Σειρά Προβλημάτων 2 Λύσεις
|
|
- Ἐπαφρόδιτος Γούναρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις 3 2 μέχρι 3 2. Να δίξτ όλα τα στάδια της ργασίας σας. (α) Λύση Βήμα : q q q5 3 q q Βήμα 2(α): Αφαίρση κορυφής q * * q Βήμα 2(β): Αφαίρση κορυφής q * * [ * ] [ * ] Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα
2 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Βήμα 2(γ): Αφαίρση κορυφής [ * ] [ * ] * * * * [ * ] * * * Βήμα 2(δ): Αφαίρση κορυφής * + ( * * + ) ([ + ][ + ] + ) * ( [ + ] + ) (β), q q Λύση Βήμα : q q Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 2
3 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Βήμα 2(α): Αφαίρση κορυφής q q Βήμα 2(β): Αφαίρση κορυφής q + + Βήμα 2(β): Αφαίρση κορυφής + + q + ( + ) Βήμα 2(β): Αφαίρση κορυφής q ( + + ) * [ + ( + )] Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 3
4 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 2 Έστω η κανονική έκφραση (() * ()*). Να κατασκυάστ (i) ένα NFA που να την αναγνωρίζι, χρησιμοποιώντας την κατασκυή από τις διαφάνις 3 9 και 3, και (ii) ένα DFA που να την αναγνωρίζι, χρησιμοποιώντας τη διαδικασία μτατροπής NFA σ DFA (διαφάνις 2 37 και 2 38) (i) Πιο κάτω μφανίζται η τλική μορφή του ζητούμνου αυτομάτου. (Τα νδιάμσα βήματα παραλίπονται.) (ii) Ακολουθί το ισοδύναμο νττρμινιστικό αυτόματο. {} {,2, 3,8,4,9} {5,6, {4,7,,} 2,3} {4,9} {5,6} {,} {4,7} {2,3}, Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 4
5 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 3 Θωρίστ τα δύο πιο κάτω αυτόματα. 2 3, Α Β Γ Έστω Λ η γλώσσα του πρώτου αυτομάτου και Λ 2 η γλώσσα του δύτρου αυτομάτου. Να κατασκυάστ αυτόματα που να αναγνωρίζουν (i) τη γλώσσα Λ Λ 2 (ii) τη γλώσσα Λ Λ 2, και (iii) τη γλώσσα Λ Λ 2. Λύση (i) Αυτόματο για τη γλώσσα Λ Λ 2 μπορί να δημιουργηθί μ βάση τη γνωστή κατασκυή για την ένωση των γλωσσών δύο NFA: Πιο κάτω φαίνται το σχτικό αυτόματο. 2 3, Α Β Γ (ii) Αυτόματο για τη γλώσσα Λ Λ 2 μπορί να δημιουργηθί μ βάση την κατασκυή της Άσκησης 3, Φροντιστήριο 2, για την τομή των γλωσσών δύο DFA: Πιο κάτω φαίνται το σχτικό αυτόματο.,a,b,γ 2,A 3,B 2,Γ 3,Γ Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 5
6 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα (iii) Αυτόματο για τη γλώσσα Λ Λ 2 μπορί να δημιουργηθί μ βάση την σχέση Λ. Αυτόματο για τη γλώσσα Λ 2 ίναι το αυτόματο, Α Β Γ Επομένως το ζητούμνο αυτόματο ίναι το πιο κάτω,a,b,γ 2,A 3,B 2,Γ 3,Γ Άσκηση 4 Να αποφασίστ κατά πόσο οι πιο κάτω γλώσσς ίναι κανονικές αιτιολογώντας μ ακρίβια τις απαντήσις σας. (α) { uv u, v {,} * } (β) { uv u, v {,} *, u = v } (γ) { x {,}* η x δν έχι την μορφή n n για κάποιο n } (δ) { ( n m ) r n, m, r > } () { w {(, )} * οι παρνθέσις στην w ίναι ισοζυγισμένς } Για παράδιγμα, η λέξη (()()) ανήκι στη γλώσσα αφού όλς οι παρνθέσις της κλίνουν σωστά, νώ η λέξη (()))() δν ανήκι στη γλώσσα. Λύση (α) Η γλώσσα αυτή ίναι κανονική. Πριγράφται από την κανονική έκφραση {,} * {,} *. (β) L = { uv u, v {,} *, u = v } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη w = p p. Τότ, σύμφωνα μ το λήμμα, w = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z L, i ). Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 6
7 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από. Επομένως, x = λ, y = μ, w = ν p όπου λ+μ+ν = p. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z L. Αλλά, xy 2 z = p+μ p το οποίο, από τον ορισμό της γλώσσας δν ανήκι στην L. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα L ίναι κανονική ήταν σφαλμένη. Συμπέρασμα: Η L ίναι μη κανονική. (γ) L = { x {,}* η x δν έχι την μορφή n n για κάποιο n } Παρατηρούμ ότι η γλώσσα L ικανοποιί τη σχέση {,} * L = { n n n }. Ας υποθέσουμ, για να φτάσουμ σ αντίφαση ότι η L ίναι κανονική γλώσσα. Επίσης, γνωρίζουμ ότι η γλώσσα {,} * ίναι κανονική γλώσσα. Από την κλιστότητα των κανονικών γλωσσών ως προς την πράξη, η γλώσσα {,} * L ίναι κανονική γλώσσα. Όμως, {,} * L = { n n n }, και όπως δίξαμ στη διαφάνια 3 3, η γλώσσα { n n n } δν ίναι κανονική. Αυτό μας οδηγί σ αντίφαση. Επομένως η γλώσσα L δν ίναι κανονική. Σημίωση: Γνωρίζουμ ότι Α Β = Α. Αφού η κλάση των κανονικών γλωσσών ίναι κλιστή ως προς την τομή και το συμπλήρωμα, ίναι κλιστή και ως προς την πράξη. (δ) L 2 ={ ( n m ) r n, m, r > } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L 2 ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη w = p p. Τότ, σύμφωνα μ το λήμμα, w = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z L 2, i ). Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από. Επομένως, x = λ, y = μ, w = ν p όπου λ+μ+ν = p. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z L 2. Αλλά, xy 2 z = p+μ p το οποίο, από τον ορισμό της γλώσσας δν ανήκι στην L 2. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα L 2 ίναι κανονική ήταν σφαλμένη. () L 3 = { w {(, )} * οι παρνθέσις στην w ίναι ισοζυγισμένς } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L 2 ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη w = ( p ) p. Τότ, σύμφωνα μ το λήμμα, w = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z L 3, i ). Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 7
8 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από (. Επομένως, x = ( λ, y = ( μ, w = ( ν ) p όπου λ+μ+ν = p. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z L 3. Αλλά, xy 2 z = ( p+μ ) p το οποίο, από τον ορισμό της γλώσσας δν ανήκι στην L 3. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα L 3 ίναι κανονική ήταν σφαλμένη. Συμπέρασμα: Η L 3 ίναι μη κανονική. Άσκηση 5 (Προαιρτική) Θωρίστ το αλφάβητο Σ και μια γλώσσα L Σ * πί του αλφάβητου Σ. Μία λέξη w = n ονομάζται διάσπαρτη υπολέξη μιας λέξης u αν u = u u 2 u n n u n+ για κάποις υποσυμβολοσιρές u, u 2,, u n, u n+ Σ *. Ορίζουμ ως ΔΥ(L) την πιο κάτω γλώσσα πί του αλφάβητου Σ: ΔΥ(L) = { ί ά έ ό } Μ λόγια, η γλώσσα ΔΥ(L) πριέχι όλς τις λέξις που αποτλούν διάσπαρτς υπολέξις της L. Για παράδιγμα, αν L = {c, } τότ ΔΥ(L) = {,,, c,, c, c,,, c, }. Να αποδίξτ μ ακρίβια ότι η κλάση των κανονικών γλωσσών ίναι κλιστή ως προς την πράξη ΔΥ. Λύση: Για να δίξουμ ότι η κλάση των κανονικών γλωσσών ίναι κλιστή ως προς την πράξη ΔΥ θα δίξουμ ότι για οποιαδήποτ κανονική γλώσσα L υπάρχι κανονική έκφραση που αναγνωρίζι τη γλώσσα ΔΥ(L). Ορίζουμ τη συνάρτηση δυ: R R ως ξής {, }, { },, dipri( R) dipri( ) dipri( B), dipri( A) dipri( B), * dipri( A), R R R R AB R A B R A Έστω κανονική γλώσσα L και κανονική έκφραση R που την πριγράφι. Θα αποδίξουμ ότι η κανονική έκφραση dipri(r) πριγράφι την γλώσσα ΔΥ(L). Αυτό θα μας οδηγήσι στο συμπέρασμα ότι η γλώσσα ΔΥ(L) ίναι κανονική. Η απόδιξη θα γίνι παγωγικά στη δομή της κανονικής έκφρασης R. Υπάρχουν οι πιο κάτω πριπτώσις. Αν η γλώσσα L πριγράφται από την κανονική έκφραση R =, τότ L = {} και ΔΥ(L) = {,}. Επίσης, σύμφωνα μ τον πιο πάνω ορισμό, dipri(r) = {,}. Επομένως, η κανονική έκφραση dipri(r) πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται. Αν η γλώσσα L πριγράφται από την κανονική έκφραση R =, τότ L = {} και ΔΥ(L) = {}. Επίσης, σύμφωνα μ τον πιο πάνω ορισμό, dipri(r) = {}. Επομένως, η * Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 8
9 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα κανονική έκφραση dipri(r) και πάλι πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται. Αν η γλώσσα L πριγράφται από την κανονική έκφραση R =, τότ L = και ΔΥ(L) =. Επίσης, ισχύι ότι dipri(r) =. Επομένως, η κανονική έκφραση dipri(r) και πάλι πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται Αν η γλώσσα L πριγράφται από την κανονική έκφραση R = ΑΒ, τότ ΔΥ(L) = {xy x ΔΥ(Α) και y ΔΥ(B)} Αφού η κανονική έκφραση dipri(r), σύμφωνα μ τον ορισμό της ίναι ίση μ dipri(ab)=dipri(a)dipri(b), από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται Αν η γλώσσα L πριγράφται από την κανονική έκφραση R = ΑΒ, τότ ΔΥ (L) = {x ί ά έ ό } {y ί ά έ ό } Αφού η κανονική έκφραση dipri(r), σύμφωνα μ τον ορισμό της ίναι ίση μ dipri(ab) = dipri(a) dipri(b), από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται Αν η γλώσσα L πριγράφται από την κανονική έκφραση R = Α *, τότ ΔΥ(L) = { w w 2 w k k, η w i ίναι διάσπαρτη υπολέξη κάποιας λέξης x i L } = { w w 2 w k k, η w i ΔΥ(L) } Αφού η κανονική έκφραση dipri(r), σύμφωνα μ τον ορισμό της ίναι ίση μ dipri(α * ) = dipri(α) *, από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα ΔΥ(L) και το συμπέρασμα έπται. Αυτό ολοκληρώνι την απόδιξη. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 24 Σλίδα 9
Σειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση [5 μονάδς] Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς πί του αλφάβητου Α = {, }. (α) Όλς οι λέξις πί του αλφάβητου
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Σιρά Προβλημάτων 2 Λύσις Άσκηση Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ211: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 1 Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { w {,} * η w δν πριέχι δύο συνχόμνα όμοια γράμματα }
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Άσκηση Σιρά Προβλημάτων Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { m n m, n, m+n πριττός ακέραιος} (β) {w {,} * τα πρώτα δύο σύμβολα της w, αν υπάρχουν, δν ίναι τα ίδια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θωρία Υπολογισμού Ενδιάμση Εξέταση Ημρομηνία : Πέμπτη, 14 Μαρτίου 2019 Διάρκια : 09.00 10.30 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΧΕΙΡΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 [35 μονάδς]
Διαβάστε περισσότεραΦροντιστήριο 2 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi),
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
Διαβάστε περισσότεραΆσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.
ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε
Διαβάστε περισσότεραΠεπερασμένα Αυτόματα. Πεπερασμένα Αυτόματα. Ορισμός. Παράδειγμα
Ππρασμένα Αυτόματα Διδάσκοντς: Φ. Αφράτη, Δ. Φωτάκης Επιμέλια διαφανιών: Δ. Φωτάκης Σχολή Ηλκτρολόγων Μηχανικών Μηχανικών Υπολογιστών Εθνικό Μτσόβιο Πολυτχνίο Ππρασμένα Αυτόματα ίναι απλούστρς υπολογιστικές
Διαβάστε περισσότεραΦροντιστήριο 2 Λύσεις
Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi), (i) Όχι, δεν υπάρχει αρχική κατάσταση. (ii)
Διαβάστε περισσότεραΓλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II
Γλώσσς Προγραμματισμού Μταγλωττιστές Λκτική Ανάλυση II Πανπιστήμιο Μακδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακλλαρίου Δομή Ππρασμένα Αυτόματα Νττρμινιστικά Ππρασμένα Αυτόματα Μη-Νττρμινιστικά Ππρασμένα
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας
Διαβάστε περισσότεραΦροντιστήριο 7 Λύσεις
Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε
Διαβάστε περισσότεραΣυµπάγεια και οµοιόµορφη συνέχεια
35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.
Διαβάστε περισσότεραΦροντιστήριο 9 Λύσεις
Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
Διαβάστε περισσότερα3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Διαβάστε περισσότερακαι ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .
80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyxy rev x {a, b}, y {a, b} * } (α) Μια γραμματική για τη γλώσσα έχει ως εξής: S as a
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.
Διαβάστε περισσότεραΛύσεις σετ ασκήσεων #6
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα
Διαβάστε περισσότερα3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Διαβάστε περισσότεραΜπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;
Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 6: Μη Κανονικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά Το Λήμμα της Άντλησης για κανονικές γλώσσες Παραδείγματα 1 Πότε μια γλώσσα δεν είναι κανονική;
Διαβάστε περισσότεραΚανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο
Διαβάστε περισσότεραΚανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα
Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:
Διαβάστε περισσότεραΠερίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;
Διαβάστε περισσότεραΦροντιστήριο 10 Λύσεις
Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Έστω αλφάβητο Σ και γλώσσες Λ 1, Λ 2 επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής:
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,
Διαβάστε περισσότεραΑσκήσεις από παλιές εξετάσεις
Άσκηση 2 - Τελική εξέταση 2012 Ασκήσεις από παλιές εξετάσεις (α) [10 μονάδες] Να μετατρέψετε το πιο κάτω NFA σε ένα ισοδύναμο DFA χρησιμοποιώντας την κατασκευή που μελετήσαμε στο μάθημα. a a q 0 a, ε q
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να το αποδείξετε,
Διαβάστε περισσότερα4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ
1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Κυριακή, 15 Μαρτίου 2015 Διάρκεια : 15.00 17.00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Διαβάστε περισσότερα3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.
32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την
Διαβάστε περισσότερα( ) y ) άγνωστη συνάρτηση, f (, )
6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές
Διαβάστε περισσότεραΑριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών
Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyw 1w 2 x, y {a, b}, w 1 = a n, w 2 = b 2n, όπου, αν x=y=a, τότε n = 2k, διαφορετικά
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του
Διαβάστε περισσότερα[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]
Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος
Διαβάστε περισσότεραΓενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.
Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που
Διαβάστε περισσότεραΓωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
Διαβάστε περισσότερα6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β
1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι
Διαβάστε περισσότεραΚεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ
Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
Διαβάστε περισσότεραΠαράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1.
Παράρτηµα Γ νότητα Γ. Απόδιξη θωρήµατος.5 Kφαλαίου. στω f ίναι συνχής και πραγµατική συνάρτηση στο κανονικοποιηµένη (αφαιρώντας µια σταθρά) ώστ f ( x) dx= u = Pr f αρµονική µ (,) v (,) =. Τότ η. στω u
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια
Διαβάστε περισσότεραk k
ΚΕΦΛΙΟ ΜΕΤΣΧΗΜΤΙΣΜΟΙ ΜΕΤΛΗΤΩΝ Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ποιοτικές Μταβλητές ως προβλέπουσς Y= β + β X + β X + + β X + k k Προϋπόθση : Προβλέπουσς µταβλητές ποσοτικές (µτρήσιµς) Τι συµβαίνι
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών
Διαβάστε περισσότεραΗ θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις
Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.2.1. Συμμετρία ως προς άξονα
ΕΝΟΤΗΤΑ Β.2.1. Συμμτρία ως προς άξονα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Δραστηριότητα 1 Βρίτ το συμμτρικό του Α ως προς την υθία Βρίτ το συμμτρικό του Β ως προς την υθία 1 Α Β Βρίτ το συμμτρικό του Α ως προς
Διαβάστε περισσότερα2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών
Διαβάστε περισσότεραΑσκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1
Ασκήσεις Επανάληψης Άσκηση 1 (Τελική Εξέταση 5/015) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ L(M) {ΘΕΩΡΙΑ, ΥΠΟΛΟΓΙΣΜΟΥ} και L(M) 3} (Για την αναγωγή μπορείτε να χρησιμοποιήσετε τη γνωστή
Διαβάστε περισσότεραΠεριέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις
ίας : λαια ς ά φ τα κ κτρισµό ύµα ι χ έ Πρι τικός Ηλ τρικό ρ α κ Στ χές ηλ νητισµός ις ν γ Συ κτροµα λαντώσ α τ λ Η χανικές ουν η χ ρ Μ ά π αιο υ λ ά φ θ κ θωρίας ά κ ογής ς Σ α ι λ ί ι π σ χ ι ς ο κή
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε
Διαβάστε περισσότερα2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή
Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους
Διαβάστε περισσότεραΓραµµατικές για Κανονικές Γλώσσες
Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές
Διαβάστε περισσότεραΣΕΤ ΑΣΚΗΣΕΩΝ
ΣΕΤ ΑΣΚΗΣΕΩΝ 4.4.07. α) Ποια ίναι η σχέση μταξύ των οικονομιών κλίμακας και αποδόσων κλίμακας; β) Πως μτράμ την έκταση των οικονομιών κλίμακας; ΛΥΣΗ α) Οι οικονομίς κλίμακας και οι αποδόσις κλίμακας ίναι
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
Διαβάστε περισσότεραr p A n,m = {x X : f n (x) f m (x) f n f m }, sup f n (x) f m (x) f n f m
Αρμονική Ανάλυση 4-5. Εστω X, A, µ χώρος μέτρου μ µx
Διαβάστε περισσότερα# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ
Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης
Διαβάστε περισσότεραΑυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 0: Παιχνίδια μ λλιπή πληροφόρηση Ρφανίδης Ιωάννης Άδις Χρήσης Το παρόν κπαιδυτικό υλικό υπόκιται σ άδις χρήσης Creative Commons. ια κπαιδυτικό υλικό, όπως ικόνς, που υπόκιται σ άλλου τύπου άδιας
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές
Διαβάστε περισσότερα1 1 Χ= x x x x x x x x x x. x x x x x
ΚΕΦΑΛΑΙΟ Επιλογή Μταβλητών Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Πολυσυγγραµµικότητα Αν ισχύι X = λ + λ X + + λ X + λ X + + λ X + ( ) j j- j- j+ j+ k k ΤΟΤΕ j, j j+, k, j, j j+, k, Χ= x x x x x x x
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Διαβάστε περισσότεραΣτοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
Διαβάστε περισσότεραΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11
ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο
Διαβάστε περισσότεραΑριθμητική Ανάλυση & Προγραμματισμός Επιστημονικών Εφαρμογών Γουλιάνας Κώστας 2008 Σελίδα 1
Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Εϖιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Εϖίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα
Διαβάστε περισσότερα