Capitolul 2. Elemente de mecanica
|
|
- Ἀρίστων Καραμανλής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 apitolul lemente de mecanica T..1. ae sunt legile miscaii ectilinii si unifome? T... ae sunt legile miscaii ectilinii unifom vaiate? T..3. ae sunt legile miscaii ciculae unifome? T..4. entu miscaea cubilinie se folosesc notatiile: a t - acceleatia tangentiala ; a n - acceleatia nomala ; ρ - aa de cubua a taiectoiei ; v - vitea tangentiala ; ω - vitea unghiulaa instantanee ; ε - acceleatia unghiulaa. um se calculeaa: a t, a n si v? T..5. unoscând tuatia n, cum se detemina vitea unghiulaa ω pentu un mobil aflat în miscae ciculaa unifoma? T..6. entu calculul sumei c a doi vectoi a si b se utilieaa una dinte elatiile de mai jos. ae este cea adevaata? a) c = a + b + a b ( a b cos, ) ; b) c = a + b ± a b ( a b cos, ) ; c) c = a + b. T..7. um se defineste momentul unei fote în apot cu un punct? T..8. unoscând coeficientul de fecae µ dinte un fi si discul peste cae este tas, indicati elatia dinte tensiunile T 1 si T, pe baa figuii.8. T..9. unoscând m=10 kg, a=0, m si b=0,1 m, indicati la ce supapesiune minima se va deschide supapa S din figua.9. iametul oificiului de efulae este d=1 cm. T..10. e eactiuni intoduc umatoaele modui de eemae ale unei bae? a) eaem simplu ; b) aticulatie ; c) încastae. eentati aspunsul pe cale gafica. T..11. um se defineste coeficientul de fecae de ostogolie? eentati si agumentaea gafica. ae este epesia momentului de ostogolie? 6
2 T 1 a b α m d p T ig..8 ig..9 T..1. educeti epesia anda-mentului unui plan înclinat, cu fecae. Se vo utilia notatiile din figua.1. T..13. În ce conditii se conseva impulsul unui sistem de puncte mateiale? T..14. incipiul fundamental al dinamicii ae foma = ma. ae este elatia similaa, în caul unui cop aflat în miscae de otatie? T..15. ae sunt epesiile de calcul ale fotei centifuge, pentu un cop de masa m, aflat pe o taiectoie ciculaa de aa ig..1 R în miscae ciculaa unifoma, având vitea unghiulaa ω? T..16. entu un cop aflat în miscae de tanslatie cu vitea constanta (v), sub actiunea unei fote de tactiune, cae este epesia puteii mecanice coespunatoae? T..17. ae este epesia puteii tansmise de un aboe tosionat de cate momentul M t si cae ae vitea unghiulaa constanta (ω)? T..18. Un dinamometu este tensionat ca în figua. e aata acul sau indicato? a) 0; b) ; c). T..19. O oata dintata cu dinti înclinati 1 este montata pe aboele, simetic fata de lagaele si. omponentele fotei din angenaj sunt: t, si a. istanta dinte eaeme este l ia diametul de diviae al otii (pe cae se considea punctul de aplicae al fotei) este d. ae este epesia eactiunii adiale din eaemul? µ α v G 7
3 a) R t = + ; b) R = + 1 ; c) R d t = + a + l ; d) R d t = a + l. T..0. e maime cinematica au în comun cele doua oti de fictiune din figua? ae este apotul de tansmitee al mecanismului? T*..1. unoscând ca tuatia unui disc este de n=3000 ot/min, calculati vitea unghiulaa si fecventa de otatie. T*... Un oto de aa R=1 m ae acceleatia unghiulaa ε= ad/s. Stiind ca vitea unghiulaa instantanee este ω=5 ad/s calculati: acceleatia nomala, acceleatia tangentiala si vitea tangentiala. T*..3. e fecventa de otatie ν ae un disc cae se oteste cu 600 ot / mim? T*..4. Indicati modulul vectoului c din figua.4. Se cunosc a = ; b = 5 si α = π /6. T*..5. ae este epesia modulului podusului scala dinte vectoii a si b, concuenti, delimitând înte ei unghiul α? T*..6. ae este epesia modulului podusului vectoial dinte vectoii a si b concuenti, delimitând înte ei unghiul α? T*..7. alculati eactiunile din eaemele si ale baei solicitate ca în figua.7. T*..8. eteminati acceleatia unghiulaa ε pentu un disc având momentul de inetie masic J=10 4 kg m, antenat de un moment M=1000 N m. ig..18 d t a = = l ig..19 O 1 n 1 n R 1 O ig..0 a c α b ig..4 R 1 8
4 T*..9. Un cop sfeic de aa =1 cm, având densitatea ρ=7800 kg/m 3 se afla pe un disc în miscae de otatie. unoscând aa taiectoiei α ciculae R=1 m si tuatia discului n=30ot/min, = = calculati fota centifuga aplicata copului. T*..30. O banda tanspotoae este actionata de l cate o fota =10 4 N sub actiunea caeia se ig..7 deplaseaa cu vitea constanta v=1 m/s. e putee mecanica a fost necesaa pentu antenae? T*..31. O oata dintata cu dinti înclinati (1) (fig..31) este montata pe aboele () simetic fata de eaemele si. omponentele fotei din angenaj sunt t, si a, distanta dinte eaeme este l, ia diametul de diviae al otii (pe cae se considea punctul de aplicatie al fotei) este d. ae sunt epesiile eactiunilo adiale din eaeme? T*..3. eteminati constanta elastica echivalenta pentu sistemul de esotui din figua.3. T*..33. eteminati constanta elastica echivalenta pentu sistemul de esotui din figua.33. T*..34. Un aboe solicitat la asucie de cate momentul M ae tuatia n, espectiv vitea unghiulaa ω. ae din epesiile de mai jos este valabila pentu deteminaea puteii tansmise? a) =M/ω ; b) =(π n/60) M ; c) =ω M ; d) =(π n/30) M. t a k 1 k k 3 ig..3 d a l ig..31 b 1 k 1 k k 3 ig..33 T*..35. e maime comuna au otile de cuea din figua.35? ae este apotul de tansmitee al mecanismului? 9
5 T*..36. unoscând elatia lui enoulli pentu un tub de cuent oiontal: p+1/ ρ v = constant, peciati ce semnificatie au cei doi temeni ai sumei. T*..37. nuntati legea lui ascal a tansmiteii pesiunii în lichide. T*..38. ae sunt conditiile de echilibu mecanic pentu solidul igid din figua.38? R R1 O 1 n 1 O n 1 a 3 b 4 G 10 ig..35 ig..38 T*..39. e legi de consevae se aplica în caul ciocniii elastice a doua copui? T*..40. Un suub ae pasul p= mm si diametul mediu al filetului d=10 mm. esupunând ca suubul se oteste (faa tanslatie) cu n=60 ot/min, cae este vitea de înaintae a piulitei? T*..41. eteminati fota de stângee S în functie de fota activa, pe baa figuii.41. în functie de l 1, l, l 3 si l 4. T*..4. entu dispoitivul de fânae din figua sunt cunoscute: coeficientul de fecae µ=0,4 si momentul de inetie masic al otoului, J=0,1 kg m. Sa se detemine: a) eactiunea din punctul O; b) eactiunea din punctul ; c) timpul necesa fânaii totale a otoului. T*..43. entu baa din figua.43 sunt ig..41 cunoscute: 1 =600 N, =400 N, m=8 kg si a=0, m. onsideând ca baa este initial în epaus, sa se detemine acceleatia unghiulaa initiala (ε) si eactiunea din punctul O, la momentul t 0 =0. Momentul de inetie masic al baei, în apot cu punctul O, ae epesia J=m l /3, l fiind lungimea totala a baei. T*..44. Motoul electic M, devolta în aboele sau un moment de tosiune (cuplu) 1 0 l 1 l l 3 l 4 l 1 l l 3 l S
6 util M t =50 N m. unoscând faptul ca baa O este de masa m=60 kg, incluând ola din, sa se detemine eactiunile din O (veticala si oiontala), confom poitiei instantanee peentata în figua N O 100 O ω = 5 ad s a a a 1 M = 50 N m ig..4 ig..43 ω = 5 ad/s = 6 N O 45º m = 15 kg ω ig..44 ig..45 T*..45. unoscând coeficientul de fecae dinte baa si oto (peentate în figua.45) µ=0,4 si vitea unghiulaa instantanee a otoului ω=40 ad/s sa se detemine: a) timpul de fânae; b) eactiunea din punctele si ; c) eactiunile din punctele si. Se pecieaa ca momentul de inetie masic al otoului se detemina cu elatia J=m R /. T*..46. eteminati momentul fotei în apot cu punctul confom figuii.46. T*..47. Sa se calculee componentele M, M si M ale momentului podus în 11
7 încastaea pin actiunea fotelo cae actioneaa, confom figuii.47. T*..48. Stiind ca esotul din figua.48 este nedefomat pentu θ=0, sa se calculee θ la echilibu, sub efectul fotei. T*..49. ilindul hidaulic cu actionae manuala poiectat pentu gabait minim, ae punctele fie si în juul caoa se otesc falcile mobile (1) si (); otiea falcilo detemina avansul aial al pistonului (3) aticulat în (fig..49). e fota utila se devolta în piston sub actiunea solicitailo? ig..46 ig N 1 0 N 7 0 N = 400 N 80 θ O k = 0,5 N/m = = 80 N,5,5 1 ig..48 ig..49 T*..50. entu foafecele din figua.50, fota utila (din ) este =300 N. e fota de actionae este necesaa?. Se emaca faptul ca poitia aticulatiei din se poate egla în functie de gosimea piesei cae tebuie taiata. T*..51. unoscând faptul ca toate cotele din figua.51 sunt epimate în cm, si fota = 900 N, calculati fota. esupunând ca baele nu au geutate, calculati eactiunile din punctele, si. T*..5. unoscând fota de actionae =10 N (fig..5), ce fota taietoae se 1
8 devolta în punctul? imensiunile din figua sunt date în mm. T*..53. entu clestele din figua este cunoscuta fota utila cae actioneaa pe diectia a-a. e fota de actionae este necesaa? T*..54. O sina de 9 m lungime, având masa unitatii de lungime m=40 kg/m este idicata cu clestele din figua.54. eteminati eactiunile din si ,5 7, ig..50 ig..51 a a ig..5 ig..53 T*..55. e eactiuni apa în punctele si ale dispoitivului de idicae din figua.55? T*..56. ispoitivul de idicae din figua.56 este desevit de doi cilindi hidaulici, unul aticulat în si celalalt în. unoscând ca geutatea olei este G= tf si ca 13
9 pentu stabilitate batul apasa ola cu o fota =0,5 tf, aplicata vetical, în jos, în punctul, sa se detemine fota devoltata în fiecae cilindu si eactiunea din. imensiunile sunt în centimeti. T*..57. entu poitia de epaus se cunosc tensiunile din cele doua cuele late peentate în sistemul din figua.57: T =135 N si T =75 N. e eactiuni apa în acest ca în punctele si? T..58. unoscând faptul ca fota de actionae a toliului din figua este =80 N, ce geutate G poate fi idicata cu ajutoul acestui dispoitiv? e eactiuni apa în lagaele si? m = 8000 N ig..54 ig G H Z T T 40 T T 14
10 ig..56 ig..57 T*..59. e geutate G poate fi idicata unifom cu ajutoul tansmisiei din figua.59? Se considea ca andamentul tansmisiei este unita. T*..60. e moment se poduce în încastaea din punctul, confom figuii.60? e solicitai identificati în sectiunea încastaii? T*..61. unoscând momentul activ M 1 si cel eistent M pentu eductoul melcat din figua.61 pecum si cotele a si b, calculati eactiunile din punctele de pindee,, si, ultimul neapaând în desen. T*..6. eciati coodonatele punctului în cae se aplica eultanta fotelo din figua.6. M = 50 N m ig..59 O G N G 15
11 ig..58 ig kn 00 kn 80 kn M M 1 10 kn ig..61 ig..6 * * * 16
3.5. Forţe hidrostatice
35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube
Διαβάστε περισσότεραCINEMATICA. Cursul nr.2
Cusul n. CINEMATICA Cinematica este capitolul mecanicii clasice cae studiaza miscaea copuilo faa a tine cont de cauzele cae stau la baza miscaii. Temenului cinematica vine de la cuvantul gecesc kinematmiscae.
Διαβάστε περισσότεραDinamica sistemelor de puncte materiale
Dinamica sistemelo de puncte mateiale Definitie: Pin sistem mateial (notat S) intelegem o multime finita de puncte mateiale (cente de masa ale uno copui) afate in inteactiune (micaea fiecaui punct depinde
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραF. Dacă forţa este CURS 2 MECANICA PUNCTULUI MATERIAL
CURS MECANICA PUNCTULUI MATERIAL. Dinamica punctului mateial Dinamica punctului mateial studiază cauzele mişcăii punctului mateial. Newton a pus bazele dinamicii clasice pin fomulaea celo tei pincipii
Διαβάστε περισσότεραProbleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:
Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραr d r. r r ( ) Curba închisă Γ din (3.1 ) limitează o suprafaţă de arie S
- 37-3. Ecuaţiile lui Maxwell 3.. Foma integală a ecuaţiilo lui Maxwell Foma cea mai geneală a ii lui Ampèe (.75) sau (.77) epezintă pima ecuaţie a lui Maxwell: d H dl j ds + D ds (3.) S dt S sau: B dl
Διαβάστε περισσότερα2. ELEMENTE DE MECANICĂ NEWTONIANĂ
3. Elemente de mecanică newtoniană. ELEMENTE DE MECANICĂ NEWTONIANĂ Mecanica newtoniană studiază mişcaea copuilo macoscopice ce se deplasează cu viteze mici în compaaţie cu viteza luminii, cauzele acestei
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραFIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραAcţiunea fluidelor în repaus asupra suprafeţelor solide
Acţiunea fluidelo în eaus asua suafeţelo solide Pin analogie cu mecanica clasică se oate considea că acţiunea fluidului oate fi caacteizată de o foţă ezultantă şi un moment ezultant ce fomează îmeună un
Διαβάστε περισσότεραCUPRINS PREFAŢĂ... BIBLIOGRAFIE
PREFAŢĂ Lucaea de faţă se adesează în pimul ând studenţilo din învăţământul supeio tehnic cu pofilul mecanic da poate fi folosită şi de studenţii de la alte pofilui cae au în planuile de învăţământ discipline
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραINTRODUCERE CAPITOLUL II CINEMATICA. II. 1. Cinematica punctului material
INTRODUCERE Cel mai eident si fundamental fenomen pe cae îl obseãm în juul nostu este miscaea; expeientele au demonstat faptul cã miscaea unui cop este influentatã de copuile cae-l înconjoaã, adicã de
Διαβάστε περισσότερα4. CÂTEVA METODE DE CALCUL AL CÂMPULUI ELECTRIC Formule coulombiene
Patea II. Electostatica 91 4. CÂTEVA METOE E CALCUL AL CÂMPULUI ELECTIC i) Cazul 4.1. Fomule coulombiene Fie o sacină electică punctuală, situată înt-un mediu omogen nemăginit, de pemitivitate ε. Aplicăm
Διαβάστε περισσότεραFIZICĂ. Câmpul magnetic. ş.l. dr. Marius COSTACHE 1
FIZICĂ Câmpul magnetic ş.l. d. Maius COSTACHE 1 CÂMPUL MAGNETIC Def Câmpul magnetic: epezentat pin linii de câmp închise caacteizat pin vectoul inducţie magnetică Intensitatea câmpului magnetic H, [ H
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραMinisterul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare
Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραSTATICA FLUIDELOR. Fluid în echilibru (repaus) = rezultanta forţelor care acţionează asupra masei de fluid este nulă.
STATICA FLUIDELOR Se ocupă cu: STATICA FLUIDELOR legile epausului fluidelo, inteacţiunile dinte fluide şi supafeţele solide cu cae acestea vin în contact. Fluid în echilibu (epaus) ezultanta foţelo cae
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραOLIMPIADA NAłIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie Pagina 1 din 5 Subiect 1 ParŃial Punctaj Total subiect 10 a) S 2.
Rânicu Vâlcea, -6 febuaie 9 Pagina din 5 Subiect PaŃial Punctaj Total subiect a T T S S G G,75 G + S S T ( G+ S S T (,75 T T 5,5 S S G G G + S S T (,75 G + S S T (4,75 Cobinând cele atu elații ezultă:
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραCapitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
Διαβάστε περισσότεραTranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότερα2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραDETERMINAREA VÂSCOZITĂȚII LICHIDELOR PRIN METODA CORPULUI ROTITOR
19 Lucaea 3 ETERMINAREA VÂSCOZITĂȚII LICHIELOR PRIN METOA CORPULUI ROTITOR 3.1. Consideații teoetice Vâscozitatea este popietatea fluidelo de a se opune defomăii (mişcăii) pin dezvoltaea uno efotui tangenţiale
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότερα5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Διαβάστε περισσότεραLaborator de Fizica STUDIUL EFECTULUI HALL
Laboato de Fizica STUDIUL EFECTULUI ALL I. Scopul Lucaii 1. Puneea in evidenta a Efectului all. Masuaea tensiunii all si deteminaea constantei all. II. Consideatii teoetice Figua 1 Efectul all consta in
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραDinamica punctului material supus la legaturi
Dinamica punctuui mateia supus a egatui Am studiat miscaea punctuui mateia ibe, adica miscaea punctuui mateia numai sub actiunea foteo exteioae diect apicate. Exista situatii in cae punctu mateia este
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραC10. r r r = k u este vectorul de propagare. unde: k
C10. Polaizaea undelo electomagnetice. După cum s-a discutat, lumina este o undă electomagnetică şi constă în popagaea simultană a câmpuilo electic E şi B ; pentu o undă amonică plană legatua dinte câmpui
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραBAZELE MECANICII APLICATE
4 NIULAE MANAFI BAZELE MEANIII APLIATE PARTEA V-a DINAMIA SLIDULUI RIGID NȚINUT 6. MMENTE DE INERȚIE MEANIE... 6 6. Genealități... 6 6. Vaiația oentelo de ineție față de ae paalele... 8 6. Vaiația oentelo
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραCURS 7 Capitolul VII. ELECTROSTATICĂ
CUR 7 Capitolul VII. LCTROTATICĂ 7. acina electică lectostatica stuiaă fenomenele geneate e sacinile electice aflate în epaos. acina electică este o măime fiică scalaă cae măsoaă staea e electiae a unui
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότεραCUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραMişcarea laminară a fluidelor reale. Se prezintă aspecte legate de calculul vitezei şi al debitului de fluid.
Mişcaea aminaă a fuideo eae Se eintă asecte egate de cacuu viteei şi a debituui de fuid. În figua din stânga se eintă distibuţia de vitee a fuiduui dint-o conductă cicuaă deată în cau mişcăii fuiduui idea.
Διαβάστε περισσότεραCAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE
CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă
Διαβάστε περισσότεραAlgebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Διαβάστε περισσότεραV. CÂMPUL ELECTROMAGNETIC
Câmpul magnetic se manifestă pin acţiunea pe cae o execită asupa: sacinilo electice în mişcae conductoilo pacuşi de cuent magneţilo pemanenţi. Câmpului magnetic se caacteizează pint-o măime vectoială numită
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραMetrologie, Standardizare si Masurari
7 Metologie, Standadizae si Masuai 7. PÞI DE MÃSAE Puntile sunt mijloace de masuae a cao functionae se bazeaza pe metoda de zeo (compensatie) si se utilizeaza, cu pecadee, la masuaea ezistentelo da nu
Διαβάστε περισσότεραTransformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
Διαβάστε περισσότερα1.1. Locul şi rolul fizicii în cadrul ştiinţei, în general, şi al ştiinţelor naturii în special
Intoducee 9 INTRODUCERE Locul şi olul iicii în cadul ştiinţei în geneal şi al ştiinţelo natuii în special Fiica ca oice disciplină poate i înţeleasă şi abodată în dieite modui Impotanţa iicii eidă în pimul
Διαβάστε περισσότερα7.1. Legile lui Kepler. Legea atracţiei universale (gravitaţionale)
7. Gavitaţia Studiul mişcăii planetelo îşi ae începutuile în astonomie, în obsevaţiile şi analizele asupa taiectoiilo Soaelui, a Lunii şi a celo cinci planete vizibile cu ochiul libe (Mecu, Venus, Mate,
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραBARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Διαβάστε περισσότεραClasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραTRANZISTORUL BIPOLAR IN REGIM VARIABIL
DE I Înduma de laboato Tanzistoul bipola în egim vaiabil Lucaea n. 3 TRANZITORL BIPOLAR IN REGIM VARIABIL upins I. copul lucăii II. Noţiuni teoetice III. Desfăşuaea lucăii IV. Temă de casă V. imulăi VI.
Διαβάστε περισσότεραAnaliza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
Διαβάστε περισσότεραMuchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor.
TRASEU DE CABLURI METALIC Tip H60 Lungimea unitară livrată: 3000 mm Perforaţia: pentru a uşura montarea şi ventilarea cablurilor, găuri de 7 30 mm în platbandă, iar distanţa dintre centrele găurilor consecutive
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραVectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Διαβάστε περισσότεραCircuite electrice in regim permanent
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este
Διαβάστε περισσότεραVerificarea legii lui Coulomb
Legea lui Coulomb Veificaea legii lui Coulomb Obiectivul expeimentului Măsuaea foţei de inteacţiune înte două sfee încăcate electic în funcţie de: - distanţa dinte centele sfeelo; - sacinile electice de
Διαβάστε περισσότεραProiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Διαβάστε περισσότεραII. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
Διαβάστε περισσότεραConţinutul modulului:
Modulul FUNDAMENTELE MECANICII Conţinutul odulului:. Noţiuni geneale. Pincipiile fundaentale ale dinaicii.3 Teoee geneale în dinaica punctului ateial.4 Enegia ecanică şi teoeele enegiei Evaluae:. Definiea
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότερα145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.
Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie
Διαβάστε περισσότεραΜπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară
- General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότεραErori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Διαβάστε περισσότεραCURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Διαβάστε περισσότερα