Cap. 3 Interacţiunea câmpului electromagnetic cu substanţa. Polarizarea dielectricilor. Capitolul 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Cap. 3 Interacţiunea câmpului electromagnetic cu substanţa. Polarizarea dielectricilor. Capitolul 3"

Transcript

1 Cap. 3 Interacţiunea câmpului electromagnetic cu substanţa. Polarizarea dielectricilor

2 Cuprins Mecanisme de polarizare a dielectricilor Polarizarea electronică şi ionică Polarizarea orientaţională Variaţia permitivităţii cu frecvenţa Reprezentări grafice

3 3.1 Mecanisme de polarizare a dielectricilor în teoria benzilor de energie, izolatorii sau dielectricii sunt consideraţi substanţele a căror bandă interzisă are o lăţime mai mare de 3eV sub acţiunea unui câmp electric exterior ei prezintă un fenomen de polarizare datorat redistribuirii sarcinilor electrice în interiorul substanţei şi/sau reorientării momentelor de dipol mecansimele de polarizare: polarizarea electronică polarizarea ionică polarizarea orientaţională (dipolară) polarizarea interfacială polarizabilitatea unui material va fi dată de: (3.1.1) T = o i e if

4 3.1 Mecanisme de polarizare a dielectricilor vectorul polarizare sau intensitate de polarizare P este definit prin momentul dipolar al unităţii de volum şi, la un dielectric liniar, este proporţional cu câmpul electric extern aplicat E 0 (3.1.2) P= 0 E 0 unde χ este susceptibilitatea electrică câmpul electric din interiorul dielectricului este (3.1.3) E= E 0 E 0 0 vectorul inducţie electrică sau deplasare va fi (3.1.4) D= 0 E 0 P= 0 1 E 0 = 0 r E 0 la nivel atomic sau molecular apare noţiunea de polarizabilitate atomică sau moleculară α, iar momentul dipolar al atomului este (3.1.5) p= 0 E 0

5 3.1 Momentul atomic dipolar la moleculele simetrice α este o constantă, iar pentru cele asimetrice un tensor de ordinul II Legătura dintre polarizabilitate şi polarizare adică dintre mărimile macroscopice şi microscopice este dată de (3.1.6) P=N v p=n v 0 E unde Nv este densitatea volumică a atomilor (moleculelor) substanţei respective iar E câmpul electric local rezultant, precum şi de relaţia Clausius- Mosotti ce dă legătura dintre polarizabilitate şi permitivitate relativă câmpul electric din interiorul dielectrcului este (3.1.7) E= E 0 E pol unde câmpul de polarizare datorat redistribuirii momentelor dipolare este (3.1.8) E pol = P 3 0

6 3.1 Momentul atomic dipolar atunci câmpul electric va fi (3.1.9) E= r 2 3 iar polarizarea (3.1.10) comparând cu (3.1.2) se ajunge la cunoscuta relaţie Clausius-Mosotti E 0 P=N v 0 r 2 3 E 0 (3.1.11) r 1 r 2 = N v 3

7 3.2 Polarizarea electronică şi ionică într-un dielectric nepolar pot lua naştere dipoli induşi sub acţiunea unui câmp electric extern (3.2.1) E= E 0 e j t câmpul electric rezultant este (3.2.2) E r = E r 0 e j t forţa cu care câmpul electromagnetic acţionează asupra electronului este (3.2.3) F = q E r v B 0 forţa elastică (3.2.4) F el = m 0 e 2 0 e r forţa de atenuare (3.2.5) F at = m 0 e e d r dt

8 3.2 Polarizarea electronică şi ionică ecuaţia de mişcare va fi (3.2.6) d 2 având în vedere că (3.2.7) soluţia ecuaţiei (3.2.6) este şi se poate scrie pe de altă parte dt 2 e d dt 2 r = q E r 0 e m 0 e P e = q N v r (3.2.8) P e = P 0 e e j t (3.2.9) 2 2 j e 0 e r= N v q2 m 0 e E r (3.2.10) P e =N v e E r

9 3.2 Polarizarea electronică şi ionică în final polarizabilitatea electronică va avea forma (3.2.11) e = pentru un ansamblu de ioni, polarizabilitatea ionică va fi în mod analog (3.2.12) i = q 2 0 m 0 e 2 2 j e 0 e q 2 0 m 0i 2 2 j i 0i

10 3.3 Polarizarea orientaţională Regim tranzitoriu asupra dielectricului acţionează un câmp electric treaptă polarizarea ionică şi electronică P ie se obţine relativ repede, polarizarea totală fiind (3.3.1) P t = P ie P o t ecuaţia care descrie acest proces de relaxare este (3.3.2) d P o dt = 1 0 [ P P ie P o t ] unde τo este timpul de relaxare macroscopic şi (3.3.3) P= P ie P o

11 3.3.1 Regim tranzitoriu este valoarea maximă a polarizării după un timp suficient de mare impunând condiţia la limită (3.3.4) se obţine soluţia (3.3.5) P o 0 =0 P o t = P P ie 1 e t / 0

12 3.3.2 Regim sinusoidal dacă asupra dielectricului se aplică un câmp electric variabil, atunci (3.3.6) χ fiind acum o mărime complexă. Ţinând seama de faptul că la frecvenţe foarte mari se manifestă doar polarizaţia ionică şi electronică, se poate scrie (3.3.7) P t = 0 E 0 e j t P ie = 0 ie E= 0 r 1 E ecuaţia care descrie variaţia în timp a polarizării este (3.3.8) cu soluţia generală d P o dt = 1 [ 0 r0 r E 0 e j t P o ] (3.3.9) P o = 0 [ r 1 r0 r j r0 r ] E 0 e j t

13 3.3.2 Regim sinusoidal ţinându-se seama de aceste relaţii în (3.3.6) se poate deduce expresia polarizabilităţii orientaţionale (3.3.10) o = o 0 1 j o unde (3.3.11) o 0 = 0 0 N v

14 3.4 Variaţia permitivităţii electrice cu frecvenţa ţinând seama de ecuaţia Clausius-Mosotti, permitivitatea relativă complexă specifică proceselor de polarizare orientaţională este (3.4.1) ro = ' (3.4.2) ro 1 2 N v 3 o 1 N v 3 o dacă se notează prin K 1= Nvαo(0), K2=1 ( Νv / 3)αo(0) se obţine 1 2K 1 /3 K o = K o (3.4.3) ro ' = K 1 o K o 2 pentru uşurinţă se notează (3.4.4) x= o K 2, K 0 = K 1 K 2

15 3.4.1 Spectrul de rezonanţă a permitivităţii orientaţionale şi atunci ' 1 (3.4.5) ro 1=K 0 1 x, ' ' 2 ro=k 0 x 1 x 2 ε r0 ε r0 tg δ 1/ τ 0 ln ω

16 3.4.2 Spectrul de rezonanţă a permitivităţilor electronice şi ionice analog celor de mai sus, din expresiile polarizabilităţilor electronice şi ionice şi ecuaţia Clausius-Mosotti, permitivităţile electronice şi ionice vor avea forma: ' (3.4.6) re (3.4.7) respectiv 1= K e 2 0e 2 2 0e e ' ' re = K e 0e e e 2 ' (3.4.8) ri 1= K i 2 0i 2 2 0i i 2 (3.4.9) ' ' ri = K i 0i 2 0i i 2

17 3.4.2 Spectrul de rezonanţă a permitivităţilor electronice şi ionice unde: (3.4.10) K e = N v q2, 2 0 m 0 e = 2 0 e K e 0 e 3 (3.4.11) K i = N v q2, 2 0 m 0i = 2 0i K i 0i 3 relaţiile de mai sus sunt dificil de urmărit şi se impune analiza lor pe benzi de frecvenţă. Datorită similarităţii relaţiilor se va discuta doar cazul polarizării ionice frecvenţe mici 0i şi 2 0i 2 2 0i 2 2 ' (3.4.12) ri 1 K i ', ' 2 ri 0 0i frecvenţe apropiate de 0i : 0i, = 0i, unde au loc fenomene de rezonanţă pronunţate: ' (3.4.13) ri,res =1 K i 2 0i 2 2 0i /4

18 3.4.2 Spectrul de rezonanţă a permitivităţilor electronice şi ionice (3.4.14) ' ' ri,res = K i 4 0i 0i 2 2 0i /4 prin substituţia (3.4.15) x= 2 relaţiile de mai sus devin (3.4.16) ' ri,res =1 K i 0i 0i x x i ε ri / ε ri,max ε ri / ε ri,max ' ' (3.4.17) ri,res = K i 1 0i 0i x γ 0i ω~ γ 0i 0i / 2 ~ω ω ~ + γ / 2 0i 0i 0i ω

19 3.4.2 Spectrul permitivităţii frecvenţe mari 0i şi 2 0i 2 2 0i 2 2 ε r ε ro (3.4.18) ' ri 1 K i ', ' 2 ri 0 0i ε re ε ri log ω ε r ω o 0i ~ω ~ω 0e log ω

20 3.5 Reprezentări grafice Semicercul Debye planul ' ' ' r ; r obţinerea unor relaţii analitice simple pentru domeniul microundelor se poate realiza prin considerarea valorilor limită: r0 = r 0 permitivitatea totală statică şi r = r permitivitatea relativă datorată polarizărilor ionice şi electronice pot fi ' ' ' considerate constante r = r = ri re R atunci permitivitatea relativă este (3.5.1) de unde (3.5.2) (3.5.3) r = r r0 r 1 j o r ' = r r0 r 1 2 o 2 r ' ' = r0 r 1 2 o 2 o

21 3.5.1 Semicercul Debye unghiul de pierderi δ este dat de (3.5.4) Relaţiile (3.5.2)-(3.5.4) se numesc ecuaţii Debye pentru relaxarea dielectrică ε r ' ' tan = r r ' ε ω ω τ 0 = 1 ( ε, ε ) 1 2 ( ε ) ε r0 r ε r 1 2 ( ε ) ε r0 + r ε ε r0 ε r

22 3.5.2 Diagrama Argand Reprezentările acestor mărimi în planul complex se numesc mai general diagrame Argand. Eliminând ωτ în ecuaţiile (3.5.2)-(3.5.3) se obţine r0 r (3.5.5) ' r 2 = r0 r ' ' 2 2 r pornind de la (3.5.1) şi notând (3.5.6) z 1 = r0 r, z 1 j 2 =z 1 j o o se obţine (3.5.7) r = r z 1, r 0 r =z 1 1 j o =z 1 z (3.5.8) tan = z 1 z 2 = o

23 3.5.2 Diagrama Argand ε r ε r0 ε r ε r0 ε r ε r α z 1 z 2 ε r ω

24 3.5.3 Diagrama Cole-Cole unui dielectric îi sunt caracteristici mai mulţi timpi de relaxare formând o distribuţie de timpi de relaxare şi în plus pot interveni o serie întreagă de rezonanţe locale chiar ionice sau electronice polarizarea poate fi scrisă ca rezultatul unei combinaţii liniare de polarizări parţiale p 0 (τ,t) specifice fiecărui τ (3.5.9) P 0 t = p 0i i, t g i i unde g(τ i) este ponderea statistică şi satisface relaţia (3.5.10) g i =1 i prin generalizare se ajunge la expresia (3.5.11) P 0 t = p 0i,t g dt 0 cu condiţia de normare (3.5.12) 0 g dt=1

25 3.5.3 Diagrama Cole-Cole ecuaţiile Debye devin (3.5.13) ' g d r = r r0 r (3.5.14) ' ' g d r = r0 r se impune cunoaşterea funcţiei de distribuţie g(τ) a timpilor de relaxare K. S. Cole şi R. H. Cole au propus o soluţie empirică pentru ε r: (3.5.15) r = r r0 r, 0 h 1 1 h 1 j unde h este o constantă de material, proporţională cu gradul de libertate internă a moleculelor; variază invers proporţional cu temperatura şi pentru h=0 (3.5.15) devine chiar ecuaţia Debye ultima relaţie poate fi scrisă sub forma

26 3.5.3 Diagrama Cole-Cole [ (3.5.16) 1 2 r0 r ' r ]2 [ 1 2 ' r0 r tan ' r ]2= 1 4 r0 r 2 sec 2 unde = h/2 cu centrul în şi reprezintă ecuaţia unui cerc de rază r0 r, r0 r tan 1 2 r0 r sec timpul de relaxare poate fi determinat din expresia (3.5.17) unde (3.5.18) u v 2 0 = v/u 1 h = [ r0 ' r ] 2 ' ' 2 r [ ' r ] 2 ' ' r 2 r

27 3.5.3 Diagrama Cole-Cole

28 3.5.4 Relațiile Kramers-Kronig Conectează liniaritatea răspunsului materialului la excitație externă exprimată prin permitivitatea complexă și conductivitate (3.5.18) (3.5.19) ' ' r f s / 0 = 2f ' r x 0 x 2 f 2 r ' f r = 2 0 dx x r ' ' x x 2 f 2 dx Descreșterea permitivității cu frecvența este acompaniată de o creștere a conductivității

29 3.6 Polarizarea interfacială (efect Maxwell- Wagner) În natură materialele sunt în general heterogene, cu dispersie a proprietăților de suprafață la interfața de material Efectele interfaciale predomină proprietățile dielectrice în emulsii și suspensii coloidale

30 3.6.1 Dielectrici stratificați Se consideră doi dielectrici de grosimi d 1 și d 2, incontact, cu interfața perpendiculară pe câmpul extern ε r1, σ 1 ε r2, σ 2 E dacă nu exisă sarcini (3.6.1) r1 E 1 = r2 E 2 sau, în caz contrar: (3.6.2) j 1 / j 2 = 1 E 1 / 2 E 2 = 1 r2 / 2 r1 Permitivitatea sistemului se determină considerându-l un sistem de doi capacitori legați în serie (3.6.3) d 1 d 2 r / j = d 1 r1 1 / j d 2 r2 2 / j

31 3.6.1 Dielectrici stratificați Compozitul se poate interpreta ca având timpul de relaxare (3.6.4) = 0 r1 d 1 r2 d 2 1 d 1 2 d 2 cu următoarele limite: (3.6.5) r0 = r2 1 r1 2 2 d 1 d 2 d 1 d 2 1 d 2 2 d 1 1 d 2 2 d 1 2 (3.6.6) 0 = d 1 d d 2 2 d 1 (3.6.7) = d 1 d d 2 2 d 1 (3.6.8) = r2 1 r1 2 2 d 1 d 2 d 1 d 2 1 d 2 2 d 1 1 d 2 2 d 1 2 0

32 3.6.2 Suspensie diluată de particule sferice Maxwell conductivitatea (pentru câmp static) pentru faza de suspensie σ i în raport cu conductivitatea pentru mediul continuu σ a, pentru o densitate volumică p (3.6.9) a 2 a = p i a i 2 a Ipoteza lui Maxwell: concentraţia particulelor este mică în volumul considerat (sferic) şi interacţiunile electrice dintre particule sunt neglijabile

33 3.6.2 Suspensie diluată de particule sferice Wagner introduce conductivitatea complexă în (3.6.9) pentru a pune în evidenţă fenomenul de dispersie 2 (3.6.10) a i 2 p a i r = a 2 a i p a i (3.6.11) (3.6.12) r0 r = (3.6.13) 0 = (3.6.14) 9 a i i a 2 p 1 p [2 a i p a i ] [2 a i p a i ] 2 0 = a 2 a i 2 p a i 2 a i p a i 9 a i i a 2 p 1 p [2 a i p a i ][2 a i p a i ] 2 = r0 2 a i 2 p a i 2 a i p a i

34 3.6.2 Suspensie diluată de particule sferice unde (ε, σ), (ε i, σ i ) şi (ε a, σ a ) sunt proprietăţile dielectrice pentru suspensie, particule şi mediul continuu, respectiv. În suspensie, σa ε i este diferit de σ i ε a şi fenomenul de dispersie este mereu prezent. Dacă εi << ε a şi σ i << σ a, (3.6.9) se dezvoltă în serie şi în aproximaţia de prim ordin rezultă: (3.6.15) (3.6.16) r a a 1 p 1 p /2 i 1 p 1 p /2 i 9p 2 p 2 9p 2 p 2

35 3.6.2 Suspensie diluată de particule sferice Frike extinde modelul Maxwell-Wagner pentru particule sferoide, cu factor de formă γ (3.6.17) * a * * a * * = p i * a * * i a γ = 2 pentru sfere, γ = 1 pentru cilindri Dacă o particulă sferică are raza R' şi volumul considerat are raza R, atunci (3.6.9) se poate scrie (3.6.18) * * a * = R' * a R 3 i * a * i * a *

36 3.6.3 Suspensie diluată de particule cu membrană Se consideră sfere de rază R, cu proprietăţi dielectrice (εi, σ i ) înconjurate de o membrană de grosime d şi proprietăţi dielectrice (ε sh, σ sh ) Pentru conductivitatea complexă a sistemului se obţine: (3.6.19) * * i 2d/ R * sh 1 d / R * i * * sh / sh Capacitatea membranei C m şi conductanţa G m pe unitate de suprafaţă: (3.6.20) C m = sh 0 /d F / m 2 (3.6.21) G m = sh / d S /m 2 (3.6.22) sh =G m d j C m d

37 3.6.3 Suspensie diluată de particule cu membrană Pentru celule în suspensii fiziologice i 0 i s 0 a şi prin dezvoltare în serie şi aproximaţie de prim ordin în p se obţine: (3.6.23) r0 r 9 p RC m 4 0 [1 RG m 1/ i 1/2 ] 9 p RC m a [ (3.6.24) 0 1 3p a 2 1 R G m 1/ i 1/ a 1 RG m 1/ i 1/ 2 a ] a 1 3p/2 (3.6.25) RC m i 2 a 2 i a R G m i 2 a R C m 1/2 a 1/ i (3.6.26) r [ 1 3p a i 2 a i ] a

38 3.6.3 Suspensie concentrată Suspensiile concentrate sun dificil de modelat În anumite limite se obţine: (3.6.27) [ r i a i ] [ a r0 ]1/3 =1 p (3.6.28) 0 [ 3 1 ] r0 i =3 [ 0 a i a i i 0 i ] i i (3.6.29) [ ][ 0 i a i a 0 ]1/3 =1 p (3.6.30) [ 3 1 ] r i =3 [ a i r a i i r i ] a a

39 3.6.4 Relaxarea dielectrică pentru proteine (ex) Proprietăţi dielectrice în diverse proteine la 25 C, 1-10 MHz (Oncley, 1943), unde Mol greutate molară, μ moment de dipol (unităţi Debye), Δε/g/l variaţia permitivităţii per gram de proteină per gram de soluţie Proteina Mol (x10 3 ) Δε/g/l μ (D) τ x 10 8 (s) a/b ovalbumină 44 0, ; 4,7 5 Ser albumină (cal) 70 0, ; 7,5 6 Carboxyhemoglobină (cal) 67 0, ,4 1,6 Ser pseudoglobulină (cal) 142 1, ; 28 9 β-lactoglobulină 40 1, ; 5,1 4 Mioglobină 17 0, ,9

40 3.7 Difuzie ionică Are loc în straturi duble electrice în vecinătatea suprafeţelor cu sarcini electrice Pentru suspensie de sfere din polistiren cu p=30% (Schwan, Schwarz, et all, 1962) Raza (microni) ε r0 f (khz) 0, ,6 0, ,8 0, ,

41 3.8 Efecte neliniare Fenomene moleculare în orientarea dipolilor Fenomene celulare Răspunsul activ al membranelor celulare Distrugerea membranei (10-30 kv/m la o celulă de 10 microni) Distorsiuni induse electric sau gruparea celulelor Polarizare prin difuzie ionică până la saturare

42 3.9 Dispersia dielectrică în ţesuturi Conductivitatea La frecvenţe joase < 0,1 Mhz conductivitatea unei celule este mică în raport cu electrolitul care o înconjoară (sânge) > aproximativ 0,14 S/m Mhz lichidul este echivalent cu o suspensie de proteine neconductoare > platou constant > 100 MHz ' ' ' Efect Maxwell-Wagner de polarizare interfacială sute de S/m cu relaxare la aproximativ 300 MHz Pierderi dielectrice în molecule polare şi proteine de mici dimensiuni Relaxarea dielectrică a apei

43 3.9.2 Permitivitatea ε 10 8 α difuzie ionică, conductanţa membranelor 10 5 β efecte capacitive în membrane 10 2 γ relaxarea apei f

44 Permitivitatea relativă în ţesuturi frecvenţ ă muşchi striat paralel muşchi stiat perp ficat plămân splina rinichi creier materie albă creier materie cenuşie os sânge grăsime 10 Hz x x Hz 1.1x x x x x khz 2.2x x x x x khz 8x10 4 7x x x10 4 2x x x khz 1.5x10 4 3x MHz MHz MHz GHz GHz GHz GHz

45 Conductivitatea în ţesuturi (S/m) frecvenţ ă muşchi striat paralel muşchi stiat perp ficat plămân splina rinichi creier materie albă creier materie cenuşie os sânge grăsime 10 Hz Hz khz khz khz MHz MHz MHz GHz GHz GHz GHz

9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor. Copyright Paul GASNER 1

9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor. Copyright Paul GASNER 1 9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor Copyright Paul GASNER 1 Cuprins Mecanisme de polarizare a dielectricilor Polarizarea electronică şi

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

CAPITOLUL 3 MATERIALE DIELECTRICE CONDENSATOARE

CAPITOLUL 3 MATERIALE DIELECTRICE CONDENSATOARE CAPITOLUL 3 MATERIALE DIELECTRICE CONDENSATOARE 3.1 Polarizarea dielectricilor Materialele dielectrice numite şi electroizolante sunt caracterizate de o rezistivitate electrică deosebit de mare cuprinsă

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale. Copyright Paul GASNER 1

2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale. Copyright Paul GASNER 1 2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale Copyright Paul GASNER 1 Ecuaţii Helmholtz pentru medii omogene, izotrope şi infinite Unde electromagnetice plane Unde armonice plane

Διαβάστε περισσότερα

Seminar electricitate. Seminar electricitate (AP)

Seminar electricitate. Seminar electricitate (AP) Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Catedra Telecomenzi şi Electronică în Transporturi

Catedra Telecomenzi şi Electronică în Transporturi LUCRAREA 1 Materiale dielectrice. Condensatoare Permitivitatea complexă şi tangenta unghiului de pierderi Interacţiunea substanţei cu câmpul electric este caracterizată în domeniul liniar de permitivitatea

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Cap. 4 Efecte ale câmpurilor electromagnetice statice și de foarte joasă frecvență. Capitolul 4

Cap. 4 Efecte ale câmpurilor electromagnetice statice și de foarte joasă frecvență. Capitolul 4 Cap. 4 Efecte ale câmpurilor electromagnetice statice și de foarte joasă frecvență Cuprins Interacțiunea câmpului electric DC și ELF cu sistemele și materialele biologice Interacțiunea câmpului magnetic

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

CURS 8 Capitolul VII. ELECTROSTATICĂ (continuare)

CURS 8 Capitolul VII. ELECTROSTATICĂ (continuare) CUR 8 Capitolul II. ELECTROTATICĂ (continuare) 8.1 Dielectrici în câmp electric Dielectricii (izolatorii) sunt medii în care nu apare curent electric în prezenţa unui câmp electric extern. Cu toate acestea

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].

Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

CALCULUL COEFICIENTULUI DE DIFUZIE PRIN METODA GRADIENŢILOR DE CÂMP MAGNETIC

CALCULUL COEFICIENTULUI DE DIFUZIE PRIN METODA GRADIENŢILOR DE CÂMP MAGNETIC CALCULUL COEFICIENTULUI DE DIFUZIE PRIN METODA RADIENŢILOR DE CÂMP MANETIC M. Todică, V. Simon, I. Burda, S.D. Anghel,. Cerbanic Facultatea de Fizică, Universitatea Babeş-Bolyai, Cluj Napoca ABSTRACT Metoda

Διαβάστε περισσότερα

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria:

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria: Capitolul I: Integrala triplă Conf. dr. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Analiza Matematică II, Semestrul II Conf. dr. Lucian MATICIUC Teoria: SEMINAR 3 Capitolul I. Integrala

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A U

BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A U PROPRIETĂŢI ELECTRICE ALE MEMBRANEI CELULARE BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A UNOR MACROIONI

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

Fenomene electrice şi magnetice

Fenomene electrice şi magnetice Biofizică Fenomene electrice şi magnetice Capitolul VI. Fenomene electrice şi magnetice Principala metodă de comunicare între componentele unui organism viu este cea electrică. Din acest motiv, studiul

Διαβάστε περισσότερα

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα