ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ)
|
|
- Ανδρόνικα Παπακωνσταντίνου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ) Ακαδηµαϊκό Έτος: ιδάσκων:γ. Π. Παπαβασιλόπουλος Επιµέλεια Άσκησης: Α. Χ. Χαραλαµπίδης, Υ.. Παρατήρηση: Για το ακαδηµαϊκό έτος και για το µάθηµα Εισαγωγή στον Αυτόµατο Έλεγχο καλείστε να απαντήσετε στο πρώτο ζήτηµα καθώς και στα δύο πρώτα ερωτήµατα του δεύτερου ζητήµατος, δηλαδή µέχρι και το ερώτηµα 2.2. Για το µάθηµα Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου καλείστε να απαντήσετε σε όλα τα ερωτήµατα. Εισαγωγή: Η εργασία αυτή έχει στόχο την εξοικείωση των σπουδαστών µε πολλές από τις έννοιες που εισάγονται στο µάθηµα καθώς και µε τη χρήση υπολογιστικών εργαλείων. Υπάρχουν διαθέσιµα πολλά πακέτα για υπολογισµούς, άλλα εµπορικά και άλλα ελεύθερα ή και ανοικτού κώδικα. ιαδεδοµένο εµπορικό πακέτο είναι το MATLAB της MATHWORKS για το οποίο έχουν αναπτυχθεί βιβλιοθήκες για πολλές εφαρµογές µία από τις οποίες είναι και το Control System Toolbox. Από την ίδια εταιρεία διατίθεται το Simulink, που παρέχει τη δυνατότητα γραφικής σχεδίασης µπλοκ διαγραµµάτων και παρέχει καλή ολοκλήρωση µε το περιβάλλον MATLAB. Αντίστοιχο µε το MATLAB (και µε σύνταξη σε πολύ µεγάλο βαθµό συµβατή) και ελεύθερο είναι το GNU Octave. Στην εργασία µπορείτε να χρησιµοποιήσετε όποιο εσείς επιθυµείτε, ωστόσο επειδή το MATLAB είναι το πιο διαδεδοµένο, σε πολλά σηµεία θα αναφέρουµε στο τέλος ενός ζητήµατος ή υποερωτήµατος εντολές του Control System Toolbox ως υπόδειξη. Μπορείτε στην αναφορά σας να συµπεριλάβετε υπολογισµούς, κώδικα και διαγράµµατα ανάλογα µε το τι θεωρείτε ότι χρειάζεται σε κάθε υποερώτηµα. Στην άσκηση αυτή θα χρησιµοποιηθούν οι δύο ακόλουθες συνδεσµολογίες:
2 Συνδεσµολογία i) r(t) u(t) G y(t) F Συνδεσµολογία ii) r(t) F u(t) G y(t) Στα παραπάνω διαγράµµατα G(s) είναι η συνάρτηση µεταφοράς του υπό έλεγχο συστήµατος ενώ F(s) είναι η συνάρτηση µεταφοράς του ελεγκτή. y(t) είναι η έξοδος του υπό έλεγχο συστήµατος και r(t) το σήµα αναφοράς. Θα ονοµάζουµε u(t) την είσοδο του υπό έλεγχο συστήµατος. Για τη G(s) διακρίνουµε δύο περιπτώσεις: a) Ga( s) 2 s + s+ b) Gb( s) 3 2.2s +.2s +.2s+ Ζήτηµα ο Στο ζήτηµα αυτό θα µελετηθεί το υπό έλεγχο σύστηµα καθώς και η συµπεριφορά του κλειστού βρόχου όταν η ανατροφοδότηση έχει τη µορφή F(s)k.
3 . Να βρεθούν οι πόλοι των δύο υπό έλεγχο συστηµάτων, G a,g b καθώς και το κέρδος µόνιµης κατάστασης (DC κέρδος). Ακολούθως να σχεδιαστεί η βηµατική τους απόκριση. Με βάση τη θέση των πόλων και το DC κέρδος να εξηγήσετε τη µορφή της βηµατικής απόκρισης υπολογίζοντας χαρακτηριστικά της βηµατικής απόκρισης (χρόνος αποκατάστασης, χρόνος ανόδους, ποσοστό υπερύψωσης ή όποιο άλλο νοµίζετε). Παρατηρείστε ότι οι δύο βηµατικές αποκρίσεις δε φαίνεται να διαφέρουν πολύ. (dcgain,step,roots).2 Να σχεδιαστούν τα διαγράµµατα Bode. Μέχρι ποια συχνότητα τα κέρδη διαφέρουν µέχρι 3dB;Μέχρι ποια συχνότητα τα διαγράµµατα φάσης διαφέρουν µέχρι 3 ο ; (bode) Στα επόµενα ερωτήµατα του Ζητήµατος υποθέτουµε ότι F(s)k..3 α) Με βάση το κριτήριο Routh να βρείτε αν το σύστηµα κλειστού βρόχου είναι ευσταθές για k3 και k8. Ακολούθως βρείτε το σύνολο των πραγµατικών τιµών του k για τις οποίες έχουµε ευστάθεια κλειστού βρόχου. Να διαπιστωθεί ότι σε κλειστό βρόχο όταν το κέρδος k αυξηθεί πολύ το σύστηµα πέφτει σε αστάθεια µε τη G b ενώ µε τη G a υπάρχει άπειρο περιθώριο κέρδους. Για να χρησιµοποιήσετε το κριτήριο Routh σε περιβάλλον MATLAB µπορείτε να κατεβάσετε τo αρχείο Routh.m από το β) Να σχεδιαστεί ο Γ.Τ.Ρ και να εξαχθούν τα ίδια αποτελέσµατα µε το υποερώτηµα α). (rlocus).4 Υπάρχει διαφορά στο θέµα της ευστάθειας για τις δύο συνδεσµολογίες (i και ii);.5 Να σχεδιαστούν οι βηµατικές αποκρίσεις για τη συνδεσµολογία i) µε F(s)5. και για τα δύο υπό έλεγχου συστήµατα. ιαπιστώνουµε ότι ενώ οι βηµατικές αποκρίσεις των δύο συστηµάτων ήταν φαινοµενικά ίδιες, σε κλειστό βρόχο και για αρκούντως µεγάλο κέρδος έχουµε πολύ διαφορετική συµπεριφορά. Προσπαθήστε να εξηγήσετε γιατί συµβαίνει αυτό στη συγκεκριµένη περίπτωση. Σε αυτό µπορούν να σας βοηθήσουν τα διαγράµµατα Bode..6 Να σχεδιαστούν το διάγραµµα Nyquist για τo G b και να βρεθεί για ποιες τιµές του k έχουµε ευστάθεια κλειστού βρόχου. Ακόµη, µε βάση το διάγραµµα αυτό και για τιµή του k της επιλογής σας, αλλά που εξασφαλίζει ευστάθεια, να βρείτε τα περιθώρια κέρδους και φάσης.(nyquist) Ζήτηµα 2 ο Επιθυµούµε τώρα να βελτιώσουµε τη συµπεριφορά του συστήµατος κλειστού βρόχου χρησιµοποιώντας δυναµική ανατροφοδότηση. Συνδεσµολογία είναι η ii). Όπου δεν αναφέρεται διαφορετικά, η σχεδίαση θα γίνεται και για τα δύο υπό έλεγχο συστήµατα και ο ελεγκτής µπορεί να είναι διαφορετικός για το καθένα.
4 s+ p 2. Να επιλέξετε ελεγκτή της µορφής F( s) k s + q έτσι ώστε αν r(t) είναι µοναδιαία βηµατική είσοδος και το σύστηµα τη χρονική στιγµή t βρίσκεται σε ηρεµία να ικανοποιούνται οι παρακάτω περιορισµοί: y( t).25 για t ts 3 y( t).2, για t ta µε t a της επιλογής σας max[ y( t) ].3, για t Για ποια από τα δύο υπό έλεγχο συστήµατα µπορέσατε να πετύχετε καλύτερη συµπεριφορά κλειστού βρόχου; Υπόδειξη: Στον εύκολο πειραµατισµό µε διάφορους ελεγκτές µπορεί να σας βοηθήσει το sisotool του MATLAB. 2.2 Προσπαθήστε τώρα χρησιµοποιώντας PID ελεγκτή να πετύχετε: lim y( t) t + y( t). για t ts 2 max[ y( t) ].2, για t Για τον PID που επιλέξατε και για το υπό έλεγχο σύστηµα G b να δοθούν οι κυµατοµορφές u(t) και y(t) όταν r(t) είναι µοναδιαίο βήµα και να βρεθούν τα περιθώρια κέρδους και φάσης. Υπενθυµίζουµε ότι u(t) είναι η είσοδος του υπό έλεγχο συστήµατος. 2.3 Προκειµένου να ελεγχθεί η σθεναρότητα της σχεδίασης των δύο προηγούµενων ερωτηµάτων και για το G b προχωρήστε στα επόµενα: α)να µελετηθούν οι αλλαγές στη συµπεριφορά του συστήµατος κλειστού βρόχου όταν η τιµή του q αλλάζει έως % (σε σχέση µε την τιµή που επιλέξατε) για τον ελεγκτή του Ερωτήµατος 2. καθώς και όταν αλλάζει το κέρδος του ολοκληρωτή έως % για τον PID ελεγκτή (επίσης σε σχέση µε την τιµή που επιλέξατε). ιατηρείται η ευστάθεια σε όλο το διάστηµα; Εάν όχι αναφέρετε σε ποιο διάστηµα διατηρείται. β) ιαλέξτε τυχαία (µε όποια κατανοµή επιθυµείτε) τιµές για τα τρία κέρδη του PID ελεγκτή αλλά µε την προϋπόθεση να µην απέχουν πάνω από 5% από τις ονοµαστικές (δηλαδή αυτές που επιλέξατε στο Ερώτηµα 2.2). Ελέγξτε αν το σύστηµα παραµένει ευσταθές και στις περιπτώσεις. 2.4 Έστω τώρα ότι ο ελεγκτής είναι ψηφιακός και ότι η έξοδός του αλλάζει µε συχνότητα της επιλογής σας αλλά µικρότερη από 2Hz. Αγνοείστε τα σφάλµατα κατά τη µετατροπή από αναλογικό σε ψηφιακό και αντίστροφα. Να βρεθεί κατάλληλος ελεγκτής ώστε να ικανοποιούνται οι προδιαγραφές που ζητήθηκαν για τον PID. Υπό έλεγχο σύστηµα είναι το G a.
5 Ζήτηµα 3 ο p Έστω ότι τώρα G( s), p> ( s 4)( s 5)( s+ p) και ότι επιλέγουµε να τη προσεγγίσουµε µε τη συνάρτηση G( s). ( s 4)( s 5) 3. Χρησιµοποιώντας τη συνδεσµολογία ii) να βρεθεί ελεγκτής F(s) της επιλογής σας που να επιτυγχάνει ευστάθεια για το σύστηµα µε συνάρτηση µεταφοράς G( s). Έστω ότι λόγω κατασκευαστικής ατέλειας ο ελεγκτής ( s 4)( s 5) τελικά δεν έχει συνάρτηση µεταφοράς F(s) αλλά k*f(s). Είναι δυνατό ο ελεγκτής να σχεδιαστεί έτσι ώστε το σύστηµα κλειστού βρόχου να παραµένει ευσταθές για απεριόριστα µικρές τιµές του k; Για τον ελεγκτή που σχεδιάσατε να βρεθεί σε ποιο διάστηµα µπορεί να ανήκει το k ώστε σε κλειστό βρόχο να υπάρχει ευστάθεια. Να δώσετε τα περιθώρια αύξησης και µείωσης κέρδους σε db. 3.2 Να ελέγξετε κατά πόσο το σύστηµα µε την G(s) και p25 είναι ευσταθές. Αν όχι δοκιµάστε αν υπάρχουν άλλες θέσεις του ευσταθούς πόλου που να µην επηρεάζουν την ευστάθεια.
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και
ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Βαθµολογία Προβληµάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2. G(s)
ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΑΝΑΤΥΠΩΣΗ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΙΝ ΤΗΝ 3 Σεπτεµβρίου 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεµβρίου 4 Να επιστραφεί η εκφώνηση των θεµάτων (υπογεγραµµένη από τον εξεταστή) ΕΠΩΝΥΜΟ
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΧΕΙΜ17-18 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΕΛΕΓΧΟΣ ΤΑΧΥΤΗΤΑΣ
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Βαθμολογία Προβλημάτων Θέμα (μέγιστος βαθμός) (βαθμός εξέτασης)
4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 6 7 8 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Ιουλίου 007 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης) ΟΝΟΜΑ (εξεταζόμενου/ης) Αριθμός Μητρώου Υπογραφή (εξεταζόμενου/ης)
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Μ. Σφακιωτάκης msfak@staff.teicrete.gr Χειµερινό εξάµηνο 18-19
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 5 η : ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #6: Σχεδιασμός Ελεγκτών με Χρήση Αναλυτικής Μεθόδου Υπολογισμού Παραμέτρων Δημήτριος Δημογιαννόπουλος
( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 2008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης)
3 4 5 6 7 8 9 0 3 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης) ΟΝΟΜΑ (εξεταζόμενου/ης) Αριθμός Μητρώου Έτος (π.χ. Γ,Δ,Ε,Ε,κ.λ.π.) Υπογραφή εξεταστή Υπογραφή
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ
Ύλη µαθήµατος. Lead-Lag ελεγκτές 2. PID ελεγκτές (95%) (εκτός διαγράµµατα Nyquist-Nichols) ιακριτός & Ψηφιακός Αυτόµατος Έλεγχος ΨΗΦΙΑΚΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εργαστήριο Matlab LABview : συλλογή και αποστολή
Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Υπολογισμός αντισταθμιστή με χρήση διοφαντικών εξισώσεων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 7 η : ΕΛΕΓΚΤΕΣ PID Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
x x Ax Bu u = 0. Η ιδιοτιμή του κάτω δεξιά πίνακα είναι η -3. = s + = = + = +
y = [ ] Έστ συνεχές σύστημα ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΗΣ ΠΡΟΟΔΟΥ ΣΑΕ ΙΑΝΟΥΑΡΙΟΣ 6 ΘΕΜΑ ο u = + = + x x Ax Bu 3 3 u 3 x [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; Ο πίνακας Α διαχρίζεται σε block, κάθε ένα από τα
5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Βαθμολογία Προβλημάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2
1 4 5 6 7 8 9 10 11 1 1 14 ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΑΝΑΤΥΠΩΣΗ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΙΝ ΤΗΝ Ιουνίου 008 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Ιουνίου 008 Να επιστραφεί η εκφώνηση των θεμάτων (υπογεγραμμένη από
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 9: Ενότητες 9.-9.4
Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και
ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ
7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του
Χρήση του Simulation Interface Toolkit για την Εξομοίωση και Πειραματισμό Συστημάτων Αυτομάτου Ελέγχου
Χρήση του Simulation Interface Toolkit για την Εξομοίωση και Πειραματισμό Συστημάτων Αυτομάτου Ελέγχου Γ. Νικολακόπουλος, Μ. Κουνδουράκης, Α. Τζες και Γ. Γεωργούλας Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ : ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.
ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Χαρακτηριστικά των Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #1: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου Δημήτριος Δημογιαννόπουλος Τμήμα
Συστήματα Αυτομάτου Ελέγχου 2
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 2 Ενότητα #1: Ποιοτικά χαρακτηριστικά συστημάτων κλειστού βρόχου Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Ελεγκτές - Controller Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
1.1. ΜΕΛΕΤΗ ΣΑΕ ΣΤΟ ΠΕΔΙΟ ΣΥΧΝΟΤΗΤΑΣ (ΠΟΛΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ) 1.1.1. Γενικά Το κριτήριο Nyquist είναι μια γραφική μέθοδος με την οποία προσδιορίζεται η συμπεριφορά ενός συστήματος Αυτομάτου Ελέγχου. Το κριτήριο
Αυτόματος Έλεγχος. Ενότητα 10 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ερωτήσεις 1 ου Θέματος [8 Χ 0.25= 2.0 β.] Οι απαντήσεις πρέπει υποχρεωτικά νε βρίσκονται εντός του περιγεγραμμένου χώρου G()
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Τελική εξέταση Ιουνίου Να επιστραφεί η εκφώνηση των θεμάτων υπογεγραμμένη από τον εξεταστή ΕΠΩΝΥΜΟ εξεταζόμενου/ης ΟΝΟΜΑ εξεταζόμενου/ης Αριθμός Μητρώου Έτος π.χ. ΓΔΕΕκ.λ.π.
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ Εφαρμ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΧΕΙΜ5-6 ΗΜΕΡΟΜΗΝΙΑ: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΕΛΕΓΧΟΣ
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Γεωμετρικός Τόπος Ριζών Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΣΦΑΛΜΑΤΑ ΜΟΝΙΜΗΣ ΚΑΤΑΣΤΑΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Χρονική Απόκριση Συστηµάτων Τα περισσότερα συστήµατα είναι από την φύση τους δυναµικά και παρουσιάζουν κάποιας µορφής αδράνεια
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Κριτήριο Nyquist Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Σχεδίαση Σ.Α.Ε: Μορφές Αντισταθµιστών και Κλασικές Μέθοδοι Σχεδίασης
ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Μορφές Αντισταθµιστών και Κλασικές Μέθοδοι Σχεδίασης Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 9: Ενότητες 9.-9.9 Παρασκευόπουλος [5]: Εφαρµογές, Κεφάλαιο
Σχεδιασμός Συστημάτων Ελέγχου
Σχεδιασμός Συστημάτων Ελέγχου ΔΠΜΣ Συστήματα Αυτοματισμού 2015-2016 Δρ Γ Παπαλάμπρου Λέκτορας ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών Μηχανολόγων Μηχανικών
Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης
Ρυθµιστές PID. Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID
Ρυθµιστές PID Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID 1 Βρόχος Ανατροφοδότησης! Θεωρούµε το βρόχο ανατροφοδότησης SP ιεργασία D G
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
ΜΕΛΕΤΗ Σ.Α.Ε. µε χρήση του CONTROL SYSTEM TOOLBOX του MATLAB
Σ.Ν.. ΕΡΓΑΣΤΗΡΙΑ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ο Έτος ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΜΕΛΕΤΗ Σ.Α.Ε. µε χρήση του CONTROL SYSTEM TOOLBOX του MATLAB - Σύντοµη εισαγωγή στο Control System Toolbox - Παρουσίαση Εφαρµογών ( συνοδεύεται
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 4 Αναλυτική σύνθεση συστηµάτων αυτοµάτου ελέγχου Με συνθήκη µόνιµου σφάλµατος Με συνθήκη επιθυµητών πόλων Με επιθυµητό πρότυπο Καλλιγερόπουλος 4 1 Αναλυτική Σύνθεση συστηµάτων
Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
ΕΛΕΓΚΤΕΣ PID. Ελεγκτής τριών όρων Η συνάρτηση μεταφοράς του PID ελεγκτή είναι η ακόλουθη:
ΕΛΕΓΚΤΕΣ PID Εισαγωγή Αυτό το βοήθημα θα σας δείξει τα χαρακτηριστικά καθενός από τους τρεις ελέγχους ενός PID ελεγκτή, του αναλογικού (P), του ολοκληρωτικού (I) και του διαφορικού (D) ελέγχου, καθώς και
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Άσκηση 3. Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις
Άσκηση 3 Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις 1) Αυτόματος έλεγχος δύο και τριών όρων 2) Εμπειρικαί μέθοδοι εκλογής των
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
4.3. ΣΥΣΤΗΜΑΤΑ ΠΡΩΤΗΣ ΤΑΞΗΣ 4.3.1. Αναλογικό διάγραμμα πρώτης τάξης Ένα φυσικό σύστημα πρώτης τάξης: έχει διαφορική εξίσωση: αy + by = c x(t) ή α dy(t) + by(t) = c x(t) (4.33) και αναλογικό διάγραμμα:
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής ver. 0.2 10/2012 Εισαγωγή στο Simulink Το SIMULINK είναι ένα λογισµικό πακέτο που επιτρέπει τη µοντελοποίηση, προσοµοίωση οίωση
Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη
Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink
Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε
Controllers - Eλεγκτές
Controller - Eλεγκτές Στις επόμενες ενότητες θα εξετασθούν οι βιομηχανικοί ελεγκτές ή ελεγκτές τριών όρων PID, (με τους διάφορους συνδυασμούς τους όπως: P, PI ή PID). Η προτίμηση των ελεγκτών PID οφείλεται
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Χρονική απόκριση συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Ερωτήσεις για το μάθημα Μη Γραμμικά ΣΑΕ και Εφαρμογές: 10, 11, 15, 16, 17,18
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Διευθυντής Γ.Π. Παπαβασιλόπουλος Τίτλος Άσκησης: Sampling, Quantization, Jitter noise, Chaos Επιμέλεια: Ι. Κορδώνης Υ.Δ., Dr Ε. Σαρρή Ερωτήσεις για το μάθημα Προχωρημένες
Ψηφιακός Έλεγχος. 12 η διάλεξη Ψηφιακός έλεγχος τεχνητού χεριού. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 1 η διάλεξη Ψηφιακός έλεγχος τεχνητού χεριού Ψηφιακός Έλεγχος 1 Θέλουμε να κάνουμε έλεγχο τεχντητού χεριού που πιάνει και μεταφέρει εύθραστα γυάλινα δοχεία διαφόρων μεγεθών. Ο στόχος είναι
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #4: Ευστάθεια Συστημάτων Κλειστού Βρόχου με τη Μέθοδο του Τόπου Ριζών Δημήτριος Δημογιαννόπουλος
ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος
Συστήματα Αυτομάτου Ελέγχου με Ανάδραση - Σερβομηχανισμοί
Κεφάλαιο 4 Συστήματα Αυτομάτου Ελέγχου με Ανάδραση - Σερβομηχανισμοί Η σημασία και η καθολικότητα της Ανάδρασης Μέχρι τώρα την ανάδραση την αντιμετωπίσαμε απλά σαν μία παραλλαγή στις συνδεσμολογίες των
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Δ Μέρος Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Τελεστικοί Ενισχυτές
Τελεστικοί Ενισχυτές Ενισχυτές-Γενικά: Οι ενισχυτές είναι δίθυρα δίκτυα στα οποία η τάση ή το ρεύμα εξόδου είναι ευθέως ανάλογη της τάσεως ή του ρεύματος εισόδου. Υπάρχουν τέσσερα διαφορετικά είδη ενισχυτών:
Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014
Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.
ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)
ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για τον Γεωμετρικό Τόπο των Ριζών της συνάρτησης μεταφοράς as + s + 9 G(s) s(s 5)(s + b) με Κ>0 δίδεται ότι η τομή των ασυμπτώτων είναι το σημείο σ -(0+Ν 0 ) όπου Ν 0 το τελευταίο
Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)
ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία
ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ - 1 η ΣΕΙΡΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΧΕΙΜ17-18 ΗΜΕΡΟΜΗΝΙΑ: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ - 1 η ΣΕΙΡΑ CONTROL
ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 6o Εγραστήριο Σ.Α.Ε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 6o Εγραστήριο Σ.Α.Ε Ενότητα: Προσομοίωση Σ.Α.Ε. με το πρόγραμμα Comprehensive Control Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης
M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br
ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΣΩ ΤΟΥ ΙΑ ΙΚΤΥΟΥ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΣΩ ΤΟΥ ΙΑ ΙΚΤΥΟΥ ΕΛΕΓΧΟΣ ΓΩΝΙΑΚΗΣ ΘΕΣΗΣ ΚΙΝΗΤΗΡΑ DC ΕΡΓΑΣΤΗΡΙΟ ΣΑΕ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΤΗΣ SIENNA 1. ΠΕΡΙΓΡΑΦΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΙΑΤΑΞΗΣ Η εργαστηριακή διάταξη για το πείραµα ελέγχου γωνιακής
Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS
ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού
ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ 0: ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΥΠΟΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Δρ Γιώργος
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t