Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr"

Transcript

1 VI Ολοκληρώματα

2 Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

3 ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και για την οποία ισχύει F ( ) f ( ) για κάθε f Θεώρημα Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Αν η F είναι μια παράγουσα της f στο Δ, τότε όλες οι συναρτήσεις της μορφής G( ) F( ) c είναι παράγουσες της f στο Δ Επιπλέον, κάθε άλλη παράγουσα της f στο Δ παίρνει τη μορφή F( ) c, για κάποιο c R Συνάρτηση f ( ) f ( ) Πίνακας Αρχικών Συναρτήσεων Αρχική Συνάρτηση F( ) d c F ( ) d c r r f ( ), r r F( ) d c, r r 4 f ( ) F( ) d ln c 5 f ( ) ( ) F ( ) ( ) d ( ) c 6 f ( ) ( ) F ( ) ( ) d ( ) c 7 f ) ( F ( ) ) d ( ) c ( ) 8 f ) ( F ( ) ) d ( ) c ( ) 9 f ( ) F( ) d c f ( ) F( ) d c ln Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

4 ΜΕΡΟΣ Ορισμένο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Έστω μια συνάρτηση f συνεχής στο [α, β] Με τα σημεία n, χωρίζουμε το διάστημα [α,β] σε n ισομήκη υποδιαστήματα μήκους (β-α)/n Στη συνέχεια επιλέγουμε αυθαίρετα σημεία i [ i, i ] σε κάθε υποδιάστημα και σχηματίζουμε το άθροισμα: S n f ( ) f ( ) f ( n ), β - α όπου το Δ, το οποίο εκφράζει το εμβαδόν των πολυγώνων (σχήμα ) Το άθροισμα αυτό n συμβολίζεται πιο σύντομα ως δηλαδή το σημείων i lim n n i n S n f ( ) Μπορεί να αποδειχθεί ότι το όριο του αθροίσματος, i i f ( ), υπάρχει και μάλιστα είναι ανεξάρτητο από την επιλογή των ενδιάμεσων i Σχήμα Το πολυγωνικό χωρίο που αντιστοιχεί στο άθροισμα Το παραπάνω όριο ονομάζεται ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης συμβολίζεται με f ( ) d Ιδιότητες του Ορισμένου Ολοκληρώματος f ( ) d f ( ) d f ( ) d f από το α στο β και Παντελής Μπουμπούλης, MSc, PhD σελ 4 mth-grlogspotcom, ououlismyschgr

5 Αν f ( ), τότε f ( ) d 4 f ( ) d f ( ) d f ( ) d 5 f ( ) d f ( ) d 6 ( ) g( ) d f ( ) d f g( ) d 7 f ( )d f ( ) f ( ) f ( ) 8 Ολοκλήρωση κατά Παράγοντες: f ( ) g( )d f ( ) g( ) - u f ( ) g( ) d 9 Ολοκλήρωση με αντικατάσταση: f ( g( )) g( )d f ( u)du, όπου u g(), du g ( ) d, u g ( ) και u g( ) u Θεώρημα Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α,β] Αν f ( ) για κάθε [, ] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε f ( ) d Θεώρημα Αν f είναι μια συνεχής συνάρτηση σε ένα διάστημα Δ και α είναι ένα σημείο του Δ, τότε η συνάρτηση F ( ) f ( t) dt,, είναι μια παράγουσα της f στο Δ Δηλαδή ισχύει F ( ) f ( t) dt f ( ) Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α,β] Αν η G είναι μια παράγουσα της f στο [α,β], τότε f ( t) dt G(β) - G(α) Παντελής Μπουμπούλης, MSc, PhD σελ 5 mth-grlogspotcom, ououlismyschgr

6 Δ Μεθοδολογία Ασκήσεων Υπολογισμός απλών Ολοκληρωμάτων Στην περίπτωση που μπορούμε κατευθείαν να βρούμε την παράγουσα της συνάρτησης που βρίσκεται μέσα στο ολοκλήρωμα, το ολοκλήρωμα υπολογίζεται σύμφωνα με το θεμελιώδες θεώρημα του Ολοκληρωτικού ) λογισμού: f ( )d f ( ) f ( ) f ( Παραδείγματα: d, d, ( ) d, ()d, κλπ Ολοκλήρωση κατά παράγοντες Στην περίπτωση γινομένων f ( ) g( ) πολλές φορές καταφεύγουμε στην ιδιότητα ολοκλήρωσης κατά παράγοντες Προσπαθούμε να βρούμε μια αρχική συνάρτησης ή της f, ή της g Αν μπορούμε να βρούμε αρχική συνάρτηση και για την f και για την g, διαλέγουμε συνήθως την πιο απλή Ο κανόνας είναι ότι αν για παράδειγμα η παράγωγος της f είναι πιο απλή από την ίδια την f, τότε χρησιμοποιούμε την αρχική της g Ολοκλήρωση κατά παράγοντες χρησιμοποιούμε σε ολοκληρώματα της μορφής: P( ) d P ( )ln( ) d P ( ) ( ) d () d P ( ) ( ) d () d Ιδιαίτερη προσοχή θέλουν ολοκληρώματα της μορφής πχ () d, τα οποία μετά το ένα ή δύο βήμα ολοκλήρωσης μας δίνουν το ίδιο ολοκλήρωμα ξανά Σε αυτή την περίπτωση θέτουμε το ζητουμενο ολοκλήρωμα ίσο με Ι και λύνουμε μια πρωτοβάθμια εξίσωση της μορφής I c I Ρητές Συναρτήσεις P()/Q() η Περίπτωση dg( P( )) dg( Q( )) Βήμα Παραγοντοποιούμε τα δύο πολυώνυμα και κάνουμε τις πιθανές διαγραφές Βήμα Ανάλογα με τους παράγοντες που θα προκύψουν ακολουθούμε διαφορετική μεθοδολογία Αν το Q() έχει μόνο απλές ρίζες, δηλαδή Q( ) ( )( )( n ), τότε αναλύουμε το πηλίκο ως εξής P( ) A A An Q( ) n Στη συνέχεια υπολογίζουμε το ολοκλήρωμα του κάθε όρου ξεχωριστά Αν υπάρχει κάποια διπλή ρίζα στον παρονομαστή, τότε ο αντίστοιχος όρος στο παραπάνω άθροισμα Ak Bk θα είναι της μορφής ) ( k Παντελής Μπουμπούλης, MSc, PhD σελ 6 mth-grlogspotcom, ououlismyschgr

7 Αν υπάρχει κάποιος όρος δευτέρου βαθμού με αρνητική διακρίνουσα ακολουθούμε τη μέθοδο υπολογισμού του d Δηλαδή δουλεύουμε με τη μέθοδο της αντικατάστασης θέτοντας /4 /4 /4 (u) Για παράδειγμα d [ ] du du u u 4 Αν έχουμε όρο της μορφής, τότε τον μετατρέπουμε ως εξής: 4 και εφαρμόζουμε τα προηγούμενα (διπλή αντικατάσταση) η Περίπτωση dg( P( )) dg( Q( )) Εκτελούμε τη διαίρεση μεταξύ των πολυωνύμων Από την ταυτότητα της διαίρεσης θα έχουμε ότι P( ) ( ) P( ) Q( ) ( ) ( ) Επομένως ( ) Για το ολοκλήρωμα του πολυωνύμου () Q( ) Q( ) P( ) βρίσκουμε κατευθείαν την παράγουσα, ενώ για το ολοκλήρωμα της ρητής συνάρτησης εφαρμόζουμε Q( ) τη μεθοδολογία της πρώτης περίπτωσης 4 Ολοκλήρωση με αντικατάσταση Σε ολοκληρώματα τα οποία δεν ανήκουν σε κάποια από τις παραπάνω κατηγορίες και στα οποία υπάρχει μια συνάρτηση που επαναλαμβάνεται, ή μια μεγάλη «περίεργη» συνάρτηση, δουλεύουμε με τη μέθοδο της αντικατάστασης, θέτοντας με u τη συνάρτηση αυτή και αλλάζοντας κατάλληλα τα όρια ολοκλήρωσης Παραδείγματα d, θέτουμε u, ( )ln( ) d, θέτουμε u ln ln Προσοχή! Ολοκλήρωση με αντικατάσταση μπορούμε να χρησιμοποιήσουμε και στην περίπτωση ολοκληρωμάτων της μορφής f ( g( )) g( ) d, θέτοντας u g() Τέτοιες ασκήσεις όμως μπορούν να λυθούν πιο εύκολα αν παρατηρήσουμε ότι f ( g( )) g( ) d f ( g( )) d 5 Ολοκληρώματα με απόλυτες τιμές Βρίσκουμε το πρόσημο της παράστασης που βρίσκεται μέσα στην απόλυτη τιμή (κάνοντας πίνακα προσήμων) και στη συνέχεια σπάμε το ολοκλήρωμα σε διαστήματα στα οποία η παράσταση διατηρεί σταθερό το πρόσημό της (βάζοντας μπροστά το πρόσημο +, αν είναι θετική στο συγκεκριμένο διάστημα, ή το πρόσημο αν είναι αρνητική) Ακολούθως δουλεύουμε κανονικά Πχ d ( ) d ( ) d d ( 5 6) d ( 5 6) d ( 5 6) d 6 Παντελής Μπουμπούλης, MSc, PhD σελ 7 mth-grlogspotcom, ououlismyschgr

8 6 Θεωρητικές Ασκήσεις Η στενή σχέση της παραγώγου με την έννοια του ολοκληρώματος φαίνεται από το θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού Σε ασκήσεις αυτής της κατηγορίας μπορούμε να χρησιμοποιήσουμε και μεθοδολογία του προηγούμενου κεφαλαίου (ΘΜΤ, θεωρήματα Roll, Bolzno, Frmt, Μέγιστης Ελάχιστης τιμής, ενδιάμεσης τιμής) Ιδιαίτερη προσοχή θέλει η παραγώγιση ολοκληρωμάτων Για παράδειγμα Αν F ( ) f ( t) dt, τότε F( ) Αν F ( ) f ( t) dt, τότε F() f ( ) g ( ) Αν F( ) f ( t) dt, τότε F( ) f ( g( )) g( ) g ( ) g ( ) Αν F( ) f ( t) dt f ( t) dt f ( t) dt, τότε F ( ) f ( h( )) h( ) f ( g( )) g( ) h( ) h( ) Αν F ( ) f (, t) dt, τότε για να παραγωγίσουμε πρέπει να «βγάλουμε» την μεταβλητή έξω από το ολοκλήρωμα Αυτό μπορεί να γίνει είτε με απλές αλγεβρικές πράξεις, είτε με τη βοήθεια της μεθόδου της ολοκλήρωσης με αντικατάσταση Παντελής Μπουμπούλης, MSc, PhD σελ 8 mth-grlogspotcom, ououlismyschgr

9 Ασκήσεις Να αποδειχθεί ότι: Α) ( ) d Δ) Β) 4 ( ) d Ε) 5 4 ( ) d Γ) d 8 5 ( ) d 8 5 Να αποδειχθεί ότι: Α) ( ( ) ()) d Β) / / 6 ( ) d Να αποδειχθεί ότι: Α) d Β) 5 d ln(64) 7 Γ) d ln(4) 4 Να αποδειχθεί ότι: Α) d Β) d 4 ( Γ) ) d 5 Να αποδειχθεί ότι: Α) ln( ) d Β) ln( ) d (5 ) 9 Γ) ln( ) d - 6 Να αποδειχθεί ότι: Α) ( ) d, Β) ( ) d Γ) ( ) ( ) d 7 Να αποδειχθεί ότι: Α) ( ) d, Β) Δ) d ( Ε) 4 ) d Γ) 4 64 d 5 Η) ( )( ) d 4 Θ) d 9 ( ) d / ΣΤ) ( ) ( ) d 9 4 Ι) d ln 6 8 Να αποδειχθεί ότι: Α) ( ) d () ( ), Β) ln( ) Δ) d ln ln ln() d ln Γ) d ln 9 Να αποδειχθεί ότι: / 4 ln ( ) Α) ( )ln ( ) d Β) ( ) 8 d Παντελής Μπουμπούλης, MSc, PhD σελ 9 mth-grlogspotcom, ououlismyschgr

10 Να αποδειχθεί ότι: 7 Α) d 4 7 Β) d Γ) ln( ) d ln Να αποδειχθεί ότι: Α) ln( ) d Β) ln Γ) 9 d ln( / ) ln d Να αποδειχθεί ότι / 4 ln Α) ( ) d Β) / ( ) Δ) d ( ) / 4 / 4 ln 4 d ( ) 4 Ε) 4 d ΣΤ) / ( ) Γ) d ( ) / 4 / d Να αποδειχθεί ότι Α) d ln Δ) / d ln 89 Β) d ln 656 Γ) 8 d ln Να αποδειχθεί ότι Α) 5 6 d Β) d Γ) / ln d 5 Να βρείτε τη συνάρτηση f :(,) R της οποίας η γραφική παράσταση διέρχεται από το σημείο Μ(,) και έχει παράγωγο f ( ) Να βρείτε τη συνάρτηση f, η οποία έχει στο σημείο Ν(-,) εφαπτόμενη παράλληλη στην ευθεία y 8 και ισχύει f ( ) 6 7 Να βρείτε τη συνάρτηση f :(,) R η οποία έχει ασύμπτωτη στο την ευθεία y και ισχύει f ( ) 8 Δίνεται η συνεχής συνάρτηση f, η οποία είναι ορισμένη σε όλο το R και F μια αρχική συνάρτηση της f Αν ισχύουν F ( ), F( ) F( ), για κάθε, να λύσετε την εξίσωση f ( ) 9 Να βρείτε τα α, β έτσι ώστε η συνάρτηση F( ) να είναι αρχική της f ( ) Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

11 Δίνεται η συνεχής συνάρτηση f, η οποία είναι ορισμένη σε όλο το R και F μια αρχική συνάρτηση της f Αν f ( ), f ( ) F( ), για κάθε, τότε Α) Να βρείτε το F() Β) Να αποδείξετε ότι f ( ) F( ) Γ) Να αποδείξετε ότι η συνάρτηση g( ) F( ) F( ) είναι σταθερή Δ) Να βρείτε τον τύπο της f Να βρείτε τα α,β έτσι ώστε η συνάρτηση F( ) ln να είναι αρχική της f ( ) ln Να βρείτε τα α,β έτσι ώστε η συνάρτηση F( ) ( 4 4) να είναι αρχική της f ( ) 4 Να αποδείξετε ότι για κάθε άρτια συνεχής συνάρτηση ορισμένη στο διάστημα (-α,α) ισχύει η σχέση f ( ) d f ( ) d 4 Να αποδείξετε ότι για κάθε περιττή συνεχής συνάρτηση ορισμένη στο διάστημα (-α,α) ισχύει η σχέση f ( ) d 5 Δίνεται μια συνεχής συνάρτηση f με πεδίο ορισμού το R, για την οποία ισχύει f ( t) dt, για κάθε Να αποδείξετε ότι η f είναι περιττή συνάρτηση 6 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο [α,] Ι) Να αποδείξετε ότι ισχύει f ( ) d f ( ) d ( f ( ) f ( )) d ΙΙ) Να υπολογίσετε το ολοκλήρωμα I d ΙΙΙ) Να υπολογίσετε το ολοκλήρωμα I ln ΙV) Να υπολογίσετε το ολοκλήρωμα I d ln ln( ) 7 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο [α,] Ι) Να αποδείξετε ότι ισχύει f ( ) d f ( ) d ( f ( ) f ( )) d ΙΙ) Να αποδείξετε ότι / n d ( ) d 9 6 n n / n Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

12 ΙΙΙ) Να αποδείξετε ότι / n ( ) d 5 6 n n / n 8 Δίνεται η συνάρτηση ( ) f ( ) Ι) Να αποδείξετε ότι f ( ) f ( ) ( ) / ΙΙ) Να υπολογίσετε το ολοκλήρωμα f ( ) d 9 Δίνεται το ολοκλήρωμα n I n d / n n Ι) Να αποδείξετε τη σχέση I n I n n 6 ΙΙ) Αν f ( ), να υπολογίσετε το ολοκλήρωμα f ( ) d Να αποδειχθεί η ανισωτική σχέση d 4 Δίνεται η συνάρτηση lnt f ( ) dt, t Α Να υπολογίσετε το ολοκλήρωμα ln d Β) Να βρείτε τον τύπο της συνάρτησης g( ) f ( ) f Δίνεται η συνάρτηση f η οποία είναι συνεχής στο R και η συνάρτηση g, τέτοια ώστε g ( ) f ( t) dt, Α) Να υπολογίσετε την g() Β) Αν f ( ), να λυθεί η εξίσωση g( ) 4 Να λύσετε την εξίσωση t t t dt t dt 4 4 Δίνεται μια συνάρτηση f, η οποία είναι συνεχής στο R Αν ισχύει η σχέση f ( t f ( t) ), να βρείτε τον τύπο της συνάρτησης f t dt Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

13 5 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο διάστημα (, ) και για την οποία ισχύει f ( ) f ( t) dt Να υπολογίσετε τον τύπο της συνάρτησης f 6 Αν η συνάρτηση f είναι συνεχής στο διάστημα [α,] και ισχύει f ( ) για κάθε [, ], να αποδείξετε ότι για κάθε c, d τέτοια ώστε c d, ισχύει f ( ) d f ( ) d d c 7 Θεώρημα Μέσης Τιμής Ολοκληρωτικού Λογισμού Για μια συνεχή συνάρτηση στο [α,] ισχύουν: Α) Υπάρχουν αριθμοί m,m τέτοιοι ώστε m( ) f ( ) d M ( ) Β) Υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε f ( ) d f ( )( ) 8 Δίνεται η συνάρτηση t t f ( ) dt, για κάθε R Να αποδείξετε ότι η f είναι πολυωνυμική t 9 Δίνεται μια συνάρτηση f η οποία είναι συνεχής στο R και για την οποία ισχύει η σχέση t f ( ) f ( t) dt, για κάθε Να υπολογίσετε τη συνάρτηση f 4 Αν η συνάρτηση f είναι συνεχής στο [,] και f ( ), για κάθε [,] Να γνωρίζουμε ότι f ( ) d 5, να υπολογίσετε το σύνολο τιμών της συνάρτησης 4 Να βρεθεί παραγωγίσιμη συνάρτηση f για την οποία ισχύει f ( ) f ( t) dt, για κάθε R 4 Δίνεται η συνάρτηση f ( ) dt, R t Α) Να αποδείξετε ότι ( ) f ( ), για κάθε, Β) Να υπολογίσετε το ολοκλήρωμα t dt g ( ) f ( t) dt Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

14 4 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο R και η συνάρτηση g ( ) f ( t) dt, Α) Να υπολογίσετε την παράγωγο g () Β) Αν γνωρίζετε ότι f ( ), να λυθεί η εξίσωση g( ) 4 44 Η συνάρτηση f είναι συνεχής στο [α,], όπου α> και f ( ) d Αν γνωρίζουμε ότι f ( ), για κάθε (, ), να αποδείξετε ότι η εξίσωση f ( t) dt, έχει ακριβώς μια λύση στο (α, ) 45 Δίνεται η συνάρτηση F, τέτοια ώστε F ( ) ln t dt, για κάθε Να βρεθεί η παράγωγος της F 46 Η συνάρτηση f είναι συνεχής για κάθε και ισχύει f ( ) για κάθε Να αποδείξετε ότι υπάρχει κάποιο, τέτοιο ώστε f ( ) d f ( ) d 47 Δίνεται η συνάρτηση f η οποία είναι παραγωγίσιμη στο διάστημα [-,] και η f είναι γνησίως αύξουσα Να αποδειχθεί ότι Α) Υπάρχει (, ) τέτοιο ώστε για κάθε [, ] να ισχύει f ( ) ( ) f ( ) f ( ) Β) f ( ) d f ( ) f () 48 Δίνεται η συνεχής συνάρτηση f ορισμένη στο [α,] Να αποδείξετε ότι υπάρχει τουλάχιστον ένα (, ), τέτοιο ώστε f ( ) d ( ) f ( ) 4 49 Έστω f : R R συνεχής και f ( t) dt 9, για κάθε R Να υπολογίσετε την τιμή f () 5 Δίνεται η συνάρτηση f, η οποία είναι συνεχής και γνησίως αύξουσα για κάθε, για την οποία ισχύει f ( ) d και f ( ) d 4 Θεωρούμε τη συνάρτηση F( ) f ( t) dt, ορισμένη για 5 Α) Να μελετήσετε την F ως προς τη μονοτονία Β) Να αποδείξετε ότι υπάρχει τουλάχιστον ένα (, ) ώστε f ( ) f ( ) 5 Η f είναι συνεχής στο R και γνωρίζουμε ότι f ( t) dt 4, για κάθε R Α) Να υπολογίσετε μια συνάρτηση f, η οποία ικανοποιεί την παραπάνω σχέση Β) Για τη συνάρτηση f που βρήκατε στο προηγούμενο ερώτημα, να υπολογίσετε την παράμετρο α Παντελής Μπουμπούλης, MSc, PhD σελ 4 mth-grlogspotcom, ououlismyschgr

15 5 Η συνάρτηση f είναι δύο φορές παραγωγίσιμη στο [α,] και για κάθε [, ] ισχύει f ( ) Να αποδείξετε ότι ( ) f f ( t) dt 5 Δίνεται η σχέση f ( ) f ( ) d, όπου η f είναι μια δυο φορές παραγωγίσιμη συνάρτηση στο [,] Επιπλέον, γνωρίζουμε ότι f ( ) f () Να βρεθεί ο τύπος της εφαπτομένης της γραφικής παράστασης της f στο σημείο Παντελής Μπουμπούλης, MSc, PhD σελ 5 mth-grlogspotcom, ououlismyschgr

16 ΜΕΡΟΣ Εμβαδόν Επίπεδου Χωρίου Α Το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση μιας συνάρτησης f και τις κατακόρυφες ευθείες,,( ) και τον άξονα είναι ίσο με E f ( ) d Β Το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g και τις κατακόρυφες ευθείες,, ( ) είναι ίσο με E f ( ) g( ) d Παντελής Μπουμπούλης, MSc, PhD σελ 6 mth-grlogspotcom, ououlismyschgr

17 Γ Το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g είναι ίσο με E f ( ) g( ) d, όπου οι τιμές και είναι αντίστοιχα η μικρότερη και η μεγαλύτερη τιμή των για τα οποία ισχύει η σχέση f () g() Πολλές φορές ζητείται το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f και από τον άξονα Σε αυτή την περίπτωση g( ) και οι τιμές και είναι αντίστοιχα η μικρότερη και η μεγαλύτερη τιμή των για τα οποία ισχύει η σχέση f ( ) Το αντίστοιχο ολοκλήρωμα είναι f ( ) d Σχήμα Ένα χωρίο που ορίζεται από τη γραφική παράσταση δύο συναρτήσεων f, g Σχήμα Ένα χωρίο που ορίζεται από τη γραφική παράσταση της συνάρτησης f και τον άξονα Δ Το εμβαδόν του χωρίου που περικλείεται μεταξύ τριών συναρτήσεων, f, g, h, μπορεί να υπολογιστεί υπό ειδικές συνθήκες (αν πχ ανά ζεύγος οι συναρτήσεις έχουν από ένα κοινό σημείο) Συνήθως η τρίτη συνάρτηση μπορεί να είναι ο άξονας Σχήμα Το χωρίο που ορίζεται από τις συναρτήσεις f ( ) g( ) ( ) και h( ) ( ), Σχήμα 4 Το χωρίο που ορίζεται από τις συναρτήσεις f ( ) ln( ), g( ) log( ) και τον άξονα Παντελής Μπουμπούλης, MSc, PhD σελ 7 mth-grlogspotcom, ououlismyschgr

18 Στις ασκήσεις που μας ζητάνε να υπολογίσουμε εμβαδά πρέπει να κάνουμε τα εξής: Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Α) ή της μορφής (Β), τότε πρέπει απλά να κάνουμε πίνακα προσήμων για την παράσταση που βρίσκεται μέσα στην απόλυτη τιμή Στη συνέχεια σπάμε το ολοκλήρωμα σε διαστήματα στα οποία η παράσταση διατηρεί σταθερό το πρόσημό της βάζοντας μπροστά το πρόσημο +, αν είναι θετική στο συγκεκριμένο διάστημα, ή το πρόσημο αν είναι αρνητική Σε δύσκολες ασκήσεις ίσως χρειαστεί να κάνουμε μελέτη της παράστασης για να βρούμε το πρόσημό της Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Γ), τότε πρέπει να βρούμε τα σημεία τομής των γραφικών παραστάσεων f ( ), g( ), λύνοντας την εξίσωση f ( ) g( ), ώστε να βρούμε τα όρια του ολοκληρώματος (το θα είναι η μικρότερη λύση και το η μεγαλύτερη) Στη συνέχεια κάνουμε πίνακα προσήμων για την παράσταση που βρίσκεται μέσα στην απόλυτη τιμή και ακολουθούμε την γνωστή μεθοδολογία Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Δ), τότε πιθανότατα θα πρέπει να σχεδιάσετε ένα πρόχειρο σχήμα για να δείτε πως πρέπει να υπολογίσετε το εμβαδόν Για παράδειγμα το χωρίο του σχήματος θα σπάσει σε δύο ολοκληρώματα (της μορφής Γ) Για να βρούμε τα όρια θα πρέπει να λύσουμε τις εξισώσεις f ( ) h( ), f ( ) g( ) και h( ) g( ) Λύσεις είναι οι αριθμοί,, αντίστοιχα Επομένως, το χωρίο θα είναι ίσο με E f ( ) h( ) d εξής: E f ( ) d g ( ) d f ( ) g( ) d Ομοίως το χωρίο του σχήματος 4, θα υπολογιστεί ως Μην ξεχνάτε να χρησιμοποιείται τύπους εμβαδών που ήδη ξέρετε Για παράδειγμα το ολοκλήρωμα d εκφράζει το εμβαδόν ημικυκλίου με κέντρο το Ο και ακτίνα, επομένως είναι γνωστό από τύπους γεωμετρίας: d Επιπλέον για πολυγωνικά χωρία, μπορούμε να χρησιμοποιήσουμε τύπους παραλληλογράμμων και τριγώνων, οι οποίοι είναι γνωστοί από τη Β Λυκείου Παντελής Μπουμπούλης, MSc, PhD σελ 8 mth-grlogspotcom, ououlismyschgr

19 Ασκήσεις Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) ln( ), τον άξονα και τις κατακόρυφες ευθείες, Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τον άξονα Αποδείξτε ότι δεν υπάρχει ακέραιος αριθμός, τέτοιος ώστε η ευθεία να διαιρεί το χωρίο σε δύο ίσα μέρη Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις ευθείες y, και 4 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις κατακόρυφες ευθείες, 5 Δίνεται η συνάρτηση f ( ) Α) Να βρεθούν τα τοπικά ακρότατα της f Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f και τον άξονα 6 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τον άξονα 7 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ), τον άξονα και τις ευθείες, 8 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), y, y 9 Να υπολογιστεί το εμβαδόν του χωρίου που ορίζεται από τα σημεία (, y) του επιπέδου για τα οποία είναι και y y Να αποδείξετε ότι το εμβαδόν του χωρίου που περικλείεται από την έλλειψη με E είναι ίσο Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων Α) f ( ) και g( ) Β) f ( ) και g( ) Γ) f ( ) και g ( ) Δ) f ( ) και g( ) f ( ) Παντελής Μπουμπούλης, MSc, PhD σελ 9 mth-grlogspotcom, ououlismyschgr

20 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ) ( ) και g( ) ( ) και τις ευθείες, Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των 7 5 συναρτήσεων f ( ) και g ( ) Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), g( ) και την ευθεία 5 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), g( ) και την ευθεία y 6 Να αποδείξετε ότι το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των 4 παραβολών y p και py είναι ίσο με p 7 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της παραβολής y και του κύκλου y 8 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των παραβολών y, y και την ευθεία y 9 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της παραβολής y 4 και την ευθεία y Δίνεται η παραβολή y 4 Α) Να υπολογίσετε τις εξισώσεις των εφαπτόμενων της παραβολής, οι οποίες διέρχονται από την αρχή των αξόνων Β) Να υπολογίσετε το εμβαδόν του χωρίου που περιέχεται από την παραβολή και τις παραπάνω εφαπτόμενες Δίνεται η συνάρτηση f ( ) ln( ) Α) Αποδείξτε ότι η f είναι κοίλη Β) Ποιά είναι η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο με ; Γ) Να αποδείξετε ότι ln( ) για κάθε Δ) Να υπολογίσετε το εμβαδόν E(t) του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f, της ευθείας y, της ευθείας και της ευθείας t, για t (,) Ε) Να βρείτε το όριο lim E( t) και το εμβαδόν Ε() t Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις παραβολές y 4 και y 6 4 Έστω παραγωγίσιμη συνάρτηση f για την οποία ισχύει f ( ) και f ( ) Α) Να βρείτε τον τύπο της f Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

21 συναρτήσεων f, g με f ( ) g ( ), τον άξονα y y και την ευθεία 4 Δίνονται οι συναρτήσεις f ( ) d, και g( ) t t dt Α) Να βρεθούν οι τύποι των δύο συναρτήσεων Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g 5 Να προσδιοριστεί ο αριθμός ώστε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f ( ) και g ( ) να είναι ίσο με 9 / 6 Α) Να υπολογιστεί το εμβαδόν E() του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις ευθείες, ως συνάρτηση του Β) Να υπολογιστεί το όριο lim E( ) 7 Α) Να υπολογιστεί το εμβαδόν E() του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις ευθείες, ως συνάρτηση του Β) Να υπολογιστούν τα όρια lim E( ), lim E( ) Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της f στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και ισχύει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Θέμα Α) Να δείξετε ότι αν f μια συνάρτηση ορισμένη σε διάστημα Δ και F μια παράγουσα της f στο Δ τότε: α) όλες οι συναρτήσεις της μορφής G(χ) = F ( ) +c, c είναι παράγουσες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Ολοκληρώματα Κώστας Γλυκός 9 ΑΣΚΗΣΕΙΣ Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7.. 8 8. 8 8 Kglykos.gr / / 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : -6.78 κινητό : 697-.88.88 Επιλεγμένες ασκήσεις από βιβλία Σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως ΘΕΜΑ Α Α. Απόδειξη θεωρήματος σελ. 99 σχολικού βιβλίου. Α. α. Ψευδής β. Θεωρούμε τη συνάρτηση, 0 g, 0 η οποία έχει γραφική παράσταση (σχήμα σχολικού βιβλίου σελ.5): y O y=g() Η g είναι συνάρτηση στο Ag

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

[ α π ο δ ε ί ξ ε ι ς ]

[ α π ο δ ε ί ξ ε ι ς ] Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Γ Λυκείου

Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 598 Θε ματα Δεσμω ν 98- Επιμέλεια Κων/νος Παπασταματίου Σελίδα

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

3o Επαναληπτικό Διαγώνισμα 2016

3o Επαναληπτικό Διαγώνισμα 2016 3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x. Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Γ Λυκείου

Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 3 598 Θε ματα ΟΕΦΕ - 5 Επιμέλεια Κων/νος Παπασταματίου Σελίδα

Διαβάστε περισσότερα

f(x) x 3x 2, όπου R, y 2x 2

f(x) x 3x 2, όπου R, y 2x 2 Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο 4 83 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο 4 83 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Ολοκληρώματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 4 / 7 / 8 Κατεύθυνση κεφάλαιο 4 8 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος ) Δίνεται η παραγωγίσιμη συνάρτηση f για την οποία ισχύει : [f()] 8 +α[f()] = -e f(), α>,για κάθε. α) Να δείξετε ότι f()=c, για κάθε,όπου c αρνητική σταθερά. β) Να βρείτε τις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΠΙΚΑΙΡΟΠΟΙΗΜΕΝΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΝΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1 ΘΕΜΑ Έστω οι συναρτήσεις, g με () και g() ln( + ) +. Να αποδείξετε ότι οι C, C g έχουν ακριβώς ένα κοινό σημείο. Στη συνέχεια να δείξετε ότι στο σημείο αυτό έχουν κοινή εφαπτόμενη, την οποία και να βρείτε.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > 0 σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ). ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ) ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟ ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ) Στις επισυναπτόμενες σελίδες του παραπάνω βιβλίου έχουν γίνει από τον συγγραφέα

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

Ολοκλήρωμα πραγματικής συνάρτησης

Ολοκλήρωμα πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 7 Ολοκλήρωμα πραγματικής συνάρτησης Σύνοψη Το κεφάλαιο αυτό αποτελεί το «πέρασμα» από το Διαφορικό στον Ολοκληρωτικό Λογισμό Η θεμελιώδης έννοια, για το σκοπό αυτό, είναι η αντιπαράγωγος ή αόριστο

Διαβάστε περισσότερα

Λύσεις του διαγωνίσματος στις παραγώγους

Λύσεις του διαγωνίσματος στις παραγώγους Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Γ ΛΥΚΕΙΟΥ Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Θεματικές διαδρομές στην Ανάλυση Μια πορεία από τον Διαφορικό στον Ολοκληρωτικό Λογισμό Γιάννης Λουριδάς, Δημήτρης

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Ζαχαράκης Δημήτρης Καρύμπαλης Νώντας Κλίτσας Γιώργος Κοτσώνης Γιώργος Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα