M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
|
|
- Παρθενορή Δελή
- 6 χρόνια πριν
- Προβολές:
Transcript
1 M086 LA 1 M106 GRP Tema: CSB nejednakost predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić
2 P Baza vektorskog prostora. Koordinatni sustav. 2 Norma vektora 3 Cauchy Schwarz Buniakowsky (CSB) nejednakost CSB nejednakost. 2/16
3 P 1 Definicija 5. Uredena trojka ( e 1, e 2, e 3 ) linearno nezavisnih vektora iz X 0 (E) zove se baza vektorskog prostora X 0 (E). Ureden par ( e 1, e 2 ) linearno nezavisnih vektora iz X 0 (M) zove se baza vektorskog prostora X 0 (M). Svaki nenul vektor ( e) iz X 0 (p) čini bazu vektorskog prostora X 0 (p). Neka je a X 0 (E), a ( e 1, e 2, e 3 ) baza u X 0 (E). Tada vektor a na jedinstven način možemo zapisati a = a 1 e 1 + a 2 e 2 + a 3 e 3. Brojeve a 1, a 2, a 3 zovemo koordinate (komponente) vektora a u bazi ( e 1, e 2, e 3 ). CSB nejednakost. 3/16
4 P 1 Definicija 5. Uredena trojka ( e 1, e 2, e 3 ) linearno nezavisnih vektora iz X 0 (E) zove se baza vektorskog prostora X 0 (E). Ureden par ( e 1, e 2 ) linearno nezavisnih vektora iz X 0 (M) zove se baza vektorskog prostora X 0 (M). Svaki nenul vektor ( e) iz X 0 (p) čini bazu vektorskog prostora X 0 (p). Neka je a X 0 (E), a ( e 1, e 2, e 3 ) baza u X 0 (E). Tada vektor a na jedinstven način možemo zapisati a = a 1 e 1 + a 2 e 2 + a 3 e 3. Brojeve a 1, a 2, a 3 zovemo koordinate (komponente) vektora a u bazi ( e 1, e 2, e 3 ). CSB nejednakost. 3/16
5 P 1 a + b = (a 1 + b 1 ) e 1 + (a 2 + b 2 ) e 2 + (a 3 + b 3 ) e 3 λ a = (λa 1 ) e 1 + (λa 2 ) e 2 + (λa 3 ) e 3 Definicija 6. Par (O; ( e 1, e 2, e 3 )) fiksne točke O i baze ( e 1, e 2, e 3 ) zovemo Kartezijev koordinatni sustav u prostoru E. CSB nejednakost. 4/16
6 P 1 a + b = (a 1 + b 1 ) e 1 + (a 2 + b 2 ) e 2 + (a 3 + b 3 ) e 3 λ a = (λa 1 ) e 1 + (λa 2 ) e 2 + (λa 3 ) e 3 Definicija 6. Par (O; ( e 1, e 2, e 3 )) fiksne točke O i baze ( e 1, e 2, e 3 ) zovemo Kartezijev koordinatni sustav u prostoru E. CSB nejednakost. 4/16
7 P 1 Posebno je pogodno ako za bazu prostora X 0 (E) izaberemo uredenu trojku medusobno okomitih i jediničnih (dugačkih 1!) vektora, koje obično označavamo s ( i, j, k). Tako dobivamo pravokutni Kartezijev koordinatni sustav (O; ( i, j, k)). Pravac odreden vektorom i označavamo sa x i zovemo os apscisa, pravac odreden vektorom j označavamo sa y i zovemo os ordinata, a pravac odreden vektorom k označavamo sa z i zovemo os aplikata. CSB nejednakost. 5/16
8 P 1 Primjedba 7. Ranije smo utvrdili da postoji bijekcija (obostrano jednoznačno preslikavanje) izmedu skupova E i X 0. Primijetite da takoder postoji bijekcija izmedu skupa svih uredenih trojki realnih brojeva R 3 i vektorskog prostora X 0 (E) jer svakoj uredenoj trojki (x 1, x 2, x 3 ) R 3 na jedinstven način možemo pridružiti vektor a = x 1 i + x 2 j + x 3 k iz prostora X0 (E) i obrnuto. Zato ćemo često po potrebi povezivati, pa neki puta i poistovjećivati pojmove: skup E, vektorski prostor X 0 (E) i R 3. CSB nejednakost. 6/16
9 P Baza vektorskog prostora. Koordinatni sustav. 2 Norma vektora 3 Cauchy Schwarz Buniakowsky (CSB) nejednakost CSB nejednakost. 7/16
10 P 2 Definicija 7. Neka je X 0 vektorski prostor. Funkciju : X 0 [0, ), koja svakom vektoru a X 0 pridružuje nenegativni realni broj (koji ćemo označiti s a ili jednostavno a zovemo norma vektora a ako vrijedi (i) a = 0 a = 0 [pozitivna definitnost], (ii) λ a = λ a za svaki λ R i za svaki a X 0, (iii) a + b a + b za svaki a, b X 0 [nejednakost trokuta]. CSB nejednakost. 8/16
11 P 2 Najčešće korištene vektorske norme su: a 1 = a 1 + a 2 + a 3, (l 1 norma) a 2 = a a2 2 + a2 3, (l 2 ili Euklidova norma) a = max{ a 1, a 2, a 3 }, (l ili Čebiševljeva norma) CSB nejednakost. 9/16
12 P 2 Udaljenost dviju točaka Udaljenost dviju točaka A = (x 1, y 1 ), B = (x 2, y 2 ) M u ravnini M u kojoj je uveden pravokutni Kartezijev koordinatni sustav možemo izračunati po formuli d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. Ako definiramo radijvektore r A, r B X 0 (M), r A = x 1 i + y 1 j, r B = x 2 i + y 2 j, (1) onda udaljenost zapisanu formulom (1) možemo zapisati kao d 2 (A, B) = r B r A 2, gdje je r B r A = (x 2 x 1 ) i+(y 2 y 1 ) j. Na sličan način može se definirati i udaljenost dviju točaka preko l 1 ili l norme sljedećim formulama: d 1 (A, B) = r B r A 1, d (A, B) = r B r A CSB nejednakost. 10/16
13 P 2 Udaljenost dviju točaka Udaljenost dviju točaka A = (x 1, y 1 ), B = (x 2, y 2 ) M u ravnini M u kojoj je uveden pravokutni Kartezijev koordinatni sustav možemo izračunati po formuli d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. Ako definiramo radijvektore r A, r B X 0 (M), r A = x 1 i + y 1 j, r B = x 2 i + y 2 j, (1) onda udaljenost zapisanu formulom (1) možemo zapisati kao d 2 (A, B) = r B r A 2, gdje je r B r A = (x 2 x 1 ) i+(y 2 y 1 ) j. Na sličan način može se definirati i udaljenost dviju točaka preko l 1 ili l norme sljedećim formulama: d 1 (A, B) = r B r A 1, d (A, B) = r B r A CSB nejednakost. 10/16
14 P Baza vektorskog prostora. Koordinatni sustav. 2 Norma vektora 3 Cauchy Schwarz Buniakowsky (CSB) nejednakost CSB nejednakost. 11/16
15 P 3 Lema 1. Neka je f : R R kvadratna funkcija f(x) = ax 2 + 2bx + c, a, b, c R, a > 0. Tada vrijedi: (i) b 2 ac 0 f(x) 0 x R (ii) b 2 ac = 0 f( b a ) = 0 & f(x) > 0 x R \ { b a}. CSB nejednakost. 12/16
16 P 3 Teorem 4. (Cauchy Schwarz Buniakowsky) Za proizvoljne realne brojeve a 1,..., a n, b 1,..., b n R vrijedi ( n ) 2 a k b k k=1 n pri čemu jednakost vrijedi onda i samo onda a 2 k k=1 k=1 - ako je a 1 = = a n = 0 ili b 1 = = b n = 0 ili n b 2 k, (2) - ako je barem jedan a i 0 ali postoji λ R, takav da je b k = λa k k = 1,..., n. CSB nejednakost. 13/16
17 P 3 Korolar 1. (Hölderova nejednakost) Za proizvoljne realne brojeve a 1,..., a n, b 1,..., b n R vrijedi n (a k + b k ) 2 n a 2 k + n b 2 k, (3) k=1 k=1 pri čemu jednakost vrijedi onda i samo onda k=1 - ako je a 1 = = a n = 0 ili b 1 = = b n = 0 ili - ako je barem jedan a i 0 i ako postoji λ 0, takav da bude b k = λa k k = 1,..., n. CSB nejednakost. 14/16
18 P 3 Korolar 2. (Nejednakost trokuta) Za proizvoljne realne brojeve a 1,..., a n, b 1,..., b n, c 1,..., c n R vrijedi n (b k a k ) 2 n (c k a k ) 2 + n (b k c k ) 2, (4) k=1 k=1 pri čemu jednakost vrijedi onda i samo onda k=1 - ako je c k = a k ili c k = b k za sve k = 1,..., n ili - ako je barem jedan c i a i i ako postoji λ 0, takav da bude b k c k = λ(c k a k ) k = 1,..., n. CSB nejednakost. 15/16
19 P 3 Primjer 8. Neka su x i y realni brojevi takvi da je 3x + 7y = 1. Dokažite da je x 2 + y CSB nejednakost. 16/16
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Vektori. 28. studenoga 2017.
Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina
LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ
LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Linearna algebra I, zimski semestar 2007/2008
Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Geometrija ravnine i prostora I. Vektori u ravnini i prostoru
Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Rudolf Scitovski, Darija Brajković 2. prosinca 2013. Sadržaj 1 Uvod 2 2 Operacije s vektorima 4 2.1 Zbrajanje vektora...............................
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
1 Aksiomatska definicija skupa realnih brojeva
1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
1. Topologija na euklidskom prostoru R n
1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Monika Jović. Skalarni produkt.
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Monika Jović Skalarni produkt Završni rad Osijek, 2012. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku
3 Funkcije. 3.1 Pojam funkcije
3 Funkcije 3.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
Analitička geometrija i linearna algebra
1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje
4 Funkcije. 4.1 Pojam funkcije
4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Geometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :
4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Linearna algebra za fizičare, zimski semestar Mirko Primc
Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).
UVOD U TEORIJU BROJEVA Drugo predavanje - 10.10.2013. Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije
2. Konvergencija nizova
6 2. KONVERGENCIJA NIZOVA 2. Konvergencija nizova Niz u skupu X je svaka funkcija x : N X. Vrijednost x(k), k N, se zove opći ili k-ti član niza i obično se označava s x k. U skladu s tim, niz x : N X
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (
Četrnaesto predavanje iz Teorije skupova
Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna
4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K
4 Unitarni prostori 4.1 Definicija i svojstva unitarnih prostora K polje R ili C, V je vektorski prostor nad K Definicija. Skalarni produkt na V je svaka funkcija p q: V ˆ V Ñ K koja ima sljedeća svojstva:
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi
Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
1. Osnovne operacije s kompleksnim brojevima
KOMPLEKSNI BROJEVI 1 1. Osnovne operacije s kompleksnim brojevima Kompleksni brojevi su proširenje skupa realnih brojeva. Naime, ne postoji broj koji zadovoljava kvadratnu jednadžbu x 2 + 1 = 0. Baš uz
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Matematika 1 { fiziqka hemija
UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju
KOMPAKTNI OPERATORI. Prof. dr. sc. Hrvoje Kraljević. Predavanja održana na PMF Matematičkom odjelu. u zimskom semestru akademske godine 2007./2008.
KOMPAKTNI OPERATORI Prof. dr. sc. Hrvoje Kraljević Predavanja održana na PMF Matematičkom odjelu Sveučilišta u Zagrebu u zimskom semestru akademske godine 2007./2008. Zagreb, siječanj 2008. 2 SADRŽAJ 3
x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.
Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y)
Formule Jedinični vektor vektora O T točke T(x,y) r xi y j r T0 T rt x y 1 x y xi y j Radijvektor u koordinatnoj ravnini koji pripada točki T(x,y) rt OT xi y j Vektor AB ako su: AB rab ( x x1 )i ( y y1
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Numerička analiza 26. predavanje
Numerička analiza 26. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb NumAnal 2009/10, 26. predavanje p.1/21 Sadržaj predavanja Varijacijske karakterizacije svojstvenih
mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.
r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira
x n +m = 0. Ovo proširenje ima svoju manu u tome da se odričemo relacije poretka - no ne možemo imati sve...
1 Kompleksni brojevi Kompleksni brojevi Već veoma rano se pokazalo da je skup realnih brojeva preuzak čak i za neke od najosnovnijih jednačina. Primjer toga je x n +m = 0. Pokazat ćemo da postoji logično
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Analitička geometrija afinog prostora
Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i
Flag-tranzitivni linearni prostori
Flag-tranzitivni linearni prostori Andrea Švob (asvob@math.uniri.hr) 5. studenoga 2010. Andrea Švob (asvob@math.uniri.hr) () Flag-tranzitivni linearni prostori 5. studenoga 2010. 1 / 31 Djelovanja grupe
VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
ELEMENTARNA MATEMATIKA 1
Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica