ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Βελτίωση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
|
|
- Ξενία Καλάρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Βελτίωση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών
2 ÃÐÓ 9 ÐØÛ ÒÛÒ À ÒÒÓ Ø ÔÓØØ ØÛÒ ÒÛÒ ÒØ ÔÓÐ ÙÕÒ ÙÔÓÑÒ ÐØÛ ÓÖÞØ Ñ ÖØÖÓ ØÓ ÞØÓÑÒÓ ØÕÓ ÔÓÙ ÑÔÓÖ Ò ÕØÞØ ÔÐ Ñ ØÒ ÑÒ ØÛÒ ÒÛÒº ³Ø ÐØÛ ÒÖØ Ø ØÓÒ ØÓÒ Ñ ÔÓÛÒ ÕÖØÖ ØôÒ Ø Ò ÔÛ ÙÒÓ¹ Ð ÛØÒ ÒØ Ø Ö ØÛÒ ØÑÑØÛÒ Ø Ò Ø ØÓÒ ÔÖÓÖ Ñ ØÓÙ ÓÖÓÙ ÔÓÙ ÒÕÑÒ ÔÖÞ ØÒ ÑÒ Ñ Ò ÔÖÒÓÕÐ ØÒ ÜÛ ÕÖ Ñ ÔÐÖÓ¹ ÓÖ Ô ØÒ Òº 9. ÌÓÒ Ñ Ø ÛØÒ ÒØ ÙØ ÔÜÖ ÓÖ Ò Ñ ÕÑÐ ÛØÒ ÒØ º ÈÖØ Ò ØÐ Ø ÑÓÙ ÔÓÙ ØÖÓÔÓÔÓ ØÒ ØÑ Ø ÛØÒ ÒØ Ѻ À ÖÕ ØÑ x(m, n) ØÖÓÔÓÔÓØ y(m, n) = g(x(m, n)). º½µ Ç ØÐ Ø ÙØ ÙÐÓÔÓØ ÒØ ÑÒ ÓÑÒ Ñ Ø Ó Ò ÔÒ ÒØ ¹ ØÓÕ. ËÙÒÔ Ø ØÖÓÔÓÔÓ ØÛÒ ØÑôÒ Ø ÛØÒ ÒØ Ò ØÖÓÔÓÔÓ ØÓÙ ØÓÖÑÑØÓº ÙÔÓ ÓÙÑ Ø Ò ÔÙÑØ ÔØ ØÓÙ ØÓÖÑÑØÓ Ø ØÑ Ø ÛØÒ ÒØ ÔÓÙ ÔÖÐÑÒÓÒØ ØÓ ØÑ [x min, x max ] ØÓ Ñ ØÓ ÙÒØ ØÑ ØÑôÒ [0, L]º ÌØ ÖÑÑ ÒØ ØÓÕ ØÛÒ ØÑôÒ ÒØ Ñ ØÓÒ ÐÓÙÓ ØÖÔÓ 0 x < x min y = L x x min x max x min + 0, 5 x min x x max (9.2) L x > x max ËØÓ ËÕÑ º½ Ø Ñ Ò ØÓ ÔÓØÐ Ñ ØÓÙ ØÓÒ ÑÓ Ø ÛØÒ ÒØ Ñ ØÒ ÔÖÔÒÛ Õ º  ÑÔÓÖÓ Ô Ò ÓÖ Ñ Ñ¹ÖÑÑ ÒØ ØÓÕ ÔÛ y = ( ) x γ xmin L + 0, 5, (9.3) x max x min ÔÓÙ γ ØÖ ÔÓÙ ÐÑÒØ ÑÖØÖ ØÓÙ ½ Ò ô ÔÓ ÛØÒ ØÑ ÑÐØÖ ØÓÙ ½ Ò ô ÔÓ ÓØÒ ØÑ ØÒ Ò ÒÐÓ Ñ Ø Ò ØÓÒ Ñ Ø ÛØÒ ÒØ º Ò Ô ÙÒØ ØÖÓÔÓÔÓ ØÓÙ ØÓÖÑÑØÓ Ò ÔÖÓ ÖÑÓ Ø ÓÑÒ Ø Ò ÓÖÞÓÒØ ØÒ ÔÙÑØ ÑÓÖ ØÓÙ ØÖÓÔÓÔÓÑÒÓÙ ØÓÖÑÑØÓº Ò ÔôØ 39
3 (a) (b) ËÕÑ 9.: ÌÓÒ Ñ Ø ÛØÒ ÒØ º (a) (b) (c) (d) ËÕÑ 9.2: ÌÓÒ Ñ Ø ÛØÒ ÒØ ÖÑÑ Ñ¹ÖÑÑ γ = 0, 7µ Ñ Ü ÓÖ¹ ÖÔ ØÓÖÑÑØÓº 40
4 ØÓ ØÐ ØÖÑÑ Ó ØÑ Ò Ò ÓÑÓÑÓÖ ØÒÑÑÒ ØØ ÒÖÑ Ø ØÒ Ó ØÑ ØÓÙ ØÓÖÑÑØÓ ÔÓÙ ÔØÙÕÒØ Ñ ØÓÒ ÐÓÙÓ ØÖÔÓ y = L P(x) P(x min) + 0, 5, (9.4) P(x min ) ÔÓÙ P(x) = u x p(u) p(.) ÒØ ØÓ ØÖÑÑ Ø ÖÕ Òº Ï Ø Ó Ò Ñ Ó ØÑ ÑÒÓ ØÖÑÑ ÙÕÒØØ Ò ÒÓÒØ ØÖ Ù ÔÛ ÔÖÑ ØÓ ËÕÑ º¾(d). ³ ÙØ Ò ÔÖÓØÑØÖ ØÖÓÔÓÔÓ ØÓÙ ØÓÖÑÑØÓ ô Ø Ò ÓÐÓÙ Ñ ØÒÓÑ ÔÓÙ Ò ÕÖ ÑÓÔÓ ØÓ ÑÓ ÖÓ ØÑôÒ Ò Ò ÔÙÒØÖ ÔÖ Ø Ñ ØÑ ÔÛ ØÒÓÑ Gauss. 9.2 ÅÛ ÓÖÓÙ À ÑÛ ØÓÙ ÓÖÓÙ ÑÔÓÖ Ò ÔØÙÕ ÕÖ ÑÓÔÓôÒØ Ò ÖÑÑ ÐØÖÓ Ñ ÙÝÐ ÔÖ Ø ÕÑÐ ÙÕÒØØ ÑØÐØÓ Ø Ó Ñ ÑØØÔ Ó Ñ ÔÖ ØÖÓº Ò h(m, n) ÖÓÙ Ø ÔÖ ØÓÙ Ù ØÑØÓ ÙÔÓ ÓÙÑ Ø ØÓÔ ØÓ Ñ Ò ØÖ Ñ ØÑ µ Ø ÔÓÖ ØÓÙ ÓÖÓÙ Ò σ 2 º Ò ÑÒ ÙÔÖÜ ÑØÓÐ Ø Ñ ØÑ ØÓÙ ÑØÓ ÔØØ ÔÛ M N h(m, n) =, m= M n= N ºµ ÓÒ ØÓ ÐØÖÓ Ò ÔÔÖ ÑÒ ÖÓÙ Ø ÔÖ ØÒØ ÙÑÑØÖ Û ÔÖÓ ØÒ ÖÕº Ò ÙÔÓ ÓÙÑ Ø Ó ÖÙÓ Ò ÐÙ Ð ÕÛÖ Ù ÕØ ØÓ ÔÓÖ ØÓÙ ÓÖÓÙ ØÒ ÜÓÓ ØÓÙ ÐØÖÓÙ Ò ÙØ ÔÓÖ Ò ÐÕ Ø Ò σ 2 M h(m, n) = N m= M n= N h 2 (m, n). (2M + )(2N + ). ÈÖØ ÔÓÑÒÛ Ò ÐØÖÓ Ñ ØÑ Ñ ÔÖ y(m, n) = (2M + )(2N + ) M N k= M l= N x(m k, n l). ºµ À Ñ ØÑ Û ÒÛ ØÒ ÐÕ ØÓÔÓ ØÒ ØØÖÛÒ ÔÐ M k= M l= N N (x(m k, n l) y(m, n)) 2. Ç Ñ ÑÛ ØÓÙ ÓÖÓÙ ÔÓÙ ÔØÙÕÒØ Ò β = Mm= M Nn= N = (2M + )(2N + ). (9.7) h 2 (m, n) 4
5 Ï Ø Ó Ø ÔÖÓÕ ÔÓÙ ÙÔ ØÖÓ ÑØÓ Ò Õ ØÓ Ñ Ù ØØ ÔÖÑÖÛ ÔÓÙ Ò ØÖ Ø Ø Ñ Ð Ø Ö ÑØÜ ÖÛÒ ØÑÑØÛÒ Ø Òº À Ù ÑÒ ÙÒÔ Ø ÔÖÑÖÛ ÑØÖÞØ Ò Ó ÙÒØÐ Ø ØÓÙ ÐØÖÓÙ Ò Ò ÐÓ Óº ÙØ ÓÙÒÑ Ñ ØÒ ÐÕ ØÓÔÓ Ñ ØÑ ÑÒ ØØÖÛÒ ÔÐ M N h(k, l)(x(m k, n l) y(m, n)) 2. k= M l= N ÈÖÑ Ò ØØÓÓÙ ÐØÖÓÙ Ñ ÔÔÖ ÑÒ ÖÓÙ Ø ÔÖ Ò ØÓ ÐÓÙÓ 4 m 2 + n 2 = 0 h(m, n) = 8 m 2 + n 2 = 6 m 2 + n 2 (9.8) = 2 0 ÐÐÓ ³ÐÐÓ ÔÖÑ Ñ ÔÖ ÑÛ ÖÓÙ Ø ÔÖ Ò ØÓ ÐØÖÓ Gauss, ÔÓÙ ÓÐ ØÓ ÒÓÑ ØÓÙ ØÓ ÓÒ Ø ÖÓÙ Ø ÔÖ ÔÖÓÖÕØ Ô ØÒ ÔÙÒØØ ÔÒØØ Gauss, h(m, n) = ( 2πα 2 exp m2 + n 2 ) 2α 2. (9.9) Ô ÑÔÓÖÓ Ò ÕÖ ÑÓÔÓ Ò ØÑ Ñ ÖÓÙ Ø ÔÖ h(m, n) = ( ) α 2 α m + n, 0 < α <. + α Ç ÙÒØÐ Ø ÑÛ ÓÖÓÙ ØÓ ØÐÙØÓ ÐØÖÓ Ø ØÓ ËÕÑ º º β α ËÕÑ 9.3: ËÙÒØÐ Ø ÑÛ ÓÖÓÙº ÔÖÑÖÛ ØÛÒ ÑôÒ Ò ÖØ ÔÐÖÛº ÃÐØÖ Ü ÓÖÖÔ ÒÑ Ø ÒØ¹ ÑÕÑÒ ÔÓØÐ ÑØ Ø ÑÛ ØÓÙ ÓÖÓÙ Ø ØÖ ÒÐÐÓÛØÓÙ ØÓÙ ÑØÓ ÔØÙÕÒØ Ñ ØÒ ÔÖÓ ÖÑÓ ØÓÙ ÐØÖÓÙ Ø ÓÑÒ Ø Òº À ÕÖ Ñ ÖÑÑôÒ ÐØÖÛÒ ÑÔÓÖ Ô Ò Ñô ØÓ ÖÙÓ Ñ ÐØÖ ÙÒÔ ØÓ Ѻ ÌØÓÓ Ò ØÓ ÐØÖÓ Ñ ØÑº Ò D Ò ÒÓÐÓ ÑÛÒ Ñ ÔÖØØ ¾
6 ÔÐ ÖÑ K = (2M + )(2N + ) ÔÓÙ Ò ÙÑÑØÖ Û ÔÖÓ ØÓ ÑÓ ¼ ¼µ ÔÖÐÑÒ ØÓ ÑÓ ¼ ¼µº ÌÓ ÐØÖÓ Ñ ØÑ ØÒ Ü ÔÖ y(m, n) = Å {x(m k, n l) : (k, l) D}. º½¼µ À Ö Ø Ñ ØÑ ÔÖÓÔØ Ô Ø ØÜ ØÛÒ ØÑôÒ ØÓÙ ÙÒÐÓÙ {x(m k, n l) : (k, l) D}º À Ñ ØÑ Õ Ø ØÓ ØÑÒÓ ÒÓÐÓ (K +)/2 ÐÕ ØÓÔÓ ØÒ س ÔÐÙØ ØÑ ÔÐ M N k= M l= N y(m, n) x(m k, n l) = 0. ÌÓ ÐØÖÓ Ñ ØÑ Õ Ø ÐÓÙ ØØ Å [αx(m, n)] = αy(m, n) Å [α + x(m, n)] = α + y(m, n) Å [x (m, n)+x 2 (m, n)] Õ ÙÔÓÕÖÛØ Ñ Å [x (m, n)]+å [x 2 (m, n)] À ØÐÙØ ØØ ÕÒ Ø ØÓ ÐØÖÓ Ñ ØÑ Ò Ò ÖÑѺ À Ñ ÖÑѹ ØØ ÔØÖÔ Ø ØÖ ØÛÒ ÑôÒ Ø Ò Ñ ØÙØÕÖÓÒ ÑÛ ØÓÙ ÓÖÓÙº ËØÓ (a) (b) (c) ËÕÑ 9.4: ÅÛ ØÓÙ ÓÖÓÙ Ñ ÐØÖÓ Ñ ØÑ Ñ ÐØÖÓ Ñ ØÑº ËÕÑ º Ø Ñ ÙÒØ Ò ØÓ ÔÓØÐ Ñ Ø ÑÛ ØÓÙ ÓÖÓ٠ѳ Ò ÐØÖÓ Ñ ØÑ ѳ Ò ÐØÖÓ Ñ ØÑ Ø Ó Ø ÛÒ º Ò ÒÓÙÑ Ø ÙÔÓ ØÓ Ñ ØÓ ÖÙÓ ÔÛ ÙØ ÔÓÙ ÒÖÒ ØÒ ÔÖÔØÛ ØÛÒ ÖÑÑôÒ ÐØÖÛÒ Ò ÔÔÐÓÒ ÙÔÓ ÓÙÑ Ø ÙÒÖØ ÔÙÒØØ ÔÒØØ ØÓÙ ÓÖÓÙ Ò ÙÑÑØÖ ØØ ÑÔÖ Ñ ØÑ Ò Ñ ÑÖÐÔØ ØÑØÖ Ø ÛÖØ Ñ ØÑ ÔÓÙ Ô ØÙØÞØ Ñ Ø Ñ ØÑº ÔÓÒØ Ø ÑÛ Ø ÔÓÖ ØÓÙ ÓÖÓÙ ÜÖØØ Ô Ø ÙÒÖØ ÔÙÒØØ ÔÒØØ ØÓÙ ÓÖÓÙº ÔÓÒØ Ø Ó ÙÒØÐ Ø ÑÛ ØÓÙ ÓÖÓÙ β Ò. Ò Ó ÖÙÓ ØÒÑØ ÓÑÓÑÓÖ β = K Ò Ó ÖÙÓ ÓÐÓÙ ØÒ ÒÓÒ ØÒÓÑ β 2(K )+π π 43
7 3. Ò Ó ÖÙÓ ÓÐÓÙ ØÒ ØÒÓÑ Laplace, β 2K Ç ÑÐØÖÓ ÙÒØÐ Ø ÑÛ ÓÖÓÙ ØÒ ÔÖÔØÛ Ø ØÒÓÑ Laplace ÜØ ÐÛ ØÓÙ ÓÒØÓ Ø Ñ ØÑ ÔÓØÐ ØÒ ØÑ Ñ Ø ÔÒÓÒ Ø Û¹ ÖØ Ñ ØÙØÕÖÓÒ Ñ ØÑ Ø ÑØÐØº ÌÓ ÐØÖÓ Ñ ØÑ Õ Ô ÔÓÐ Ð Ô ØÒ ÔÖÔØÛ ØÓÙ ÖÓÙ ØÓ ÓÖÓÙ ÔÓÙ ÐÐÓôÒ Ø ÔÖÑØ ØÑ ÖÓ Ø Ñ ØÖ ÑÐ ØÑº ÒÖÓÒ ÔÖÓÙ Þ Ô Ó ÙÒÙ Ñ ØÛÒ ÐØÖÛÒ Ñ ØÑ ÑÒ Ñ µ ØÑ Ñ ØÓ ÐØÖÓ Ñ ØÑ ô Ø Ò ÜÓÔÓÓÒ Ø ØÓ ÙÒØ Ó ÔÙÑØ ØØ ØÛÒ Ó ÕÛÖ Ø ÑÓÒØÑØº ÌØÓÓ Ò ØÓ ØÖÓÔÓÔÓÑÒÓ ÐØÖÓ ÔÖÖÝ ÔÓÙ ÔÖÖÝ ÓÖ ÑÒÛÒ ØÑôÒ ÒØ Ñ ÕÖ ØÓÙ ÐØÖÓÙ Ñ ØÑ Ñ ØÑ ÒÕÑÒ ØÑ ÑÒ ØÒ ÔÖ ÔÖÓÖÞÑÒ ÑÒÓ Ø ÒÔÓÑÒÓÙ ØÑ y(m, n) = Mk= M Nl= N h(k, l)φ(x(m k, n l) Å [x(m, n)])x(m k, n l) Mk= M Nl= N h(k, l)φ(x(m k, n l) Å [x(m, n)]) ÔÓÙ φ(x) = { x δ 0 x > δ º½½µ À ØÑ ØÓÙ δ ÑÔÓÖ Ò ÔÖÓ ÓÖ Ñ Ø ÔÓÖ ØÛÒ ØÑôÒ Ñ Ò ÔÓ Ó Ø ÔÖÖݺ 9.3 ÌÓÒ Ñ ÑôÒ Ç ØÓÒ Ñ ØÛÒ ÑôÒ ÑÔÓÖ Ò Ò Ø Ñ ÔÓÓ ÙÝÔÖØ ÐØÖÓ Ò Ó ÖÙÓ Ò ÕÑÐ Ø Ñ ÔÓÓ ÞÛÒÓÔÖØ ÐØÖÓ Ò ØÙØÕÖÓÒ ÔØØ ÑÛ ØÓÙ ÓÖÓÙº ÈÖÑ ÙÝÔÖØÓ ÐØÖÓÙ Ò ÖØ ÙÐÓÔÓ ØÓÙ ÐÔÐ ÒÓ (Laplacian) ØÐ Ø h(m, n) = 4 m + n = 0 m + n = 0 ÐÐÓ (9.2) ÌÓ ÐØÖÓ Ñ ÖÓÙ Ø ÔÖ δ(m, n) λh(m, n) ÔÓÙ λ Ñ Ø ØÖ ØÒ ÜÓ ØÓÙ Ñ Ò Ñ ØÓÒ ÑÒ Ñº ³Ò ÞÛÒÓÔÖØ ÐØÖÓ ÑÔÓÖ Ò ÙÐÓÔÓ Ò Ñ ÓÖ Ó ÙÔÖØôÒ ÐØÖÛÒº ËÙÕÒ Û ÙÔÖØ ÐØÖÓ ÕÖ ÑÓÔÓØ ØÓ ÐØÖÓ Gauss (Ü Û 9.9). Ö Ò ÐÓÒ Ø ÓÖ Ó ÓÖØ ØÑ Ø ÔÖÑØÖÓÙ αº ³Ç Ó ÑÐØÖÓ Ò ØÓ α Ø Ó ÔÓ ÙÔÖØ Ò ØÓ ÐØÖÓ Ð Ø Ó ÔÓ ÔÖÓÖ¹ ÑÒÓ Ò ØÓ ÖÓ ØÛÒ ÙÕÒÓØØÛÒ ØÒ ÜÓÓ ØÓÙ ÐØÖÓÙº 9.4 ÅÙÒ ÔÖÑÓÐ ÈÓÐÐ ÓÖ Ò ÔÙÑØ ÑÙÒ Ò ØÑÑØÓ Ñ Òº À ÑÙÒ ÑÔÓÖ Ò ÔÖ Ø Ñ Ñ ÔÖÑÓÐ ÑÒôÒ Ø ÔÓÙ ÐÔÓÙÒ Ó ØÑ Ø Ò ÓÐÓÙÓÑÒ À ÙÒÖØ ÔÙÒØØ ÔÒØØ Ò ( p(x) = ) 2 x µ σ 2 exp σ 44
8 Ô Ò ÙÔÖØ ÐØÖÓº Ò ØÓ ÐØÖÓ Ò ÕÛÖ ÑÓ Ñ ½¹ ÖÓÙ Ø ÔÖ h(.) ÞØØ ÑÙÒ Ô Ó Ø Ø Ø Ò ØØ ØÓ ÔÓØÐ Ñ Ø ÑÙÒ Ò y(m, n) = h(m 2k)h(n 2l)x(k, l). (9.3) À ÔÖ Ø ÙÕÒØØ Ò k= l= Y (u, v) = H(u)H(v)X(2u, 2v). º½µ Ò h(m) = m = 0 m = h(m) = 0 ÐÐÓ ØØ ÑÙÒ ÒØ Ñ ÔÐ ÒØÖ ØÛÒ ØÑôÒ Ø Òº ÓÖØ ÒØ ÔÖÑÓÐ ØÛÒ ØÑôÒ Ø Ò Ø Ñ ÔÓÙ Ò ØÒØ ØÑº ÃØÐÐÐÓ ØØÓÓ ÐØÖÓ Ò ÙØ Ø ÖÑÑ ÔÖÑÓÐ m 2 + n 2 = 0 0, 5 m h(m, n) = 2 + n 2 = 0, 25 m 2 + n 2 (9.5) = 2 0 ÐÐÓ À Õ ÓÙ»ÜÓÙ ÒØ x(k, l) m = 2k, n = 2l y(m, n) = 2 (x(k, l) + x(k +, l)) m = 2k +, n = 2l 2 (x(k, l) + x(k, l + )) m = 2k, n = 2l + (x(k, l) + x(k +, l) + x(k, l + ) + x(k +, l + )) m = 2k +, n = 2l + 4 ËØÓ ËÕÑ º Ø ØÓ ÔÓØÐ Ñ Ø ÕÖ ØÓÙ ÐØÖÓÙ Ø Ü Û º½µ ØÓ ÔÐ Ñ ØÓÙ ÑÓÙ Ñ Òº (a) (b) ËÕÑ 9.5: ÔÐ Ñ ØÓÙ ÑÓÙ Ñ Òº 45
9 ÈÖÖØÑ ÔÓÖ Ø Ñ ØÑ À ÙÒÖØ ÔÙÒØØ ÔÒØØ Ø ØÑØÖ Ø Ñ ØÑ M k Ò f m (x) = (2k + )! (k!) 2 F(x) k ( F(x)) k f(x), ÔÓÙ f(x) Ò ÙÒÖØ ÔÙÒØØ ÔÒØØ Ø ÖÕ ÑØÐØ F(x) Ò ÖÓ Ø Ø ÔÒØØ K = 2k + Ò Ó ÖÑ ØÛÒ ÓÑÒÛÒº ÂÛÖÓÑ ØÒ ÖÕ ÑØÐØ ÓÑÓÑÓÖ ØÒÓÑ ØÓ ØÑ [ 2, 2 ]º ÙÖ ÓÙÑ ÔÓÑÒÛ ( ) (2k + )! k f m (x) = (k!) 2 4 x2, x 2. ÄÛ ÙÑÑØÖ ÔÖÓÔØ ÓÐ Ø ÔÖÓ ÓØ ØÑ Ø ØÑØÖ Ø Ñ ØÑ Ò ÑÒº ÓÑÒÓÙ Ø ÓÐ ÔÒØØ Ò ½ ÕÓÙÑ /2 /2 ÇÔØ ÔÓÖ Ø M k Ò = (2k + )! (k!) 2 = 4 var{m k } = (2k + )! (k!) 2 /2 /2 ( 4 x2 ) k dx =. ( ) (2k + )! k (k!) 2 x 2 4 x2 dx ( /2 ( ) k /2 ( ) k+ 4 /2 4 x2 dx dx) /2 4 x2 (2k + )! ((k + )!) 2 (k!) 2 (2k + 3)! Ó ÔÓÖ Ø ÖÕ ÑØÐØ Ò ÕÖ Ø Ñ ØÑ Ò = 4 k + 2(2k + 3) = 4(2k + 3). 2 Ó ÙÒØÐ Ø ÑÛ ØÓÙ ÓÖÓÙ Ñ β = 2k = K
10 . Ø Ñ Ò 8 8 ÑÛÒ Û ÓÐÓÛº ØØ ØÖÓÔÓÔÓ ØÛÒ ØÑôÒ Ø Ò ô Ø Ò Ü ÓÖÖÓÔ ØÓ ØÖÑÑ ØÓ ØÑ ÑØÜ ¼ º 2. ÂÛÖ Ø ØÓ ÖÑÑ ÐØÖÓ ØÓÙ ÓÔÓÓÙ ÔÖ ØÓ ØØÓ ¾¹µ Ñ x(m, n) Ò y(m, n) ô Ø y(m, n) = 6 ÔÓÙ g(0) = 4, g() = 2 g(2) =. k= l= g( k + l )x(m k, n l), (a) Ò ØÓ ÔÖÔÒÛ ÐØÖÓ ÑØÐØÓ ÑØØÔ ; ô Ø ØÒ ÖÓÙ Ø ÔÖ ØÓÙ ÐØÖÓÙ ØÓ ÑØ ÕÑØ Ñ Fourier Ø ÖÓÙ Ø ÔÖ º (b) Ò ØÓ ÐØÖÓ ÙØ ÕÛÖ ÑÓ; Ë ÖÑØ ÖÛÒ ÖÑôÒ ÔÛ ÑÔÓÖ Ò ÙÐÓÔÓ ØÓ ÐØÖÓ ÕÛÖ ÔÓÐÐÔÐ ÑÓ; È ÔÖÓ ÔØÓÒØ Ò ÑÓ; Ø Ø ÔÓÖ ØÓÙ ÓÖÓÙ ØÒ ÜÓÓ Ò ÐØÖÓÙ h(m, n) Ò σ 2 h = σ 2 (m, n) Z 2 h 2 (m, n), ÔÓÙ σ 2 Ò ÔÓÖ ØÓÙ ÓÖÓÙ ØÒ ÓÓ ØÓÙ ÐØÖÓÙº (c) ÈÓ Ò ÔÓÖ ØÓÙ ÓÖÓÙ ØÒ ÜÓÓ ØÓÙ ÔÖÔÒÛ ÐØÖÓÙ; (d) ÈÓ ÒÔÑØÓ ÔÓØÐ Ñ ÑÔÓÖ Ò Õ ÕÖ ÙØÓ ØÓÙ ÐØÖÓÙ ÑÛ ØÓÙ ÓÖÓÙ; ØÒ ØÓÔ ÔÖÓ ÖÑÓ { Ø ÓÖØ ÔÖÓÕ Ø Ò ÛÖ Ø Ø 0 ψ > δ ÙÒÖØ φ(ψ) = ØÓ ÐØÖÓ Ñ ØÒ ÐÓÙ ÔÖ ψ δ y(m, n) = k= l= φ(x(m k, n l) x(m, n))g( k + l )x(m k, n l) k= l=. φ(x(m k, n l) x(m, n))g( k + l ) (e) Ò ÙØ ØÓ ÐØÖÓ ÖÑÑ; 47
11 3. ÓÒØ Ø ÐÓÙ ØØ ÖØ ÑØ ((m, n) Z 2 ): u(m, n) = { m 0 n 0 0 ÐÐô { n 0 s 0 (m, n) = 0 ÐÐô { m + n 0 s (m, n) = 0 ÐÐô (a) Æ ÙÖ ÔÖ Ø ÔÖÔÒÛ ÑØ ØÓÙ ÐØÖÓÙ ÒÑ ØÑ Ø ÐÓÙ ÒÓÐ ÑÛÒ D = {(k, l) : k 2 +l 2 } D 2 = {(k, l) : k 2 +l 2 2} Ô ÔÖ Ò ÕÛÖ ÑÓ ÐØÖÓ Ñ ØÑ ØÖôÒ ÑÛÒ ÙÒØØÑÒº ÔÓ ÐØÖ Ø ÔÖÔÒÛ ÑØ ÔÖÑÒÓÙÒ ÒÐÐÓÛØ; Å ÔÖÓÙ ÒÜÖØØÓÙ ÖÓ ØÓ ÓÑÓÑÓÖ ØÒÑÑÒÓÙ ÓÖÓÙ ÔÓ Ò Ó ÙÒØÐ Ø ÑÛ ØÓÙ ÓÖÓÙ Ø ØÖ ÔÖÔØô ÐØÖÓÙ ÒÑ ØÑ; (b) Æ ÙÖ ÔÖ Ø ÔÖÔÒÛ ÑØ ØÛÒ ÐÓÙÛÒ Ó ÐØÖÛÒ ÙÐÓÔÓ ØÓÙ ÐÔÐ ÒÓ ØÐ Ø h (m, n) = 4 m 2 + n 2 = 0 m 2 + n 2 = 0 m 2 + n 2 > 4 m 2 + n 2 = 0 h 2 (m, n) = 0, 5 m 2 + n 2 = Ø m 2 + n 2 = 2 0 m 2 + n 2 > 2 ËÙÖÒØ Ø ÙÑÔÖÓÖ ØÛÒ Ó ÐØÖÛÒ ÛÒ ØÒ Ù ØÓÙ ØÒ ØÙÒ Ñ Ùº ËØÒ ÔÖÔØÛ ÔÖÜ ÒÜÖØØÓÙ ÖÓ ØÓ ÓÖÓÙ Ø ÔÖÔÒÛ ÐØÖ ØÓÒ ÑôÒÓÙÒ ØÓÒ Ò ÕÓÙÒ Ñ ÔÓ ÙÒØÐ Ø; 48
12 Σημειώματα Σημείωμα αναφοράς Copyright Πανεπιστήμιο Κρήτης, Καθηγητής Γεώργιος Τζιρίτας «Ψηφιακή Επεξεργασία Εικόνων - Βελτίωση εικόνων». Έκδοση:.0. Ηράκλειο 205. Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
13 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μαθηματική μορφολογία Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 11 ÅÑØ ÑÓÖÓÐÓ 11.1 ÅÓÖÓÐÓ ÔÜÖ ÙôÒ ÒÛÒ À ÑÑØ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 5 ÅØ ÕÑØ Ñ Fourier ¾¹ ÓÐÓÙôÒ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Σχηματισμός και αντίληψη εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 2 ËÕÑØ Ñ ÒØÐÝ ÒÛÒ 2.1 ËÕÑØ Ñ ÒÛÒ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: 2-Δ συνεχή σήματα Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 3 ¾¹ ÙÒÕ ÑØ Å ÙÒÕ Ò ÑÔÓÖ Ò ÔÖ Ø Ô Ò ¾¹ ÙÒÕ Ñ Ð
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Αποκατάσταση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 12 ÔÓØ Ø ÒÛÒ ÈÓÐÐ ÓÖ Ó Ò Ø Ø ÐÝ Ù ØÒØ ÔÖÑÖÛ
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
S i L L I OUT. i IN =i S. i C. i D + V V OUT
Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 8: Τριπλά Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ
Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Διαφορικές Εξισώσεις Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9
Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Z
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÌÅÀÅ Ä ÉÇÍ Controlµ Ã Ì ÉÏÊÀÌ Ë Registersµ º Bussesµ ÃÍÃÄÇÁ ÅÀÉ ÆÀË Machine Cyclesµ Á ÍÄÇÁ ØÑ Ñ Ð ÕÓÙ
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Προσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.
Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 6: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º
È Ö Õ Ñ Ò Á ³ Ò ÖÜ Ñ Ñ ØÓ ÁÁ ÖÕ Ñ Ñ Ø ½ Å Ñ ½ ½º½ Û º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º º º º º º º
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 3: Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Αντίστροφος Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙII Ενότητα : Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1
Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ ÆÂ Î ÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙII Ενότητα 1: Μετασχηματισμός aplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
º º½ Destination-Sequenced Distance-Vector (DSDV) º º º º. º º Temporally Ordered Routing Algorithm (TORA) º º º
È Ò Ô Ø Ñ Ó È ØÖôÒ ÈÓÐÙØ ÕÒ ËÕÓÐ ÌÑ Ñ Å Õ Ò ôò ÀÐ ØÖÓÒ ôò ÍÔÓÐÓ ØôÒ ÈÐ ÖÓ ÓÖ ÔÐÛÑ Ø Ö Ð Ö ÑÓ Ô Ó ÒÛÒ Ad-hoc Ã Ò Ø ØÙ È Ò ôø à ÒÓ Å ¾½¾ Ô Ð ÔÛÒ ÉÖ ØÓ ÖÓÐ È ØÖ ÁÓ Ð Ó ¾¼¼ c Copyright È Ò ôø à ÒÓ ÁÓ Ð Ó ¾¼¼
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼ ¾ È Ö Õ Ñ Ò ÈÖ ÐÓ Ó i ½ Ð Ö ÑÓ Ë ÐÑ Ø ½ ½º½ ÔÐÙ ÈÖÓ Ð Ñ ØÛÒ Ð Ö ÑÓ º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ö ÑÓ Ù Ó ô º º º
arxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº
ÇÐÓ Ð ÖÛ º½ Å ØÖ Ñ ËÙÒ ÖØ È Ö Ø Ö º½ µ Å ÙÒ ÖØ f : X Y Ñ Ø Ü Ñ ÒôÒ ÙÒ ÐÛÒ Ô ½ Ñ Ô Ò f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. À Ô Ò ÙØ Ø Ö ÙÑÔÐ ÖôÑ Ø Ù Ö Ø Òô Ù Ö Ø ØÓÑ º µ Ò B P(Y ) Ò σ¹ Ð Ö Ó Ó Ò
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ
Ë Öö ½º ÍÚÓ Ó Ò Ú Ò ÓÐÓ ÑÖ ö Ø ÓÖ ÓÑ Ö ÓÚ ½º½º ÍÚÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º ÈÓÖ î Ò ÑÖ ö ÔÖ Ó Ò ÓÚ ÚÓ Ø Ú º º º º º º º º º º º ½º º ÅÓ Ð ÑÖ ö º º º º º º º
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
arxiv:quant-ph/ v1 28 Nov 2002
Ò ÒÚ Ø Ø ÓÒ ØÓ ÉÙ ÒØÙÑ Ñ Ì ÓÖÝ arxiv:quant-ph/0211191v1 28 Nov 2002 Û Ö Ïº È ÓØÖÓÛ ÁÒ Ø ØÙØ Ó Ì ÓÖ Ø Ð È Ý ÍÒ Ú Ö ØÝ Ó Ý ØÓ Ä ÔÓÛ ½ ÈÐ ½ ¾ Ý ØÓ ÈÓÐ Ò ¹Ñ Ð Ô ÐÔ ºÙÛ º ÙºÔÐ Â Ò Ë ÓÛ ÁÒ Ø ØÙØ Ó È Ý ÍÒ Ú Ö
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Τεχνικό Σχέδιο - CAD
Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale
Faculté des Sciences Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale Promoteur : Annick Sartenaer Directeur : Caroline Sainvitu Mémoire présenté pour l'obtention du
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τεχνικό Σχέδιο - CAD
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Δομές Δεδομένων Ενότητα 1
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για