Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση
|
|
- Παναγιωτάκης Ζωγράφος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Επιστηµονικός Υπολογισµός Ι 2η Εργαστηριακή Ασκηση Ηµεροµηνία επιστροφής γιά πλήρη ϐαθµό : 12/12/11, 9 π.µ. Προσοχή: Μπορείτε να συζητήσετε την άσκηση µε συναδέλφους σας αλλά αν διαπιστωθεί αντιγραφή, ϑα υποπολλαπλασιαστεί ο ϐαθµός σας. είτε και τις οδηγίες που αναφέρονται στους κανόνες ϐαθµολογίας! Η άσκηση αναφέρεται στο ϑέµα της αριθµητικής και των σφαλµάτων που γίνονται στον υπολογιστή. Θα είναι επίσης ευκαιρία για να δείτε στην πράξη τις έννοιες του εµπρός και πίσω σφάλµατος και του δείκτη κατάστασης του προβλήµατος για υπολογισµούς µε πολυώνυµα. 1 Περιγραφή 1.1 ιερεύνηση των χαρακτηριστικών της αριθµητικής στη MATLAB 1. Εστω οι αριθµοί 0.1, pi, eps, eps/2, realmax, realmin, realmin/2 όπως αποθηκεύνται σε µορφή α.κ.υ. IEEE διπλής ακρίβειας (MATLAB double array). Για κάθε έναν από αυτούς να γράψετε την αναπαράσταση σε 16αδική µορφή που δείχνει η MATLAB (µέσω του format hex) και να εξηγήσετε το αποτέλεσµα. Μπορείτε να ϐρείτε χρήσιµο το εργαλείο bitgui που αναρτήθηκε στο ηµερολόγιο Πράξεις µε πολυώνυµα Θα εξετάσετε ορισµένα ϑέµατα που προκύπτουν στη διαχείριση πολυωνύµων και που οφείλονται στην αριθµητική πεπερασµένης ακρίβειας και τη συµπεριφορά των ισοδύναµων, µαθηµατικά, αλλά διαφο- ϱετικών, υπολογιστικά, αναπαραστάσεων τους 2 και διαχείρισής τους (π.χ. αλγόριθµος Horner). Αξίζει να σηµειωθεί ότι µιλώντας για πολυώνυµα δεν αποµακρυνόµαστε όσο ϑα νόµιζε κάποιος από την ενασχόληση του µαθήµατος µε τα µητρώα, καθότι πολυώνυµα και µητρώα έχουν µεταξύ τους εξαιρετικά «στενές σχέσεις». Επίσης τα πολυώνυµα αποτελούν ϐασικό αλγεβρικό εργαλείο µοντελοποίησης πολύπλοκων ή άγνωστων συναρτήσεων (µε ϐάση τις τιµές τους και µόνο). Προτείνουµε να διαβάσετε και να εξοικειωθείτε πρώτα µε τις συναρτήσεις (MATLAB) poly, polyval, roots. Ειδικότερα, να δείτε τις λειτουργίες των 2 πρώτων από αυτές και να ϐεβαιωθείτε ότι τις κατανοείτε (ειδικά για την polyval, δεν χρειάζεται παρά να ασχοληθείτε µε την περίπτωση που δίνονται 2 ορίσµατα στην είσοδο, δηλ. polyval(p,x)), όπου το δεύτερο όρισµα είναι αποκλειστικά ϐαθµωτός ή διάνυσµα. 1. Να αλλάξετε τον πηγαίο κώδικα της polyval ώστε να χρησιµοποιεί την (κλασική) µέθοδο Horner 3 όταν το 2ο όρισµα είναι ϐαθµωτός (ως έχει, για ϐαθµωτό, χρησιµοποιεί την ταχύτατη 4 συνάρτηση filter). Ονοµάστε την εκδοχή αυτή polyval_slow. 2. Σε άπειρη ακρίβεια, ϑα είχαµε ότι αν c = poly([1:n]); r = roots(c); 1 Ευχαριστούµε ϑερµά τον σχεδιαστή του εργαλείου, µεταπτυχιακό κ. Γιάννη Καλοφωλιά! 2 π.χ. µορφή δύναµης και γινοµένου (υπάρχουν και άλλες, π.χ. µορφή Newton, µορφή Lagrange). 3 π.χ. 4 it screams! 1
2 τότε α) το sort(r) ϑα περιέχει τις τιµές 1:n για οποιοδήποτε n. Επίσης ϐ) sum(c) πρέπει να επιστρέφει 0 όπως έχουµε ήδη εξηγήσει (στην τάξη). είτε το αποτέλεσµα των παραπάνω υπολογισµών για n=single([4:4:16]) (δηλ. µε χρήση α.κ.υ. µονής ακρίβειας) και να ϐρείτε για ποιά/ές τιµές του n αστοχεί το (ϐ) (δεν επιστρέφει 0). 3. Να εξηγήσετε (χρησιµοποιώντας διπλή ακρίβεια για σύγκριση ή άλλους τρόπους) κατά πόσον η αστοχία οφείλεται στην άθροιση ή στο c που υπολογίζει η poly. Σε κάθε περίπτωση, να υλοποιήσετε τρόπο υλοποίησης που να µην αστοχεί η (ϐ) για τα συγκεκριµένα δεδοµένα. 1.3 ιερεύνηση πίσω ευστάθειας Στη συνέχεια, ϑα διερευνήσετε ϑεωρητικά και αριθµητικά την πίσω ευστάθεια του υπολογισµού της τιµής πολυωνύµου µε τη µέθοδο Horner. Σηµειώνουµε ότι µε αυτόν τον τρόπο ϑα επιβεβαιώσετε τη ϑεωρία, αλλά ϑα δείτε επίσης τη δυσκολία της αυτοµατοποίησης της µεθόδου. 1. Να επιβεβαιώσετε τη ϑεωρία (δείτε το ϐιβλίο αλλά καλύτερα να το κάνετε µε το χέρι), δηλ. ότι ο υπολογισµός της τιµής πολυωνύµου µε Horner είναι πίσω ευσταθής. Ειδικότερα, να δείξετε ότι horner prog ((p; a, ξ)) = horner(p; a + h, ξ), για σχετικά µικρές τιµές στο h, δηλαδή το σφάλµα από τους υπολογισµούς µπορεί να αναχθεί πλήρως σε σφάλµατα στα δεδοµένα. Εδώ, horner είναι ο αλγόριθµος Horner σε αριθµητική άπειρης ακρίβειας για τον υπολογισµό τιµής από τη δυναµοµορφή p, horner prog είναι η υλοποίησή του σε πεπερασµένη ακρίβεια (όπως π.χ. κάνει η polyval) και h γ 2n (t) a, γ 2n (t) = 2nu 1 2nu. (1) 2. Συγκεκριµένα ϑα πρέπει, δοθέντος ενός πολυωνύµου p µέσω των συντελεστών του (σε µορφή διανύσµατος, όπως αναµένεται από τη συνάρτηση polyval), να υπολογίσετε την τιµή του για κάποιο ξ σε µονή ακρίβεια και να δείξετε ότι η ίδια τιµή µπορεί να αναπαραχθεί ακριβώς από πολυώνυµο µε παραπλήσιους συντελεστές στο ξ αν εκτελέσετε τον υπολογισµό µε διπλή ακρίβεια 5 Μία (από τις 2) δυσκολίες για την υλοποίηση είναι ότι µε ϐάση µόνον 1 τιµή p(ξ), δεν είναι εύκολο να υπολογίσουµε τις αλλαγές που πρέπει να γίνουν σε όλους τους συντελεστές του (δηλ. το διάνυσµα h που προβλέπει η ϑεωρία). Γι αυτό, ϑα υπολογίσουµε τις τιµές σε n + 1 σηµεία (τα οποία τοποθετούµε σε ένα διάνυσµα [ξ 0,..., ξ n ] ) µε την polyval. Εστω ότι συµβολίζουµε τις υπολογισµένες (σε µονή ακρίβεια) τιµές ως [φ 0,..., φ n ]. Εχουµε δηλαδή ότι φ j = horner prog ((p; a, ξ)). Ονοµάζουµε το διάνυσµα των τιµών f := [φ 0,..., φ n ]. Στη συνέχεια πρέπει να κατασκευάσετε ένα πολυώνυµο (σε µορφή δύναµης), ας το πούµε ˆp(â; x), τέτοιο ώστε ˆp(â; ξ j ) = φ j για όλα τα j σε άπειρη ακρίβεια. Επειδή αυτό δεν είναι εφικτό, ϑα χρησιµοποιήσουµε αντ αυτής διπλή ακρίβεια. Για να υπολογίσετε τους συντελεστές 6 â ϑα κατασκευάσετε (πάντα σε διπλή ακρίβεια) µητρώο (τύπου) Vandermonde 7 V R (n+1) (n+1) που περιέχει σε κάθε ϑέση (i, j) το στοιχείο ξ n+1 j i 1 για i, j = 1,..., n + 1. Προφανώς, σε 5 Εφόσον κάνουµε όλους τους υπόλοιπους υπολογισµούς µε µονή ακρίβεια, ϑα ϑεωρήσουµε (υπόθεση εργασίας) ότι η διπλή ακρίβεια είναι σαν να είχαµε αριθµητική άπειρης ακρίβειας. 6 εν είναι κατ ανάγκη ο καλύτερος αλλά τον εφαρµόζουµε για να µην καταφύγουµε σε παρεµβολή Newton 7 είτε τη συνάρτηση vander. 2
3 αριθµητική άπειρης ακρίβειας, V â = f, άρα â = V 1 f. Λαµβάνοντας αυτή τη λύση ως ακριβή, να υπολογίσετε το πίσω σφάλµα που προκύπτει (δηλ. τη σχετική απόσταση του â από το a). Μπορείτε να χρησιµοποιήσετε όποια νόρµα ϑέλετε αλλά πρέπει να το αναφέρετε και να την χρησιµοποιείτε σε όλο αυτό το ερώτηµα. Να εξετάσετε αν το ϕράγµα είναι όπως προβλέπεται από τη ϑεωρητικά αποτελέσµατα (σχέσεις (1) ). Για τα πειράµατα ϑα χρησιµοποιήσετε δύο επιλογές σηµείων. α) ξ j = e ι2π n+1 και ϐ) ξ j = j n για j = 0,..., n. Για λόγους που για λίγο ακόµα δεν είναι προφανείς 8 έχει µεγάλη σηµασία να γίνει σωστή επιλογή των σηµείων x. Θα δείτε ότι γενικά, µια από τις δύο αυτές επιλογές οδηγεί σε πολύ καλύτερα αποτελέσµατα. Τα πολυώνυµα που ϑα χρησιµοποιήσετε ϑα είναι τα παρακάτω αλλά σε δυναµοµορφή (να τα µετατρέψετε µε την poly). Οι συντελεστές, έστω το διάνυσµα a, ϑα προκύψουν σε διπλή ακρίβεια. Για τις ανάγκες τις άσκησης, όποτε χρειάζεται, ϑα έχετε ένα αντίγραφο σε µονή ακρίβεια (µε την εντολή single.) 1. Το πολυώνυµο Wilkinson p(x) = n (x n + j 1) για n = Το πολυώνυµο p(x) = n 2j 1 (x cos(π 2n )) για n = Ευαισθησία τιµών πολυωνύµων που υπολογίζονται σε µορφή δύναµης Θέλουµε να δούµε τη συµπεριφορά των τιµών πολυωνύµου για µικρές αλλαγές των συντελεστών. Η εύρεση καλής προσεγγισης της τιµής είναι σηµαντική γιατί εκτός των άλλων χρειάζεται και σε πολλούς αλγόριθµους (όπως ο αλγόριθµος Newton 9, η µέθοδος διχοτόµησης 10 κ.λπ.). Τα πολυώνυµα που ϑα χρησιµοποιήσετε είναι : 1. Το πολυώνυµο Wilkinson p(x) = n (x n + j 1) για n = Το πολυώνυµο p(x) = n 2j 1 (x cos(2π 2n )) για n = Το πολυώνυµο p(x) = (x 1) n για n = 12. Από τη ϑεωρία, ο σχετικός δείκτης κατάστασης της τιµής ενός πολυωνύµου σε δυναµοµορφή στο ξ, όπου το ξ δεν είναι ϱίζα και χρησιµοποιούµε τη νόρµα µεγίστου, είναι : cond(p; a, ξ) = n α j ξ j / p(a, ξ). (2) j=0 1. Να κατασκευάσετε συνάρτηση που λαµβάνει για είσοδο τους συντελεστές της δυναµοµορφής, έστω στο διάνυσµα a, και τις τιµές της ανεξάρτητης µεταβλητής, έστω στο διάνυσµα x, και που υπολογίζει τις τιµές του πολυωνύµου στις τιµές του x χρησιµοποιώντας την polyval_slow στα σηµεία που δίνονται. Θα χρησιµοποιήσετε 2 σετ από σηµεία. Το πρώτο linspace(0.8,9.8,10). Το δεύτερο ϑα είναι οι ϱίζες 11 κάθε πολυωνύµου, πολλαπλασιασµένες κάθε µία µε (διαφορετικό, λόγω του rand) παράγοντα 8 Θα τους µάθετε στις ερχόµενες διαλέξεις. 9 s_method οι ϱίζες είναι άµεσα διαθέσιµες από τη µορφή που σας τα δίνουµε, µην τις υπολογίσετε! j 3
4 Σχήµα 1: Παράδειγµα 1+randn(1,1)*1e-1 Να ταξινοµήσετε όλες τις τιµές µε αύξουσα τιµή σε ένα διάνυσµα x. 2. Στη συνέχεια, για την παραγωγή διαταραχών, να αρχικοποιήσετε µε τις κλήσεις randn('seed',am) και rand('seed',am) όπου AM είναι ο αριθµός µητρώου σας. 3. Για κάθε τιµή του x, να υπολογίσετε το λογάριθµο µε ϐάση 10 της σχετικής απόστασης του horner(p, a; x) από horner(p, a + h; x) για m = 100 τυχαία διανύσµατα h τέτοια ώστε για τα στοιχεία του κάθε διανύσµατος h να ισχύει ότι h g a όπου στη συνέχεια λαµβάνουµε το g = Γι αυτό µπορείτε να χρησιµοποιήσετε την εντολή h = sign(randn(size(a))).*rand(size(a)).*a*g και g=1e-5. Να οπτικοποιήσετε σε µία µόνο γραφική παράσταση για κάθε πολυώνυµο (εποµένως 3 πα- ϱαστάσεις αρκούν) όλες τις τιµές που υπολογίσατε πριν (λογάριθµο µε ϐάση 10 των σχετικών αποκλίσεων). Θέλετε δηλαδή ένα σχήµα όπως το Για κάθε τιµή ξ που περιέχεται στο x, να σχολιάσετε αν η µέγιστη σχετική αλλαγή στην τιµή του πολυωνύµου ϕράσσεται από log 10 (cond(p; a, ξ)g), όπως προβλέπει η ϑεωρία 12. Να επιβεβαιώσετε ότι υπάρχει µεγάλη διακύµανση στη σχετική διαταραχή των τιµών του πολυωνύµου (µερικές ϕορές µεγάλη, άλλες µικρή και ϕαίνεται να εξαρτάται από το πολυώνυµο και το σηµείο όπου υπολογίζουµε τις τιµές του). 12 είτε το άνω ϕράγµα για τον όρο µε πράσινους χαρακτήρες στην 1η γραµµή της σελ. 12 των διαφανειών της 7/11. 4
5 Παραδοτέα Αναφορά : Σε ηλεκτρονική µορφή. Ιδιαίτερη σηµασία ϑα δοθεί και στον τρόπο παρουσίασης (πίνακες, διαγράµµατα, κλπ.) Η τελική αναφορά πρέπει να είναι σε PDF. Επίσης, ό,τι πηγές και στοιχεία χρησιµοποιήσετε από το διαδίκτυο ή άλλη ϐιβλιογραφία πρέπει να προσδιορίζεται ξεκάθαρα και να αναφέρεται στη ϐιβλιογραφία. Κώδικας : Τα προγράµµατα που απορρέουν από την εργασία σας, συµπεριλαµβανοµένων και εκείνα που παράγουν τα δεδοµένα. Αποστολή : Η αναφορά καθώς και τα συνοδευτικά αρχεία πρέπει να αποσταλούν ηλεκτρονικά, σε συµπιεσµένη µορφή zip στην διεύθυνση sci@ceid.upatras.gr. Σε κάθε περίπτωση, το e- mail πρέπει να έχει subject line µε περιεχόµενο SC AM ASKHSH 2, όπου ΑΜ είναι ο αριθµός µητρώου σας (π.χ. SC 1111 ASKHSH 2). ΠΑΡΟΤΡΥΝΣΗ (και πάλι): Για καλύτερα αποτελέσµατα 13 ιδιαίτερα όσον αφορά σε περιγραφές και παρουσιάσεις µε µαθηµατικά σύµβολα, σας συµβουλεύουµε να (µάθετε να) χρησιµοποιείτε το σύστηµα επεξεργασίας κειµένων LaTeX. ΠΡΟΣΟΧΗ: Υπενθυµίζουµε τη σηµασία που έχει η ατοµική σας προσπάθεια στην επίλυση για την επιτυχηµένη ολοκλήρωσή του µαθήµατος. Εµείς ϑεωρούµε ότι οι ασκήσεις που παραδίδονται είναι αποτέλεσµα της προσωπικής προσπάθειας του ϕοιτητή που την υπογράφει και έχει την ευθύνη να απαντήσει αν του Ϲητηθεί να αιτιολόγησει και να υποστήριξει όσα αναγράφονται. Ενα επιπλέον κέρδος είναι ότι η τελική εξέταση µπορεί πάντα να εξαρτάται από τις γνώσεις που αποκτήσατε στην προετοιµασία των ασκήσεων. Παρόλο το µέγεθος της εκφώνησης, ϑα δείτε ότι οι κώδικες που χρειάζετε να γράψετε είναι σύντοµοι. 13 No more word όπως ονοµάζεται το thread που άνοιξε πριν 2 χρόνια ο χρήστης chiotis 5
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι εύτερη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 29/12/2010 26 Νοεµβρίου 2010 Με fl (x) συµβολίζεται (όπως και στις σηµειώσεις του µαθήµατος) η αναπαράσταση σε αριθµητική
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 4 : Μοντέλο Αριθµητικής και Σφάλµατα Υπολογισµού Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)
-- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική Μάθηµα 7 Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 1 / 31 Γενικό πλάνο 1 Θεωρητικό Υπόβαθρο 2 Αποτελεσµατική ακριβής αριθµητική
1 Πολυωνυµική Παρεµβολή
1 Πολυωνυµική Παρεµβολή εδοµένων n + 1 ανά δύο διαφορετικών σηµείων x o, x 1, x,..., x n και των αντίστοιχων συναρτησιακών τιµών y o = f(x o ), y 1 = f(x 1 ), y = f(x ),...,y n (x n ) επιθυµούµε να προσεγγίσουµε
Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Εισαγωγή. Υπολογιστική Αλγεβρα. Μάθηµα 7
Γενικό πλάνο Μαθηµατικά για Πληροφορική Μάθηµα 7 Θεωρητικό Υπόβαθρο Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Αποτελεσµατική ακριβής αριθµητική 3 Ταχύς
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος
Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
µέχρι και την Τρίτη 24.3.2015 και ώρα 22:30 1η Ασκηση ΑΜΕΣΟΙ ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΗΜΕΡ/ΝΙΑ 9.3.205 Καταληκτική Ηµερ/νία υποβολής µέχρι
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε
Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f
1 η ΑΣΚΗΣΗ. 1. Θεωρία (Κεφ. 1, 2) ξ = 2 της εξίσωσης fx ( ) = 0 για x
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 0/3/009 η ΑΣΚΗΣΗ. Θεωρία (Κεφ., ). α) Σε πόσα σηµαντικά ψηφία
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 19 εκεµβρίου 2015 Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί
Υλοποιήσεις Ψηφιακών Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (24 Φεβρ. 2008, 12-3µµ) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1. α) Σ - Λ : Οι εντολές BLAS-2 µπορούν να υλοποιηθούν να έχουν καλύτερη επίδοση από τις BLAS-3. Απάντηση. Λάθος : Οι εντολές
Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου
Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36 Αριθµητική Παραγώγιση
Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι
Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 8) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 8) Δεκέμβριος 2017 1
Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015 Δοµές Δεδοµένων - Εργασία 2 Διδάσκων: E. Μαρκάκης Ταξινόµηση και Ουρές Προτεραιότητας Σκοπός της 2 ης εργασίας είναι η εξοικείωση
KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.
Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος
Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Ασκηση 1 Εστω ένα µητρώο A το οποίο χρησιµοποιούµε και µητρώο συντελεστών κάποιου γραµµικού συστήµατος A x = b 1.Πώς ϑα λύνατε το γραµµικό
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε
Μεθοδολογίες παρεµβολής σε DTM.
Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης
Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΥΛΟΠΟΙΗΣΗΣ Χ. Α. Αλεξόπουλος Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών Πάτρα 2014 Αφιερωµένο σε δύο εκλεκτούς ανθρώπους, πανεπιστηµιακούς δασκάλους
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1
Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.
Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων
1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα
Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 4 : Ορθογωνιότητα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
όπου Η μήτρα ή πίνακας του συστήματος
Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 4 : Μοντέλο Αριθµητικής και Σφάλµατα Υπολογισµού Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ
ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)
Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)
5 Παράγωγος συνάρτησης
5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =
2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 2η Οµάδα Ασκήσεων 1442008 ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)
KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR
KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 4 : Μοντέλο Αριθµητικής και Σφάλµατα Υπολογισµού Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα
Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου
Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω
Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
ΝΙΚΟΣ ΤΟΥΝΤΑΣ ΠΡΟΛΟΓΟΣ:
ΠΡΟΛΟΓΟΣ: Συνεχίζοντας το ταξίδι στον κόσμο των μαθηματικών αναρτώ την 3 η μου άσκηση η οποία καλύπτει την ύλη μέχρι και τα όρια. Δεν βασίζεται αυτήν την φορά σε άσκηση του σχολικού άλλα σε καθαρά δικιά
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)
ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Πρακτική µε στοιχεία στατιστικής ανάλυσης
Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά
Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται
Εισαγωγή στον Προγραµµατισµό. Σύντοµες Σηµειώσεις. Γιώργος Μανής
Εισαγωγή στον Προγραµµατισµό Σύντοµες Σηµειώσεις Γιώργος Μανής Νοέµβριος 2012 Αλγόριθµοι και Λογικά ιαγράµµατα Αλγόριθµος λέγεται µία πεπερασµένη διαδικασία καλά ορισµένων ϐηµάτων µου ακολουθείται για
Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss
Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και
Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson
Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα
Αριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1
Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@gen.auth.gr 31 Ιανουαρίου 2017 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό
Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Ορια Συναρτησεων - Ορισµοι
Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την
Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους