3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.
|
|
- Αριστοκλής Κακριδής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων Ορισμός 3.2. Έστω E διανυσματικός χώρος. Μια ημινόρμα στον E ίναι μια απικόνιση : E R ώστ: (ι) 0, E = K E. (ιι) ( λ ) λ, λ, (ιιι) ( + y) + ( y),, y E. Η ιδιότητα (ιιι) ονομάζται υποπροσθτικότητα. Παρατηρήσις () Παρατηρούμ ότι οι συνθήκς (ιι) και (ιιι) έχουν σαν συνέπια την (ι).( Πράγματι, ( 0) = ( 2 0) = 2 ( 0), άρα ( 0) = 0. Επίσης 0 = ( + ( ) ) + ( ) ( ). Επιδή ( ) = 0, E.) (2) ( y) ( y),, y E,( Αν, y E τότ = ( y) + y ( y) + ( y) ( y) ( y) τους ρόλους των και y έχομ ότι ( y) ( y). Έτσι έχουμ το συμπέρασμα. ) (3) Αν { i : i I} su { i : },, έπται ότι. Εναλλάσσοντας οικογένια ημινορμών πί του διανυσματικού χώρου E και i I < + E τότ η απικόνιση { i } : E R : = su : i I, E ίναι μια ημινόρμα πί του E. Ιδιαίτρα αν { } η οικογένια ίναι ππρασμένη, έστω {,..., }, τότ η = m,..., ίναι πάντοτ ημινόρμα. ( Άσκηση). (4) Είναι προφανές ότι μια ημινόρμα ίναι νόρμα αν και μόνο αν > 0, E μ 0. Παραδίγματα () Έστω E διανυσματικός χώρος και Λ : E K γραμμικό συναρτησοιδές, τότ η απικόνιση = Λ, E, ίναι μια ημινόρμα πί του E. ( Πότ η = Λ γίνται νόρμα; )
2 33 (2) Έστω l R =, όπου : : limsu ημινόρμα πί του χώρου Bch = l. Τότ η ίναι μια l.( Πρβλ. το παράδιγμα. ). Πρόταση Έστω E διανυσματικός χώρος και : E R ημινόρμα πί του E. Τότ ισχύουν: (ι) Το σύνολο F { 0} (ιι) Για κάθ 0 = ίναι διανυσματικός υπόχωρος του E. { } >, τα σύνολα ( 0, ) : { } ( 0, ) : Β = E < και Β = E ίναι κυρτά ισορροπημένα και απορροφούντα υποσύνολα του E. Απόδιξη: Αποδικνύουμ μόνο ότι το ( 0, ) υπόλοιπους ισχυρισμούς ως άσκηση. Έστω E. Αν 0 t t = t < + 2 τότ Β ίναι απορροφούν και αφήνουμ τους και άρα t ( 0, ) + 2, Β. Αν : E R ίναι μια ημινόρμα πί του διανυσματικού χώρου E τότ ίναι ύκολο να αποδίξουμ ότι η οικογένια των συνόλων της μορφής { } Β, = y E : y < = +Β 0,, E, > 0 συνιστούν μια βάση για μια τοπολογία πί του E η οποία ίναι συμβατή μ την αλγβρική δομή του E και έτσι ο ( E, ) γίνται τοπολογικός διανυσματικός χώρος. Εντούτοις οι τοπικά κυρτές τοπολογίς ορίζονται από μια ολόκληρη οικογένια ημινορμών πί του Eμ τον ακόλουθο τρόπο. Έστω E διανυσματικός χώρος και μια οικογένια ημινορμών πί του E. Αν { } =,...,, E και > 0 θέτομ. = (, ) (, ) { y E : ( y ),,2,..., } Β = Β = < = Κατόπιν θωρούμ κίνη την τοπολογία = η οποία έχι ως υποβάση τα σύνολα της μορφής ( ) Β,,, E, > 0 Ένα τυπικό μέλος της βάσης που παράγι η παραπάνω υποβάση ίναι πομένως της μορφής όπου = Έστω Β (, ),..., E,,..., και,..., 0 >
3 34 Έστω Β (, ), θέτομ ( ) =. Παρατηρούμ ότι Β (, ) Β (, ) = = { } = mi : συνπώς > 0. Πράγματι, αν y Β (, ), τότ,,2,..., = έχομ,,,2,... y Β = y =. Έτσι y y + < = από όπου έπται ότι (, ). Από την παρατήρηση αυτή συμπραίνουμ ότι η κλάση των συνόλων της μορφής { Β (, ) : E, > 0 και ππρασμένο } ίναι και αυτή μια βάση για την τοπολογία = ( ) που ορίσθηκ παραπάνω. { E } Ειδικότρα τα σύνολα της μορφής ( ) Β 0, = : <,, όπου ππρασμένο ίναι μια βάση πριοχών του 0 E η οποία αποτλίται από κυρτά και ισορροπημένα ( και απορροφούντα ) σύνολα. ( Πρβλ την πρόταση ). Παρατηρούμ τα ακόλουθα: z A ) Έστω δίκτυο στον E και z E. Τότ (α) z z ( z z) 0 για κάθ Πράγματι, z z [ > 0, ππρασμένο υπάρχι 0 0 Α : z Β z, ] > 0, ππρασμένο υπάρχι : 0 0 Α ( z z) ( z z) (β) Αν z z τότ ( z) ( z) <, 0 για κάθ. για κάθ. Το συμπέρασμα προκύπτι αμέσως από την ανισότητα, z z z z Α. Έπται ιδιαίτρα κάθ ημινόρμα ίναι συνχής συνάρτηση πί του χώρου ( E, ( )) 2) Η τοπολογία = ίναι συμβατή μ την αλγβρική δομή του E και έτσι ο ( E, ) ίναι ένας τοπολογικός γραμμικός χώρος.
4 35 Για την απόδιξη αυτού του ισχυρισμού θωρούμ ένα δίκτυο (, ) την τοπολογία γινόμνο δίκτυο (, ) λ Α y στον E E ( μ Α ) και (, y) E E ώστ (, y ) (, y) στον χώρο K E ( μ την τοπολογία γινόμνο ) και ( λ, ) K E ώστ ( λ, ) ( λ, ) Έπται τότ από τις ανισότητς ότι. + y + y και λ ( ) λ + y + y + y y και λ λ λ λ + λ, και ακόμη ένα ότι y y + + και λ λ. Έτσι οι πράξις του E ίναι συνχίς και ο ( E, ) ίναι ένας τοπολογικός διανυσματικός χώρος. 3) Ο τ.δ.χ., E ίναι Husdorff αν και μόνο αν η οικογένια ημινορμών διαχωρίζι τα σημία του E, δηλαδή αν, για κάθ, y E μ ώστ 0 y υπάρχι y >.( Ισοδύναμα, για κάθ E μ 0 υπάρχι τέτοιο ώστ ( ) > 0). Η απόδιξη αυτού του ισχυρισμού προκύπτι ύκολα από την πρόταση Ορισμός Ένας τοπολογικός διανυσματικός χώρος λέγται ότι ίναι τοπικά κυρτός (τ.κ.), αν η τοπολογία του ορίζται από μια οικογένια ημινορμών δηλαδή = ( ), όπως παραπάνω. Παρατηρούμ ότι αν ( E, ) ίναι ένας τοπικά κυρτός τ.δ.χ., τότ: ) Ο E έχι μια βάση πριοχών του 0 E που αποτλίται από ( κλιστά ) κυρτά και ισορροπημένα σύνολα έτσι ώστ να ικανοποιούνται οι συνθήκς του θωρήματος ) Κάθ διανυσματικός υπόχωρος F του E ίναι μ τη σχτική τοπολογία ένας τοπικά κυρτός τ.δ.χ. ( η σχτική τοπολογία πί του F συμπίπτι μ την τοπικά κυρτή τοπολογία που ορίζουν οι ημινόρμς της οικογένιας αν πριορισθούν στον F.) Παραδίγματα ) Έστω (, ) ένας Husdorff τοπικά κυρτός χώρος μ την τοπολογία Πράγματι η οικογένια των ανοικτών σφαιρών ( ) διανυσματικός χώρος μ νόρμα. Τότ ο ίναι = που ορίζι η νόρμα. {, :, 0} Β > αποτλί μια βάση της έτσι σύμφωνα μ τον ορισμό 3.2.5, ο (, ) ίναι τοπικά κυρτός ( μτρικοποιήσιμος ) χώρος.
5 36 2) Έστω Γ σύνολο. Θέτομ E K Γ ( K Rή C) = =. Δηλαδή ο E ίναι ο διανυσματικός χώρος ( μ τις συνήθις κατά σημίο πράξις ) όλων των συναρτήσων f : κάθ γ Γ ορίζουμ την ημινόρμα : E R : ( f ) f γ γ γ Γ K. Για =. Έστω = { γ : γ Γ } Η τοπικά κυρτή τοπολογία = ( ) που ορίζι η πί του E σύμφωνα μ τον ορισμό έχι ως βάση πριοχών του 0 E ( της σταθράς συνάρτησης ίσης μ μηδέν ) τα σύνολα της μορφής γ,...,, γ Γ N και > 0. Αν f { } Vγ :,, 2,...,,..., γ f E f, = γ < =, όπου E, τότ μια βάση πριοχών του f αποτλίται από τα σύνολα της μορφής { } V, γ,..., γ, = g E : g γ f γ, =, 2,..., f f A Έστω δίκτυο στον E και f E τότ ίναι προφανές ότι, f f f γ f γ γ Γ. Η τοπολογία = ονομάζται η τοπολογία της σύγκλισης κατά σημίο πί του E και βέβαια συμπίπτι μ τη γνωστή μας τοπολογία γινόμνο πί του E. Ακόμη σημιώνουμ ότι ο ( E, ) ίναι χώρος Husdorff αφού αν, υπάρχι γ Γ : f ( γ ) g( γ ), δηλαδή ( f g) 3)Έστω (, ) χώρος μ νόρμα, και γ > 0. 0 f g E μ f g τότ ο συζυγής του. Θα ορίσουμ τώρα δύο νδιαφέρουσς τοπικά κυρτές τοπολογίς, την ασθνή τοπολογία πί του και την ασθνή τοπολογία του. (α) Η ασθνής τοπολογία του. Για κάθ θέτομ : R : =,. Η τοπικά κυρτή τοπολογία που ορίζι η οικογένια ημινορμών { : } και συμβολίζται μ w. Παρατηρούμ τα ακόλουθα: = πί του ονομάζται η ασθνής ( we ) τοπολογία του (ι) Η οικογένια διαχωρίζι τα σημία του και έτσι ο μ την ασθνή τοπολογία ίναι χώρος Husdorff. Ο ισχυρισμός αυτός ίναι συνέπια του θωρήματος Hh- Bch, αφού αν, y μ y, τότ το z = y 0και συνπώς υπάρχι z z = > 0. μ = ώστ
6 37 (ιι) Ένα δίκτυο ( ) A μόνο αν συγκλίνι ασθνώς στο, δηλαδή,,. w αν και (ιιι) Μια βάση ( ανοικτών ) πριοχών του 0 αποτλίται από όλα τα σύνολα της μορφής όπου 2,...,, { :,, 2,..., } V = < =,,...,, N και > 0. Επιδή κάθ ένα από τα σύνολα V,...,, ίναι και ανοικτό στην τοπολογία της νόρμας στον ( γιατί; ), έπται ότι η ασθνής τοπολογία w του ίναι ασθνέστρη ( μικρότρη ) της τοπολογίας της νόρμας του, δηλαδή w. Σημιώνουμ ότι, ένας ισοδύναμος τρόπος να ορίσουμ την ασθνή τοπολογία του προκύπτι από την παρατήρηση ότι ο μπορί να θωρηθί ως διανυσματικός υπόχωρος του χώρου K, ο οποίος σύμφωνα μ το παράδιγμα (2) ίναι τοπικά κυρτός μ την τοπολογία σύγκλισης κατά σημίο. Έτσι η ασθνής τοπολογία του μπορί να ορισθί ως η σχτική τοπολογία που πάγται από τον (, ) θώρημα Hh-Bch ( αν { 0} τότ ) { 0} K στον. Πράγματι, από το και η μφύτυση του στον ορίζται από την απικόνιση ϕ ϕ (Συμπληρώστ τις λπτομέρις.) (β) Η ασθνής τοπολογία του : K : =,,. Για κάθ : R : =,. Η οικογένια ημινορμών { : } ορίζουμ μια ημινόρμα K = ορίζι τότ μια τοπικά κυρτή τοπολογία στον, η οποία ονομάζται η ασθνής ( we ) τοπολογία του w και συμβολίζται μ Παρατηρούμ ότι: ίναι χώρος Husdorff, αφού αν, y μ, w (ι) Ο( ) υπάρχι μ ( y) ( y ) > 0. y τότ βέβαια (ιι) Ένα δίκτυο συγκλίνι ασθνώς στο A,. και μόνο αν, δηλαδή, w αν
7 38 (ιιι) Μια βάση ανοικτών πριοχών του { } 0 αποτλίται από τα σύνολα της μορφής V,...,, = : <, =,2,...,, όπου,...,,, 0 N >. Έπται ιδιαίτρα ότι, w τοπολογίας της νόρμας του χώρου, δηλαδή, η ασθνής τοπολογία ίναι ασθνέστρη της. Σημιώνουμ ότι ( όπως και η ασθνής τοπολογία ) η ασθνής τοπολογία μπορί να ορισθί και μ τη βοήθια του παραδίγματος (2). Πράγματι η απικόνιση τ : K :τ =,, ίναι μια ( αλγβρική ) μφύτυση του στον διανυσματικό χώρο K. Έτσι η w τοπολογία μπορί να ορισθί ως η σχτική τοπολογία που πάγται από τον τοπικά κυρτό χώρο (, ) υπόχωρο του ( ακριβέστρα στον τ( )). K στον διανυσματικό 4) Έστω M μτρικός χώρος ή γνικότρα ένας τοπολογικός χώρος Husdorff, ας συμβολίσουμ μ C( M ) C ( M ) τον χώρο των συνχών συναρτήσων f : M K ο K οποίος ίναι βέβαια μ τις συνήθις πράξις ( της πρόσθσης βαθμωτών συναρτήσων και του πολλαπλασιασμού συνάρτησης μ βαθμωτό ) ένας διανυσματικός χώρος πί του K. Για κάθ Κ M συμπαγές μη κνό σύνολο θέτομ, { } Κ f = su f : Κ. Η τοπικά κυρτή τοπολογία τ C που καθορίζι η οικογένια ημινορμών { : M συµπαγές} = Κ ονομάζται τοπολογία της ομοιόμορφης σύγκλισης στα Κ συμπαγή υποσύνολα του M. Παρατηρούμ τα ακόλουθα: (ι) Η τοπολογία C τ ίναι Husdorff, αφού αν f, g C( M ) μ f g τότ υπάρχι : και συνπώς Κ ( f g) > 0, όπου Κ = { } M f g.( Ουσιαστικά η τ C ίναι Husdorff αφού ίναι λπτότρη της τοπολογίας της κατά σημίο σύγκλισης πί του C( M ).). (ΙΙ) Ένα δίκτυο ( f ) C( M ) συγκλίνι ως προς την C A τ στην συνάρτηση f C( M ) τc ( γράφουμ τότ f f ) αν και μόνο αν f κάθ συμπαγές Κ M. Κ f ομοιόμορφα πί του Κ, για Κ
8 39 (ιιι) Οι βασικές πριοχές του 0 C( M ) στην τοπολογία τ C ίναι της μορφής, VΚ, = { f C( M ) : su { f : Κ } < }, Κ M συμπαγές και > 0. 5) Έστω Ω C ανοικτό μη κνό σύνολο. Ας συμβολίσουμ μ Η( Ω ) τον χώρο των ολομόρφων συναρτήσων f : υπόχωρος του χώρου C C Ω C, ο οποίος ίναι βέβαια ένας διανυσματικός Ω. Έτσι η τοπολογία της ομοιόμορφης σύγκλισης στα συμπαγή (η οποία ορίσθηκ στο προηγούμνο παράδιγμα ) καθιστά τον Η( Ω ) ένα Husdorff τοπικά κυρτό υπόχωρο του CC ( Ω ).
3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Διαβάστε περισσότερα3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)
4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας
Διαβάστε περισσότερακαι ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .
80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων
Διαβάστε περισσότεραΣυµπάγεια και οµοιόµορφη συνέχεια
35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.
Διαβάστε περισσότεραι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.
6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται
Διαβάστε περισσότεραπ B = B και άρα η π είναι ανοικτή απεικόνιση.
3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι
Διαβάστε περισσότερα3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.
7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός
Διαβάστε περισσότερα3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
20 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει ότι
Διαβάστε περισσότερα4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Διαβάστε περισσότεραΑσκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].
3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και
Διαβάστε περισσότερα4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη
94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
Διαβάστε περισσότερα3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]
0 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω E διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A E. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει
Διαβάστε περισσότερα4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.
8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Σιρά Προβλημάτων 2 Λύσις Άσκηση Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις
Διαβάστε περισσότερα2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται
Διαβάστε περισσότεραΑς ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα
33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.
Διαβάστε περισσότεραY είναι τοπολογία. Αυτή περιέχει το και
8.3 Σχετική τοπολογία και υπόχωροι. Ορισμός.37. Έστω X, τ.χ. Αν U : U X, τότε η οικογένεια είναι μια τοπολογία στο σύνολο, η οποία ονομάζεται η σχετική ( ή επαγόμενη ) τοπολογία του. Ο χώρος, ονομάζεται
Διαβάστε περισσότεραΣυνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Διαβάστε περισσότεραΚ X κυρτό σύνολο. Ένα σημείο x Κ
8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος
Διαβάστε περισσότεραΠαράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1.
Παράρτηµα Γ νότητα Γ. Απόδιξη θωρήµατος.5 Kφαλαίου. στω f ίναι συνχής και πραγµατική συνάρτηση στο κανονικοποιηµένη (αφαιρώντας µια σταθρά) ώστ f ( x) dx= u = Pr f αρµονική µ (,) v (,) =. Τότ η. στω u
Διαβάστε περισσότεραf I X i I f i X, για κάθεi I.
47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα
Διαβάστε περισσότερα1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον
Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση [5 μονάδς] Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς πί του αλφάβητου Α = {, }. (α) Όλς οι λέξις πί του αλφάβητου
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Διπλωματική Εργασία Χώροι ημισωτρικού γινομένου και Birkhoff-James -ορθογωνιότητα ΧΑΣΑΠΗ Π. ΣΤΑΜΑΤΙΝΑ
Διαβάστε περισσότερα2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με
Διαβάστε περισσότεραΗ θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις
Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό
Διαβάστε περισσότεραόπου n είναι ο συνολικός αριθμός γραμμομορίων του συστήματος (που συμπεριλαμβάνει και τα τυχόν αδρανή συστατικά), Ή ακόμα και τη σύσταση κατά βάρος
Κφάλαιο Στοιχιομτρία αντιδράσων. Σύσταση μιγμάτων αντιδρώντων Ας υποθέσουμ πως μια χημική αντίδραση συμβαίνι μέσα σ μια φάση. Η κατάσταση της κάθ φάσης καθορίζται από την πίση, τη θρμοκρασία Τ, και τη
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ
Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.
Διαβάστε περισσότεραV x, y W x, y, y συνιστούν προφανώς ένα ανοικτό
81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα
Διαβάστε περισσότεραή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.
93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός
Διαβάστε περισσότεραΓωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θωρία Υπολογισμού Ενδιάμση Εξέταση Ημρομηνία : Πέμπτη, 14 Μαρτίου 2019 Διάρκια : 09.00 10.30 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΧΕΙΡΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 [35 μονάδς]
Διαβάστε περισσότεραΈχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν
3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε
Διαβάστε περισσότερα5 Σύγκλιση σε τοπολογικούς χώρους
121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις
Διαβάστε περισσότεραΣτοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)
Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,
Διαβάστε περισσότερα1.2 Βάσεις και υποβάσεις.
. Βάσεις και υποβάσεις. Το «καθήκον» του ορισμού μιας τοπολογίας διευκολύνεται αν είμαστε σε θέση να περιγράψουμε αρκετά ανοικτά σύνολα τα οποία να παραγάγουν όλα τα ανοικτά σύνολα. Ορισμός.9. Έστω X,
Διαβάστε περισσότεραΚανόνες παραγώγισης ( )
66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών
Διαβάστε περισσότεραΠερίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;
Διαβάστε περισσότεραονομάζεται τότε χώρος πηλίκο. διατηρεί τα συμπληρώματα συνόλων, ένα σύνολο F είναι είναι κλειστό στον.
67 2.3 Χώροι πηλίκο και τοπολογία πηλίκο Στην παρούσα παράγραφο θα δείξουμε πως μπορούμε μέσω μιας απεικόνισης ενός δεδομένου τοπολογικού χώρου επί ενός συνόλου να εισαγάγουμε τοπολογία στο σύνολο, την
Διαβάστε περισσότερα6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
Διαβάστε περισσότεραΕισαγωγή στην Τοπολογία
Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότερα6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β
1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι
Διαβάστε περισσότεραΠαράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Διαβάστε περισσότερα# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ
Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης
Διαβάστε περισσότερα2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ
Διαβάστε περισσότεραΣυμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2
ΚΕΦ. 3 Η Αρχή των Ήρωνος-Fermat 3.3-8 Συμπλήρωμα 2 δαφίου 3.3: Το νικό μταβολικό πρόβλημα ια συναρτησιακό ολοκληρωτικού τύπου μ ολοκληρωτέα συνάρτηση F κατά 2 τμήματα C, ορισμένο πί καμπυλών που τέμνουν
Διαβάστε περισσότεραΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών
54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.
Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Άσκηση Σιρά Προβλημάτων Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { m n m, n, m+n πριττός ακέραιος} (β) {w {,} * τα πρώτα δύο σύμβολα της w, αν υπάρχουν, δν ίναι τα ίδια
Διαβάστε περισσότερα2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή
Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους
Διαβάστε περισσότεραΘεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών
Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραR ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος
73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b
Διαβάστε περισσότεραΌταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).
4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραf x 0 για κάθε x και f 1
06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.
Διαβάστε περισσότεραr p A n,m = {x X : f n (x) f m (x) f n f m }, sup f n (x) f m (x) f n f m
Αρμονική Ανάλυση 4-5. Εστω X, A, µ χώρος μέτρου μ µx
Διαβάστε περισσότερα(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3
0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση
Διαβάστε περισσότερα( ) y ) άγνωστη συνάρτηση, f (, )
6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές
Διαβάστε περισσότεραΛύσεις σετ ασκήσεων #6
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του
Διαβάστε περισσότεραΣΕΤ ΑΣΚΗΣΕΩΝ
ΣΕΤ ΑΣΚΗΣΕΩΝ 4.4.07. α) Ποια ίναι η σχέση μταξύ των οικονομιών κλίμακας και αποδόσων κλίμακας; β) Πως μτράμ την έκταση των οικονομιών κλίμακας; ΛΥΣΗ α) Οι οικονομίς κλίμακας και οι αποδόσις κλίμακας ίναι
Διαβάστε περισσότεραΥπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός
Διαβάστε περισσότεραΑντλία νερού: Ο ρόλος της αντλίαςμελέτη συμπεράσματα σχόλια.
Αντλία νρού: Ο ρόλος της μλέτη συμπράσματα σχόλια.. Ο ρόλος της. Η αντλία χρησιμοποιίται ώστ να μταφέρι μια ποσότητα νρού κί που δν μπορί να μταφρθί μόνο μ τις πιέσις που δημιουργούνται από το υπόλοιπο
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
Διαβάστε περισσότεραΣυναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
Διαβάστε περισσότεραΣυναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότεραΑριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών
Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα
Διαβάστε περισσότεραΣχεδίαση µε τη χρήση Η/Υ
Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι
Διαβάστε περισσότερα1 Το ϑεώρηµα του Rademacher
Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.
Διαβάστε περισσότεραΚεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη
Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα
Διαβάστε περισσότεραΝόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:
Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Σημιώσις για το μάθημα ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ε. Ε. Νισταζάκης Τμήμα Στατιστικής και Αναλογιστικής Επιστήμης Πανπιστήμιο Αιγαίου ΠΕΡΙΕΧΟΜΕΝΑ Κφάλαιο ο : ΕΙΣΑΓΩΓΗ 5.. Μ τι ασχολίται η αριθμητική
Διαβάστε περισσότεραΌρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε
Διαβάστε περισσότεραΕισαγωγή στην Τοπολογία
Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΣειρά Προβλημάτων 2 Λύσεις
ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 0: Παιχνίδια μ λλιπή πληροφόρηση Ρφανίδης Ιωάννης Άδις Χρήσης Το παρόν κπαιδυτικό υλικό υπόκιται σ άδις χρήσης Creative Commons. ια κπαιδυτικό υλικό, όπως ικόνς, που υπόκιται σ άλλου τύπου άδιας
Διαβάστε περισσότερα[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]
Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος
Διαβάστε περισσότεραΑκρότατα πραγματικών συναρτήσεων
Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει
Διαβάστε περισσότεραΦροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό
Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση
44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια
Διαβάστε περισσότεραΥπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός
Διαβάστε περισσότεραΕλλειπτικές Καµπύλες υπέρ του σώµατος C
Ελλειπτικές Καµπύλες υπέρ του σώµατος C Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 11 Νοεµβρίου 2014, 1/18 ιακριτές υποοµάδες του C Ορισµός Εστω ω 1, ω 2 δύο µιγαδικοί αριθµοί µε Im(ω
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Διαβάστε περισσότεραΘεώρηµα ( ) x x. f (x)
Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί
Διαβάστε περισσότεραΑτοµική Θεωρία Ζήτησης
Κεφάλαιο 1 Ατοµική Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις
Διαβάστε περισσότεραΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ 6932 946778 www.pmoias.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραB X Y : T X Y = U i V i : U i T X, V i T Y. (x, y) (U 1 V 1 ) (U 2 V 2 ) = (U 1 U 2 ) (V 1 V 2 ) B X Y. ((0, 2) (1, 3)) ((1, 3) (1, 2)) B X B Y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 5Η ΔΙΑΛΕΞΗ ΤΟΠΟΛΟΓΙΑ ΓΙΝΟΜΕΝΟ ΚΑΙ ΕΠΑΓΟΜΕΝΗ ΤΟΠΟΛΟΓΙΑ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Τοπολογια γινομενο και προβολες Εστω X, Y τοπολογικοί
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της
Διαβάστε περισσότεραΕισαγωγή στην Τοπολογία
Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
Διαβάστε περισσότεραΌρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει
Διαβάστε περισσότεραΚυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΜη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, Lipschitz, Picard.
Μη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, ipschitz, Picard. Νίκος Σταµάτης nstam84@gmail.com 7 Φεβρουαρίου 212 Περίληψη Σε αυτή την εργασία παρουσιάζουµε µια αναλυτική απόδειξη του ϑεωρήµατος
Διαβάστε περισσότεραΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11
ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.2.1. Συμμετρία ως προς άξονα
ΕΝΟΤΗΤΑ Β.2.1. Συμμτρία ως προς άξονα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Δραστηριότητα 1 Βρίτ το συμμτρικό του Α ως προς την υθία Βρίτ το συμμτρικό του Β ως προς την υθία 1 Α Β Βρίτ το συμμτρικό του Α ως προς
Διαβάστε περισσότερα