Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα
|
|
- Οὐρβανός Χατζηιωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα - Ανακατασκευή του χώρου καταστάσεων παρατήρηση της πολυπλοκότητας / στοχαστικότητας / δομής του συστήματος - Εκτίμηση χαρακτηριστικών του συστήματος / ελκυστή μέτρηση της πολυπλοκότητας / διάστασης του συστήματος - Μοντελοποίηση / Πρόβλεψη Χρήση μη-γραμμικών μοντέλων για καλύτερες προβλέψεις - Άλλα θέματα: - Έλεγχος υπόθεσης για γραμμικότητα / μη-γραμμικότητα - Έλεγχος εξέλιξης συστήματος (control) - Συγχρονισμός δυναμικών συστημάτων -
2 Ανακατασκευή του χώρου καταστάσεων αρχικός χώρος καταστάσεων s M s s f ( s ) συνθήκη: m D Εμβύθιση Φ? ανακατασκευασμένος χώρος καταστάσεων R m F( ) = F(s ) Υποθέτουμε πως το υπό μελέτη σύστημα είναι αιτιοκρατικό παρατηρούμενο μέγεθος R = h(s ) h Μέθοδος των υστερήσεων = [, -t,, -(m-)t ] Παράμετροι διάσταση εμβύθισης m χρόνος υστέρησης t εύρος παραθύρου χρόνου t w t w = (m-)t
3 s()=.4 s(-) +.3s(-) ή s ()=.4 s (-) + s (-) s ()=.3 s (-) Παράδειγμα: Απεικόνιση Henon Μέθοδος των υστερήσεων m= τ= m= τ= Αυτο-τομές Προβολή = s () m=3 τ= m=3 τ=
4 s s a( s s) s s 3 bs s 3 ss cs3 a=, b=8, c=8/3 s Παράδειγμα: σύστημα Lorenz Μέθοδος υστερήσεων, m=3 Βέλτιστο τ? τ= τ =5 Προβολή = s () τ = τ =
5 Εκτίμηση του τ 5 Από την αυτοσυσχέτιση r(τ) (μετράει γραμμικές συσχετίσεις) τ r(τ) =/e ή τ r(τ) = Από την αμοιβαία πληροφορία I(τ) (μετράει γραμμικές και μη-γραμμικές συσχετίσεις) τ πρώτο τοπικό ελάχιστο της I(τ) Εκτίμηση αμοιβαίας πληροφορίας συνεχών τυχαίων μεταβλητών: εκτιμητές, ιδιότητες (μεροληψία, αποτελεσματικότητα) I( X, Y) p X pxy (, y) (, y)log p ( ) p ( ) XY, y X Y y Y I( X, Y) I( t ) t
6 Βέλτιστο m? Εκτίμηση του m Αν m είναι πολύ μικρό, ο ελκυστής παρουσιάζει αυτο-τομές Αν m είναι πολύ μεγάλο curse of dmensonalty R R Θεώρημα Takens: άγνωστο m D αλλά D Μέθοδος των ψευδών γειτόνων (FNN) Κοντινά σημεία του ελκυστή είναι - είτε πραγματικά γειτονικά σημεία (λόγω της δυναμικής του συστήματος) - ή ψευδή γειτονικά σημεία (λόγω των αυτο-τομών και μικρού m) Σε μεγαλύτερο m όπου δεν υπάρχουν αυτο-τομές έχουν φανερωθεί όλα τα ψευδή γειτονικά σημεία αφού δε θα είναι πια γειτονικά. Το βέλτιστο m είναι αυτό για το οποίο δεν εμφανίζονται πλέον ψευδή γειτονικά σημεία καθώς αυξάνουμε τη διάσταση σε m +.
7 % FNN % FNN Παράδειγμα εκτίμησης του m από τη μέθοδο FNN -Lorenz χωρίς θόρυβο -Lorenz + % θόρυβο FNN, -lorenz, no-nose t= t=5 t= t= FNN, -lorenz % nose t= t=5 t= t= m m Η εκτίμηση του m με τη μέθοδο FNN εξαρτάται από: - την υστέρηση t - θόρυβο
8 Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lyapunov (μεγαλύτερος, όλο το φάσμα) Εντροπία
9 Διάσταση συσχέτισης ν Η διάσταση συσχέτισης ν χαρακτηρίζει τη μορφοκλασματική δομή του ελκυστή (αυτο-ομοιότητα σε διάφορες κλίμακες) χρησιμοποιώντας την πυκνότητα των σημείων του ελκυστή στο χώρο των καταστάσεων Η βασική ιδέα είναι πως η πιθανότητα δύο σημείων να βρίσκονται σε απόσταση μικρότερη του r r μεταβάλλεται ως προς r ανάλογα με κάποια δύναμη του r : αριθμός των σημείων που βρίσκονται μέσα σε σφαίρα με ακτίνα r και κέντρο r j νόμο κλιμάκωσης (scalng law) ν ακέραιος ν μη-ακέραιος j ~ r ισχύει για r N ελκυστής είναι συνήθης γεωμετρικό αντικείμενο ελκυστής είναι μορφοκλασματικό αντικείμενο
10 Εκτίμηση της διάστασης συσχέτισης ν χρονοσειρά,,, N ( m ) t Εκτίμηση του N N Άθροισμα συσχέτισης C( r) r Νόμος κλιμάκωσης Εκτίμηση ανακατασκευή N( N ) Heavsde συνάρτηση d log Cr ( ) d log r j C( r) ( ) r,,, N για r μικρό για εύρος τιμών του r Σύγκλιση του ν(m) για m ικανοποιητικά μεγάλο όταν όταν j Αν ν μικρό και μη-ακέραιο και σύστημα αιτιοκρατικό χαμηλή διάσταση και μορφοκλασματική (χαοτική) δομή
11 -Lorenz χωρίς θόρυβο, τ= log C(r) vs log r κλίση προς log r ν προς m -Lorenz + % θόρυβο παρατήρησης, τ= -Lorenz + % θόρυβο παρατήρησης, τ=
12 Η εκτίμηση του ν επηρεάζεται από τους παρακάτω παράγοντες: - χρόνος συσχέτισης j w - επιλογή του τ και m - θόρυβος - μήκος χρονοσειράς
13 logc(r) local slope logc(r) local slope logc(r) local slope logc(r) local slope n=94 () m= 5 () 5 () Henon - -3 m= 3 m= 3-4 m= Henon + % λευκό θόρυβο Αποδόσεις Γενικού δείκτη λευκός θόρυβος logr () m= m= logr () m= m= logr () m= log r () m= m= log r () m= m= log r () m= m (t) m m () () -4-5 m= logr m= log r m
14 Εκθέτες Lyapunov Οι εκθέτες Lyapunov μετράνε το μέσο βαθμό απόκλισης και σύγκλισης των τροχιών στον ελκυστή, στις κατευθύνσεις του τοπικά αναλυμένου χώρου καταστάσεων Lyapunov spectrum: l > απόκλιση l < σύγκλιση... l = κατεύθυνση ροής m Σύστημα απώλειας ενέργειας: m Αν l > και το σύστημα είναι αιτιοκρατικό χάος
15 Μέγιστος εκθέτης Lyapunov λ Αρχική απόσταση d = - δύο κοντινών τροχιών θα πρέπει να μεγαλώνει εκθετικά με το χρόνο. Μετά από χρόνο t: d t = +t - +t Αν t e t λ είναι ο μέγιστος εκθέτης Lyapunov Υπολογισμός: ln N t, j Nt j, j +t d d t +t
16 Παράδειγμα: -Lorenz χωρίς θόρυβο με %-θόρυβο Η εκτίμηση του λ εξαρτάται από: τ, m, θόρυβο Άλλα χαρακτηριστικά / μέτρα: 6 7 Προσεγγιστική εντροπία (appromate entropy): παρουσίαση, παραδείγματα, εφαρμογές Κάποιο άλλο μη-γραμμικό χαρακτηριστικό / μέτρο
17 Μοντέλα πρόβλεψης Το σύστημα που παράγει τη χρονοσειρά: s f ( s ) s.4s s s απεικόνιση Henon,,,.3s,, s (, ) f s s s,,, (, ) s f f s s s,,,
18 Το σύστημα που παράγει τη χρονοσειρά: Μοντέλα πρόβλεψης s f ( s ) άγνωστο F( Το ανακατασκευασμένο σύστημα από τη χρονοσειρά: εκτίμηση? Το πρόβλημα της μοντελοποίησης / πρόβλεψης χρονοσειρών: δίνονται,,, εκτίμηση / πρόβλεψη του + ) Ανακατασκευή του χώρου καταστάσεων με τη μέθοδο των υστερήσεων: = [, -t, -(m-)t ] Η συνάρτηση που μας ενδιαφέρει να εκτιμήσουμε για χρονοσειρές είναι: F( ) m m F : F( ) m =, τ = F : m F(, )
19 Μη-γραμμικά μοντέλα πρόβλεψης Σφαιρικά μοντέλα, π.χ. πολυώνυμα η F έχει αναλυτική μορφή και ίδια για όλο το πεδίο ορισμού Τοπικά μοντέλα, π.χ. τοπικό γραμμικό μοντέλο η F ορίζεται διαφορετικά για κάθε σημείο του χώρου Ημι-τοπικά μοντέλα, π.χ. νευρωνικά δίκτυα η F έχει μια μορφή που ορίζεται ως σταθμισμένο άθροισμα τοπικών στοιχειωδών συναρτήσεων 8 Πρόβλεψη χρονοσειρών με νευρωνικά δίκτυα: παρουσίαση, παραδείγματα, εφαρμογές
20 Πρόβλεψη με την εύρεση όμοιων τμημάτων της χρονοσειράς Πρόβλεψη για χρόνο +T από τις εικόνες για Τ χρονικά βήματα «όμοιων» τμημάτων της χρονοσειράς από το παρελθόν
21 Τοπικά Μοντέλα Πρόβλεψης Εφαρμογή της ιδέας «όμοιων» τμημάτων: τμήματα χρονοσειράς ανακατασκευασμένα σημεία Κοντινότερα γειτονικά σημεία του :{ ( ), (),..., ( K )} Πρόβλεψη του +T από τις εικόνες των γειτόνων:,,..., } Πρόβλεψη μηδενικής τάξης: Πρόβλεψη μέσου όρου: ˆ ( T) T ( T) () T K ( j) T K j { ( ) T () T ( K ) T
22 Τοπικά γραμμική πρόβλεψη Υποθέτουμε ότι για τη «γειτονιά» του ισχύει το τοπικά γραμμικό μοντέλο : m m m ' a a a a a F F a ) ( ) ( ),,, ( ) ( t t t t ()+T = a + a () ()+T = a + a () (K)+T = a + a (K) Το μοντέλο ισχύει για τα ) ( () ) (,...,, K K j m j m j j a a a a a a m ) ( ) ( ) ( ) (,,, ) ( mn t Εκτίμηση παραμέτρων (μέθοδος ελαχίστων τετραγώνων) a m a a,,,
23 Εκτίμηση λάθους πρόβλεψης Χωρίζουμε τη χρονοσειρά σε δύο μέρη: Προβλέψεις ˆ,,,,,, N N N N,, ˆ N ( T) e ˆ T T T σφάλμα πρόβλεψης Σύνολο εκμάθησης του μοντέλου Σύνολο για τον έλεγχο του μοντέλου Στατιστική για το σφάλμα πρόβλεψης N T N tn NRM SE( T ) N N N T tt ˆ tt
24 Παράδειγμα: -Lorenz τοπικό γραμμικό μοντέλο πρόβλεψης (LLP) Πρόβλεψη με: t, m 5, K πρόβλεψη τοπικού μέσου όρου (LAP) χωρίς θόρυβο με %-θόρυβο
25 nrmse(m) τετραμηνιαίος ρυθμός μεταβολής ΑΕΠ των ΗΠΑ την περίοδο Πρόβλεψη με - γραμμικό μοντέλο AR - τοπικό μοντέλο μέσου όρου, LAM - τοπικό γραμμικό μοντέλο, LLM..9 Σφάλμα πρόβλεψης (nrmse) για τα 3 τελευταία τετράμηνα () Προβλέψεις με αφετηρία το πρώτο τετράμηνο του 989 και ορίζοντα τα 6 τελευταία τετράμηνα () real AR(3) LAM(m=5,K=5) LLM(m=5,K=5).8 AR LAM(K=5) LLM(K=5) m
26 returns of nde close nde Γενικός δείκτης ΧΑΑ την περίοδο Πρόβλεψη με - γραμμικό μοντέλο AR - τοπικό μοντέλο μέσου όρου, LAM Αποδόσεις y γενικού δείκτη Πρόβλεψη με αφετηρία την.9.5 και για μέχρι 6 μέρες μπροστά t t t t Γενικός δείκτης.5. () () general nde n (T), AR(7) n (T), LAM(m=7,K=) general nde returns y n (T), AR(7) y n (T), LAM(m=7,K=) day day
27 nde return close nde Γενικός δείκτης ΧΑΑ την περίοδο συνέχεια.5..5 Πρόβλεψη με - γραμμικό μοντέλο AR - τοπικό μοντέλο μέσου όρου, LAM Αποδόσεις y γενικού δείκτη () Πρόβλεψη ενός βήματος μπροστά για την περίοδο t t t t Γενικός δείκτης () general nde n () AR(7) n () LAM(m=7,K=) general nde y n () AR(7) y n () LAM(m=7,K=) day day
Εκτίμηση μη-γραμμικών χαρακτηριστικών
Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,
Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 7 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(p,q) μοντέλο x x px p z z z q q Πλεονεκτήματα:. Απλά 2. Κανονική διαδικασία, ανεπτυγμένη
Αστάθεια (volatility)
Αστάθεια volly N Χρονοσειρά πρώτων διαφορών ή σχετικών μεταβολών { } Μεταβλητότητα ή αστάθεια σε κάθε χρονική στιγμή σ ή σ y y y y y Ηαστάθειαs δίνεται με αναφορά σε κάποια περίοδο T vol : - στιγμιαία
Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη
Πραγματικές χρονοσειρές
3. 4.. 5... Γενικά για χρονοσειρές (πειραματικά δεδομένα και θόρυβος). Ανακατασκευή χώρου φάσεων 3. Υπολογισμός διάστασης χαοτικών ελκυστών 4. Υπολογισμός εκθετών Lyapunov 5. Μέθοδοι πρόβλεψης φυσιολογία
3 Μη-γραμμική ανάλυση χρονοσειρών
Μη-γραμμική ανάλυση χρονοσειρών Μέχρι τώρα μελετήσαμε γραμμικά χαρακτηριστικά των χρονοσειρών, όπως την αυτοσυσχέτιση r x (k) και ισοδύναμα το φάσμα ισχύος P x ( f ), και γραμμικά μοντέλα χρονοσειρών όπως
min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με
= φ + φ + + φ + Προσδιορισμός τάξης AR μοντέλου Προσαρμογή AR μοντέλου - μερική αυτοσυσχέτιση για υστέρηση τ: = φ + w, = φ + φ + w,, = φ + φ + φ + w,3,3 3,3 3 ˆ φ, kk, τάξη, εκτίμηση παραμέτρων συσχέτιση
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις Πρόβλεψη Χρονοσειρών Μοντέλα για χρονικές σειρές AR,
Χρονοσειρές Μάθημα 6
Χρονοσειρές Μάθημα 6 Πρόβλεψη Χρονικών Σειρών Μοντέλα για χρονικές σειρές AR, MA, ARMA, ARIMA, SARIMA πρόβλεψη Πολλές εφαρμογές Δείκτης και όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών ΧΑΑ Θα μπορούσαμε
Προσοµοίωση χαοτικών χρονοσειρών Μέρος Β - Μη-γραµµική ανάλυση χρονοσειρών
Προσοµοίωση χαοτικών χρονοσειρών Μέρος Β - Μη-γραµµική ανάλυση χρονοσειρών Γενικά για χρονοσειρές Θεωρούµε ως χρονοσειρά ένα σύνολο Ν διαδοχικών παρατηρήσεων κάποιου µεγέθους για κάποια χρονική περίοδο
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ ΙΕΡΕΥΝΗΣΗ ΑΙΤΙΟΚΡΑΤΙΚΟΥ ΧΑΟΥΣ ΣΕ ΧΡΟΝΟΣΕΙΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΕΜΟΥ ΜΕ ΧΡΗΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΔΙΕΡΕΥΝΗΣΗ ΑΙΤΙΟΚΡΑΤΙΚΟΥ ΧΑΟΥΣ ΣΕ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας
close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ Πρόβλεψη πολλών ϐηµάτων µε τοπικά µοντέλα κοντινότερων γειτόνων σε χρονοσειρές από µη-γραµµικά δυναµικά
4. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ
4. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ Συσχέτιση Εντροπία Αμοιβαία Πληροφορία ΣΤΑΤΙΣΤΙΚΉ ΟΡΟΣ Μέση τιμή (epectato) th Ροπή (momet), μ: μέση τιμή η ροπή ( d momet): διασπορά (varace) Στατιστική ανεξαρτησία (statstcal depedece)
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές
Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΣΤΗΜΑΤΩΝ. Μεταπτυχιακή Εργασία
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ ΠΜΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΣΤΗΜΑΤΩΝ Μεταπτυχιακή Εργασία ΑΝΑΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΚΑΙ ΜΗ ΓΡΑΜΜΙΚΩΝ ΧΩΡΟΧΡΟΝΙΚΩΝ ΣΥΣΧΕΤΙΣΕΩΝ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Ψωφογεώργου Πολυξένη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΜΣ «ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ» ΜΕΤΑΠΤΥΧΙΑΚΗ Ε Ρ Γ Α Σ Ι Α ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ ΑΝΕΜΟΥ: ΜΕΤΡΗΣΕΙΣ ΠΕΔΙΟΥ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ ΘΕΡΜΟΚΡΑΣΙΑΣ ΜΕ ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΕΘΟΔΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ ΘΕΡΜΟΚΡΑΣΙΑΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ. Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1
Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1 4. Πρόβλεψη Ζήτησης στην ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης
Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι:
Παραιάσεις των κλασσικών υποθέσεων Στο γραμμικό υπόδειγμα y = x+ u, =,,, ο εκτιμητής LS είναι: ˆ x y = = x = Οι ασικές ιδιότητες του εκτιμητή είναι: ˆ ( ) Var =, αμεροληψία, ˆ σ = x = Επιπλέον αν δεν έχουμε
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
E [ -x ^2 z] = E[x z]
1 1.ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτήν την διάλεξη θα πάμε στο φίλτρο με περισσότερες λεπτομέρειες, και θα παράσχουμε μια νέα παραγωγή για το φίλτρο Kalman, αυτή τη φορά βασισμένο στην ιδέα της γραμμικής
Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
Στατιστική περιγραφή τουπεδίουβαρύτητας
Στατιστική περιγραφή τουπεδίουβαρύτητας ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση
«Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods
Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?
AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων
1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ
ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 5 Πάτρα 2008 Χρονικά μεταβαλλόμενες παράμετροι Στο πρόβλημα
0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 0 1 0 1/3 2/3 1 0 1/9 2/9 1/3 2/3 7/9 8/9 1 0 1 Α
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
7. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ
7. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ 1 Principal & Independent Component Analysis (PCA, ICA) PRINCIPAL COMPONENT ANALYSIS (PCA) Principal Component Analysis (PCA): ορθογώνιος μετασχηματισμός κατά τον οποίο αφαιρείται
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
E[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel
Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel A.1 Μέση Τιμή - Συνάρτηση AVERAGE Δίνει τον μέσο όρο (αριθμητικό μέσο) των ορισμάτων. AVERAGE(umber1; umber;...) Number1, umber,... είναι 1 έως 30 ορίσματα
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται
ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ
στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα
1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);
Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της
Ενδεικτικές Ασκήσεις Μάθηµα : Στατιστική 1
Ενδεικτικές Ασκήσεις Μάθηµα : Στατιστική Τµήµα Τεχνολογίας και Συστηµάτων Παραγωγής Θέµα ον α) Έστω Ακαι Β δύο ενδεχόµενα ενός πειράµατος και έστω ότι ισχύει : (Α).5, (Α Β).6, (Β) q i)γιαποιατιµήτου qταακαιβείναιξένα;
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Επαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Συνεχείς Τυχαίες Μεταβλητές
Συνεχείς Τυχαίες Μεταβλητές Η σ.κ.π. F() είναι παντού συνεχής F PX t dt H σ.π.π. df d Ισχύει ότι d F Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 () Πιθανότητες & Στατιστική
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.
2.1 Αριθμητική επίλυση εξισώσεων
. Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων
Μαθηματικά Και Στατιστική Στη Βιολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 10 : Δυναμικά Συστήματα Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:
Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια