιστον ένα γ i ή δ ij 0, i = 2,..., m, j = 1,..., K Στατιστική ελέγχου: F = (SSE SSE Γ )/(m 1)(K+1) SSE Γ /(T mk m) όπου SSE και SSE Γ είναι τα SSE των υποδειγµάτων παλινδρόµησης ( ) και (Γ). Κρίσιµη περιοχή: F > F (m 1)(K+1),T mk m,α 24

25 Στατιστικοί έλεγχοι: Chow σταθερότητα των συντελεστών Περιόδος του δείγµατος χωρίζεται σε δύο υποπεριόδους µε T 1 και T 2 παρατηρήσεις. Υποθέσεις: H 0 : συντελεστές είναι σταθεροί τις δύο υποπεριόδους έναντι H 1 : συντελεστές διαφέρουν τις δύο υποπεριόδους Στατιστική ελέγχου: F = [SSE (SSE 1 +SSE 2 )]/(K+1) (SSE 1 +SSE 2 )/(T 1 +T 2 2(K+1)) όπου SSE, SSE 1 και SSE 2 είναι τα SSE των υποδειγµάτων παλινδρόµησης ( ) για όλη την περίοδο, για την πρώτη υποπερίοδο και την δεύτερη υποπερίοδο. Κρίσιµη περιοχή: F > F K+1,T1 +T 2 2(K+1),α Υποθέτει γνώση της χρονικής στιγµής που διαιρεί την περίοδο. Γενικεύεται σε περισσότερο από δύο υποπεριόδους. Υποθέτει ότι T 1, T 2 K

26 Στατιστικοί έλεγχοι: Chow προβλεπτική αποτυχία Υποθέσεις: H 0 : υπόδειγµα έχει προβλεπτική ικανότητα έναντι H 1 : υπόδειγµα δεν έχει προβλεπτική ικανότητα Στατιστική ελέγχου: F = (SSE SSE 1 )/T 2 SSE 1 /(T 1 (K+1)) όπου SSE και SSE 1 είναι τα SSE των υποδειγµάτων παλινδρόµησης ( ) για όλη την περίοδο και για την πρώτη υποπερίοδο. Κρίσιµη περιοχή: F > F T2,T 1 (K+1),α Βασίζεται στις προβλέψεις για τις T 2 παρατηρήσεις που γίνονται µε βάση τo υπόδειγµα παλινδρόµησης των T 1 παρατηρήσεων. Απόρριψη της H 0 συνεπάγεται ότι οι συντελεστές διαφέρουν τις δύο υποπεριόδους. Η µη απόρριψη της H 0 δεν συνεπάγεται γενικά ότι οι συντελεστές είναι σταθεροί τις δύο υποπεριόδους. 26

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 8: Η τεχνική των ψευδομεταβλητών - Έλεγχοι σταθερότητας των συντελεστών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Σφάλµα εξειδικεύσεως Αν η υπόθεση Α.1 ισχύει, τότε το υπόδειγµα παλινδρόµησης είναι σωστά εξειδικευµένο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Αυτοσυσχέτιση Αν τα σφάλµατα δεν συσχετίζονται µεταξύ τους, Corr(u t, u s ) = 0 για κάθε t s, t, s

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Πολυσυγγραµµικότητα Αν υπάρχει ακριβής γραµµική σχέση ανάµεσα σε κάποιες από τις ερµηνευτικές µεταβλητές

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 8.1 Η Φύση των Ψευδομεταβλητών Οι μεταβλητές που παίρνουν τιμές 0 και 1 ονομάζονται ψευδομεταβλητές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος

ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓΔΟΟ ΕΡΓΑΣΤΗΡΙΟΥ -ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ (DUMMY VARIABLES) Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΓΕΝΙΚΑ Όπως είναι ήδη γνωστό οι μεταβλητές που χρησιμοποιούνται

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΟΓ ΟΟ ΘΕΩΡΙΑΣ- ΧΡΗΣΗ ΨΕΥΔΟΜΕΤΑΒΛΗΤΩΝ(DUMMY VARIABLES) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009

Διαβάστε περισσότερα

Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression)

Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression) ΜΑΘΗΜΑ 6ο Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression) Γιατηνευαισθησίατηςγραμμήςπαλινδρόμησης χρησιμοποιούμε την ανάλυση της διακύμανσης ή το στατιστικό F Έλεγχος βελτίωσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι

Διαβάστε περισσότερα

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές Όταν ένα μέγεθος είναι αδύνατο να ποσοτικοποιηθεί αλλά πρέπει οπωσδήποτε να χρησιμοποιηθεί σε ένα υπόδειγμα προσεγγίζεται συνήθως με μια μεταβλητή η οποία ονομάζεται ποιοτική μεταβλητή ή ψευδομεταβλητή.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Συστήµατα εξισώσεων: Βασικές έννοιες Μέχρι τώρα υποθέταµε ότι το υπόδειγµα περιέχει µία εξίσωση και

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s

Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s first test) Σε πολλές περιπτώσεις µας ενδιαφέρει να

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression

Διαβάστε περισσότερα

Ιδιότητες της ευθείας παλινδρόµησης

Ιδιότητες της ευθείας παλινδρόµησης Ιδιότητες της ευθείας παλινδρόµησης Ηευθεία παλινδρόµησης περνάει από το σηµείο αφού a b, a b ( b ) b b ( + + + ) ( ) + b u u a b a b Αυτό όµως προϋποθέτει την ύπαρξη του a. Αν δηλαδή υποχρεώσουµε την

Διαβάστε περισσότερα

Οικονομετρία. Ψευδομεταβλητές Ψευδομεταβλητές που επιδρούν στην κλίση της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Ψευδομεταβλητές Ψευδομεταβλητές που επιδρούν στην κλίση της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Ψευδομεταβλητές Ψευδομεταβλητές που επιδρούν στην κλίση της συνάρτησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του τρόπου

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7o MH ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ-ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

Εκτίµηση της ζήτησης. Ανάλυση. Μέθοδοι έρευνας µάρκετινγκ ΚΕΦΑΛΑΙΟ 4

Εκτίµηση της ζήτησης. Ανάλυση. Μέθοδοι έρευνας µάρκετινγκ ΚΕΦΑΛΑΙΟ 4 Εκτίµηση της ζήτησης ΚΕΦΑΛΑΙΟ 4 Ανάλυση Παλινδρόµησης και Μέθοδοι έρευνας µάρκετινγκ Το πρόβληµα του προσδιορισµού της (πραγµατικής) καµπύλης ζήτησης Η απλή συνένωση στα πλαίσια ενός διαγράµµατος των παρατηρήσεων

Διαβάστε περισσότερα

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ

ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ Εισαγωγή Στο κεφάλαιο αυτό διερευνούµε αν το να είναι κανείς υποψήφιος παλαιοτέρων ετών, που έχει δώσει τουλάχιστον µια φορά εξετάσεις, του προσδίδει

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ- ΕΤΕΡΟΣΚΕΔΑΣΤΙΚΟΤΗΤΑ(HETEROSCEDASTICITY) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 011-01 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης

Διαβάστε περισσότερα

Οικονομετρία. Σταματίου Παύλος Διδάκτωρ Οικονομετρικών Εφαρμογών & Μακροοικονομικών Πολιτικών

Οικονομετρία. Σταματίου Παύλος Διδάκτωρ Οικονομετρικών Εφαρμογών & Μακροοικονομικών Πολιτικών Οικονομετρία Σταματίου Παύλος Διδάκτωρ Οικονομετρικών Εφαρμογών & Μακροοικονομικών Πολιτικών E-mail: stamatiou@uom.edu.gr Info: https://sites.google.com/site/pavlossta2/home Αυτοσυσχέτιση (Durbin - Watson)

Διαβάστε περισσότερα

Εισαγωγή στην Γραμμική Παλινδρόμηση

Εισαγωγή στην Γραμμική Παλινδρόμηση ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 9.1 Εισαγωγή Στην ανάλυση παλινδρόμησης που περιλαμβάνει στοιχεία χρονοσειρών, αν το υπόδειγμα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Η εργασία αυτή στοιχειοθετήθηκε με το πρόγραμμα L A TEX. Η συγγραφή έγινε με τη βοήθεια του προγράμματος Kile στο λειτουργικό σύστημα Ubuntu Linux. Γι

Η εργασία αυτή στοιχειοθετήθηκε με το πρόγραμμα L A TEX. Η συγγραφή έγινε με τη βοήθεια του προγράμματος Kile στο λειτουργικό σύστημα Ubuntu Linux. Γι Ανάλυση παλινδρόμησης με χρήση ποιοτικών ερμηνευτικών μεταβλητών: Διευρεύνηση της επίδρασης του φύλου στις επιδόσεις μαθητών του γυμνασίου Ο.Ι. Μαλλή Διατμηματικό Π.Μ.Σ. Μαθηματικά των Υπολογιστών και

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ: Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια

Διαβάστε περισσότερα

ΠΑΛΑΙΑ ΘΕΜΑΤΑ ******************************************************

ΠΑΛΑΙΑ ΘΕΜΑΤΑ ****************************************************** ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΚΑΘΗΓΗΤΗΣ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ******************************************************

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 7.1 Πολυσυγγραμμικότητα: Εισαγωγή Παραβίαση υπόθεσης Οι ανεξάρτητες μεταβλητές δεν πρέπει

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ENATO ΘΕΩΡΙΑΣ-ΕΤΕΡΟΣΚΕΔΑΣΤΙΚΟΤΗΤΑ (HETEROSCEDASTICITY) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2010-2011

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa

Διαβάστε περισσότερα

www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ 8. ΕΙΣΑΓΩΓΗ Μέχρι τώρα τα προβλήματα που δημιουργούνται από την παραβίαση των υποθέσεων που πρέπει να ισχύουν ώστε οι OLS εκτιμητές να είναι BLUE

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται µε την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται µε διαφορετικά σύνολα τιµών των παραµέτρων

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση II

Απλή Γραμμική Παλινδρόμηση II . Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%

Διαβάστε περισσότερα

Οικονομετρία. Ετεροσκεδαστικότητα Συνέπειες και ανίχνευση. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Οικονομετρία. Ετεροσκεδαστικότητα Συνέπειες και ανίχνευση. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης Οικονομετρία Ετεροσκεδαστικότητα Συνέπειες και ανίχνευση Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος της ετεροσκεδαστικότητας

Διαβάστε περισσότερα

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011 Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής

Διαβάστε περισσότερα